MELEXIS TH72012KDC

TH72012
433MHz
ASK Transmitter
Features
!
!
!
!
Fully integrated PLL-stabilized VCO
Frequency range from 380 MHz to 450 MHz
Single-ended RF output
ASK achieved by on/off keying of internal
power amplifier up to 40 kbit/s
! Wide power supply range from 1.95 V to 5.5 V
! Very low standby current
! On-chip low voltage detector
! High over-all frequency accuracy
! Adjustable output power range from
-12 dBm to +11 dBm
! Adjustable current consumption from
3.2 mA to 10.3 mA
! Conforms to EN 300 220 and similar standards
! 8-pin Small Outline Integrated Circuit (SOIC)
Ordering Information
Part Number
Temperature Code
Package Code
Delivery Form
TH72012
K (-40°C to 125°C)
DC (SOIC8)
98 pc/tube
2500 pc/T&R
Application Examples
!
!
!
!
!
!
!
!
!
Pin Description
General digital data transmission
Tire Pressure Monitoring Systems (TPMS)
Remote Keyless Entry (RKE)
Wireless access control
Alarm and security systems
Garage door openers
Remote Controls
Home and building automation
Low-power telemetry systems
8 VEE
ASKDTA 1
n. c. 2
ROI 3
ENTX 4
TH72012
7 OUT
6 VCC
5 PSEL
General Description
The TH72012 ASK transmitter IC is designed for applications in the European 433 MHz industrial-scientificmedical (ISM) band, according to the EN 300 220 telecommunications standard; but it can also be used in
other countries with similar standards, e.g. FCC part 15.231.
The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The integrated PLL synthesizer ensures that carrier frequencies, ranging from 380 MHz to 450 MHz, can be
achieved. This is done by using a crystal with a reference frequency according to: fref = fc/N, where N = 32 is
the PLL feedback divider ratio.
39010 72012
Rev. 009
Page 1 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
Document Content
1
Theory of Operation ...................................................................................................3
1.1
General............................................................................................................................. 3
1.2
Block Diagram .................................................................................................................. 3
2
Functional Description ..............................................................................................4
2.1
Crystal Oscillator .............................................................................................................. 4
2.2
ASK Modulation................................................................................................................ 4
2.3
Crystal Pulling................................................................................................................... 4
2.4
Output Power Selection.................................................................................................... 5
2.5
Lock Detection.................................................................................................................. 5
2.6
Low Voltage Detection...................................................................................................... 5
2.7
Mode Control Logic .......................................................................................................... 6
2.8
Timing Diagrams .............................................................................................................. 6
3
Pin Definition and Description ..................................................................................7
4
Electrical Characteristics ..........................................................................................8
4.1
Absolute Maximum Ratings .............................................................................................. 8
4.2
Normal Operating Conditions ........................................................................................... 8
4.3
Crystal Parameters ........................................................................................................... 8
4.4
DC Characteristics............................................................................................................ 9
4.5
AC Characteristics .......................................................................................................... 10
4.6
Output Power Steps ....................................................................................................... 10
5
Typical Operating Characteristics ..........................................................................11
5.1
DC Characteristics.......................................................................................................... 11
5.2
AC Characteristics .......................................................................................................... 14
6
Test Circuit ...............................................................................................................17
6.1
7
Test circuit component list to Fig. 18 .............................................................................. 17
Package Description ................................................................................................18
7.1
Soldering Information ..................................................................................................... 18
8
Reliability Information..............................................................................................19
9
ESD Precautions ......................................................................................................19
10
Disclaimer .................................................................................................................20
39010 72012
Rev. 009
Page 2 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
1 Theory of Operation
1.1 General
As depicted in Fig.1, the TH72012 transmitter consists of a fully integrated voltage-controlled oscillator
(VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A
Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO’s output signal feeds the power amplifier (PA). The RF signal power Pout can be adjusted in
four steps from Pout = –12 dBm to +10 dBm, either by changing the value of resistor RPS or by varying the
voltage VPS at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna
or to be matched to a 50Ohm load. Bandgap biasing ensures stable operation of the IC at a power supply
range of 1.95 V to 5.5 V.
1.2 Block Diagram
RPS
VCC
6
PSEL
ASKDTA
5
1
PLL
ENTX
4
mode
control
32
ROI
PA
7
OUT
antenna
matching
network
PFD
3
XOSC
XBUF
XTAL
CX1
CP
VCO
low
voltage
detector
2
8
VEE
Fig. 1:
39010 72012
Rev. 009
Block diagram with external components
Page 3 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
2 Functional Description
2.1 Crystal Oscillator
A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL
synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about
18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time.
2.2
ASK Modulation
The PLL transmitter can be ASK-modulated by
applying a data stream directly at the pin
ASKDTA. This turns the internal current
sources of the power amplifier on and off and
therefore leads to an ASK signal at the output.
2.3
ASKDTA
Description
0
Power amplifier is turned off
1
Power amplifier is turned on (according
to the selected output power step)
Crystal Pulling
A crystal is tuned by the manufacturer to the
required oscillation frequency f0 at a given load
capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CLeff seen by the crystal.
Figure 2 shows the oscillation frequency of a
crystal as a function of the effective load capacitance. This figure also illustrates the relationship between the external pulling capacitor
and the center frequency.
It can be seen that the pulling sensitivity increases with the reduction of CL. For highaccuracy ASK applications, a higher load capacitance should be chosen in order to reduce
the frequency drift caused by the tolerances of
the chip and the external pulling capacitor.
f
XTAL
L1
C1
CL eff
R1
fc
CL=
Fig. 2:
39010 72012
Rev. 009
C0
CX1 CRO
CX1+CRO
CL eff
Crystal pulling characteristic
Page 4 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
2.4 Output Power Selection
The transmitter is provided with an output power selection feature. There are four predefined output power
steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was
chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the
corresponding power levels are selected to cover a wide spectrum of different applications.
The implementation of the output power control
logic is shown in figure 3. There are two
matched current sources with an amount of
about 8 µA. One current source is directly applied to the PSEL pin. The other current source
is used for the generation of reference voltages
with a resistor ladder. These reference voltages
are defining the thresholds between the power
steps. The four comparators deliver thermometer-coded control signals depending on the
voltage level at the pin PSEL. In order to have a
certain amount of ripple tolerance in a noisy
environment the comparators are provided with
a little hysteresis of about 20 mV. With these
control signals, weighted current sources of the
power amplifier are switched on or off to set the
desired output power level (Digitally Controlled
Current Source). The LOCK, ASK signal and
the output of the low voltage detector are gating
this current source.
RPS
PSEL
&
ASKDTA
&
&
&
&
OUT
Fig. 4:
Block diagram of output power control circuitry
There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL,
then this voltage directly selects the desired output power step. This kind of power selection can be used if
the transmission power must be changed during operation. For a fixed-power application a resistor can be
used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixed-power applications at the highest power step this resistor can be omitted.
The pin PSEL is in a high impedance state during the “TX standby” mode.
2.5 Lock Detection
The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted
emission of the transmitter if the PLL is unlocked.
2.6 Low Voltage Detection
The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply
voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the
transmitter if the supply voltage is too low.
39010 72012
Rev. 009
Page 5 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
2.7 Mode Control Logic
The mode control logic allows two different
modes of operation as listed in the following
table. The mode control pin ENTX is pulleddown internally. This guarantees that the whole
circuit is shut down if this pin is left floating.
ENTX
Mode
Description
0
TX standby
TX disabled
1
TX active
TX enable
2.8 Timing Diagrams
After enabling the transmitter by the ENTX signal, the power amplifier remains inactive for the time ton, the
transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier,
and then the RF carrier can be FSK modulated.
high
ENTX
low
high
LOCK
low
high
ASKDTA
low
RF carrier
t
t on
Fig. 5:
39010 72012
Rev. 009
Timing diagram for ASK modulation
Page 6 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
3 Pin Definition and Description
Pin No.
1
Name
ASKDTA
I/O Type
Functional Schematic
0: ENTX=1
1: ENTX=0
input
1.5kΩ
ASKDTA
1
2
n. c.
3
ROI
Description
ASK data input,
CMOS compatible with operation mode dependent
pull-up circuit
TX standby: no pull-up
TX active: pull-up
no connection
analog I/O
XOSC connection to XTAL,
Colpitts type crystal oscillator
25k
ROI
3
36p
36p
4
ENTX
input
mode control input,
CMOS-compatible with internal pull-down circuit
1.5kΩ
ENTX
4
5
PSEL
power select input, highimpedance comparator logic
analog I/O
IPSEL
PSEL
1.5kΩ
TX standby: IPSEL = 0
TX active: IPSEL = 8µA
5
6
VCC
supply
7
OUT
output
positive power supply
VCC
OUT
power amplifier output,
open collector
7
VEE
8
39010 72012
Rev. 009
VEE
VEE
ground
negative power supply
Page 7 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
4 Electrical Characteristics
4.1 Absolute Maximum Ratings
Parameter
Symbol
Condition
Min
Max
Unit
Supply voltage
VCC
0
7.0
V
Input voltage
VIN
-0.3
VCC+0.3
V
Storage temperature
TSTG
-65
150
°C
Junction temperature
TJ
150
°C
Thermal Resistance
RthJA
163
K/W
Power dissipation
Pdiss
0.12
W
Electrostatic discharge
VESD
human body model (HBM)
according to CDF-AECQ100-002
±2.0
kV
4.2 Normal Operating Conditions
Parameter
Symbol
Condition
Min
Max
Unit
Supply voltage
VCC
1.95
5.5
V
Operating temperature
TA
-40
125
°C
Input low voltage CMOS
VIL
ENTX, ASKDTA pins
0.3*VCC
V
Input high voltage CMOS
VIH
ENTX, ASKDTA pins
XOSC frequency
fref
set by the crystal
11.9
14
MHz
VCO frequency
fc
fc = 32 • fref
380
450
MHz
Data rate
R
NRZ
40
kbit/s
Min
Max
Unit
11.9
14
MHz
10
15
pF
0.7*VCC
V
4.3 Crystal Parameters
Parameter
Symbol
Condition
Crystal frequency
f0
Load capacitance
CL
Static capacitance
C0
7
pF
Series resistance
R1
70
Ω
39010 72012
Rev. 009
fundamental mode, AT
Page 8 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
4.4 DC Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at TA = 23 °C and VCC = 3 V
Parameter
Symbol
Condition
Min
Typ
Max
Unit
0.2
200
nA
4
µA
Operating Currents
Standby current
ISBY
ENTX=0, TA=85°C
ENTX=0, TA=125°C
Supply current in power step 0
ICC0
ENTX=1
1.5
2.5
3.8
mA
Supply current in power step 1
ICC1
ENTX=1
2.1
3.4
4.9
mA
Supply current in power step 2
ICC2
ENTX=1
3.0
4.6
6.2
mA
Supply current in power step 3
ICC3
ENTX=1
4.5
6.5
8.5
mA
Supply current in power step 4
ICC4
ENTX=1
7.3
10.6
13.3
mA
Input low voltage CMOS
VIL
ENTX, ASKDTA pins
-0.3
0.3*Vcc
V
Input high voltage CMOS
VIH
ENTX, ASKDTA pins
0.7*VCC
VCC+0.3
V
20
µA
Digital Pin Characteristics
Pull down current
ENTX pin
IPDEN
ENTX=1
Low level input current
ENTX pin
IINLEN
ENTX=0
0.02
µA
High level input current
ASKDTA pin
IINHDTA
ASKDTA=1
0.02
µA
Pull up current
ASKDTA pin active
IPUDTAa
ASKDTA=0
ENTX=1
12
µA
Pull up current
ASKDTA pin standby
IPUDTAs
ASKDTA=0
ENTX=0
0.02
µA
9.9
µA
0.035
V
0.2
0.1
2.0
1.5
Power Select Characteristics
Power select current
IPSEL
ENTX=1
7.0
8.6
Power select voltage step 0
VPS0
ENTX=1
Power select voltage step 1
VPS1
ENTX=1
0.14
0.24
V
Power select voltage step 2
VPS2
ENTX=1
0.37
0.60
V
Power select voltage step 3
VPS3
ENTX=1
0.78
1.29
V
Power select voltage step 4
VPS4
ENTX=1
1.55
ENTX=1
1.75
V
Low Voltage Detection Characteristic
Low voltage detect threshold
39010 72012
Rev. 009
VLVD
Page 9 of 20
1.85
1.95
V
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
4.5 AC Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 18, fc = 433.92 MHz
Parameter
Symbol
Condition
Min
Typ
Max
Unit
-70
dBm
-10 1)
dBm
-1.5
1)
dBm
4.5
1)
dBm
10
1)
dBm
CW Spectrum Characteristics
Output power in step 0
(Isolation in off-state)
Poff
ENTX=1
Output power in step 1
P1
ENTX=1
Output power in step 2
P2
Output power in step 3
P3
Output power in step 4
P4
-13
ENTX=1
-3.5
ENTX=1
2
ENTX=1
Phase noise
L(fm)
@ 200kHz offset
Spurious emissions according
to EN 300 220-1 (2000.09)
table 13
Pspur
4.5
-12
-3
3
8
-88
-83
dBc/Hz
47MHz< f <74MHz
87.5MHz< f <118MHz
174MHz< f <230MHz
470MHz< f <862MHz
B=100kHz
-54
dBm
f < 1GHz, B=100kHz
-36
dBm
f > 1GHz, B=1MHz
-30
dBm
1.2
ms
±3
ppm
±10
ppm
±20
ppm
Start-up Parameters
Start-up time
ton
from standby to
transmit mode
0.8
Frequency Stability
Frequency stability vs. supply
voltage
dfVCC
Frequency stability vs. temperature
dfTA
Frequency stability vs. variation range of CRO
dfCRO
crystal at constant
temperature
1) output matching network tuned for 5V supply
4.6 Output Power Steps
Power step
0
1
2
3
4
RPS / kΩ
<3
22
56
120
not connected
39010 72012
Rev. 009
Page 10 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
5 Typical Operating Characteristics
5.1 DC Characteristics
I SBY
Standby current
5µA
4µA
125°C
3µA
2µA
1µA
200nA
85°C
150nA
100nA
50nA
25°C
0
2.0
2.5
3.0
3.5
4.0
Vcc
Fig. 6:
4.5
5.0
5.5
6.0
[V]
Standby current limits
power step 0
3.4
125°C
105°C
3.0
2.6
25°C
Icc
[mA]
85°C
0°C
-20°C
2.2
-40°C
1.8
1.8
2.2
2.6
3.0
Fig. 7:
39010 72012
Rev. 009
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Supply current in power step 0
Page 11 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
power step 1
4.2
125°C
105°C
85°C
[mA]
3.6
Icc
3.9
3.3
25°C
0°C
-20°C
3.0
-40°C
2.7
1.8
2.2
2.6
3.0
Fig. 8:
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Supply current in power step 1
power step 2
5.4
125°C
105°C
85°C
25°C
4.6
Icc
[mA]
5.0
0°C
4.2
-20°C
-40°C
3.8
1.8
2.2
2.6
3.0
Fig. 9:
39010 72012
Rev. 009
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Supply current in power step 2
Page 12 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
power step 3
7.3
125°C
105°C
85°C
7.0
25°C
6.4
0°C
Icc
[mA]
6.7
6.1
-20°C
5.8
-40°C
5.5
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 10: Supply current in power step 3
power step 4
12.0
125°C
105°C
85°C
11.5
25°C
10.5
0°C
Icc
[mA]
11.0
10.0
-20°C
9.5
-40°C
9.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 11: Supply current in power step 4
39010 72012
Rev. 009
Page 13 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
5.2 AC Characteristics
•
Data according to test circuit in Fig. 18
power step 1
-11.5
25°C
85°C
125°C
[dBm]
-12.5
Pout
-12.0
-13.0
-40°C
-13.5
-14.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 12: Output power in step 1
power step 2
-1.0
Pout
[dBm]
-2.0
25°C
85°C
125°C
-40°C
-3.0
-4.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 13: Output power in step 2
39010 72012
Rev. 009
Page 14 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
power step 3
5.0
[dBm]
3.0
Pout
4.0
2.0
25°C
85°C
125°C
-40°C
1.0
0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 14: Output power in step 3
power step 4
12.0
[dBm]
8.0
Pout
10.0
6.0
25°C
85°C
125°C
-40°C
4.0
2.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 15: Output power in step 4
39010 72012
Rev. 009
Page 15 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
Fig. 16: RF output signal with PLL reference spurs
Fig. 17: Single sideband phase noise
39010 72012
Rev. 009
Page 16 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
6 Test Circuit
CM1
CM2
CM3
LM
LT
CB1
RPS
OUT
5
OUT
VCC
n.c.
ROI
ENTX
VEE
ASKDTA
PSEL
6
7
8
XTAL
CX1
CB0
1 2
VCC
GND
VCC
ENTX
GND
1 2 3
GND
VCC
DATA
1 2 3
Fig. 18: Test circuit for ASK with 50 Ω matching network
6.1 Test circuit component list to Fig. 18
Part
Size
Value @
433.92 MHz
Tolerance
CM1
0805
5.6 pF
±5%
impedance matching capacitor
CM2
0805
10 pF
±5%
impedance matching capacitor
CM3
0805
82 pF
±5%
impedance matching capacitor
LM
0805
33 nH
±5%
impedance matching inductor, note 2
LT
0805
33 nH
±5%
output tank inductor, note 2
CX1
0805
27 pF
±5%
XOSC capacitor, note 1
RPS
0805
see section 4.6
±5%
power-select resistor
CB0
1206
220 nF
±20%
de-coupling capacitor
CB1
0805
330 pF
±10%
de-coupling capacitor
XTAL
HC49/S
13.56000 MHz
±30ppm calibr.
±30ppm temp.
Description
fundamental wave crystal,
CL = 12 pF, C0, max = 7 pF, R1 = 60 Ω
Note 1: value depending on crystal parameters
Note 2: for high-power applications high-Q wire-wound inductors should be used
39010 72012
Rev. 009
Page 17 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
7 Package Description
The device TH72012 is RoHS compliant.
D
e
7°
ZD
E
H
8
DETAIL - A
1
L
B
DETAIL - A
A
A2
0.38 x 45°
BSC
(0.015x45°)
A1
C
.10 (.004)
Fig. 18: SOIC8
all Dimension in mm, coplanarity < 0.1mm
D
E
H
A
A1
min
4.80
max
4.98
A2
3.81
5.80
1.52
0.10
1.37
3.99
6.20
1.72
0.25
1.57
e
1.27
B
0.36
0.46
ZD
0.53
C
L
α
0.19
0.41
0°
0.25
1.27
8°
0.075 0.016
0°
0.098 0.050
8°
all Dimension in inch, coplanarity < 0.004”
min
0.189 0.150 0.2284 0.060 0.0040 0.054
max
0.196 0.157 0.2440 0.068 0.0098 0.062
0.050
0.014
0.018
0.021
7.1 Soldering Information
•
39010 72012
Rev. 009
The device TH72012 is qualified for MSL3 with soldering peak temperature 260 deg C
according to JEDEC J-STD-20
Page 18 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
8 Reliability Information
This Melexis device is classified and qualified regarding soldering technology, solderability and moisture
sensitivity level, as defined in this specification, according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
“Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)”
EIA/JEDEC JESD22-A113
“Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)”
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
“Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat”
EIA/JEDEC JESD22-B106 and EN60749-15
“Resistance to soldering temperature for through-hole mounted devices”
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
“Resistance to soldering temperature for through-hole mounted devices”
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
“Solderability”
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be
agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of
adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualification of RoHS compliant products (RoHS = European directive on the Restriction Of the
Use of Certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality_leadfree.aspx
9 ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
39010 72012
Rev. 009
Page 19 of 20
Data Sheet
July/06
TH72012
433MHz
ASK Transmitter
10 Disclaimer
1) The information included in this documentation is subject to Melexis intellectual and other property rights.
Reproduction of information is permissible only if the information will not be altered and is accompanied
by all associated conditions, limitations and notices.
2) Any use of the documentation without the prior written consent of Melexis other than the one set forth in
clause 1 is an unfair and deceptive business practice. Melexis is not responsible or liable for such altered
documentation.
3) The information furnished by Melexis in this documentation is provided ’as is’. Except as expressly warranted in any other applicable license agreement, Melexis disclaims all warranties either express, implied, statutory or otherwise including but not limited to the merchantability, fitness for a particular purpose, title and non-infringement with regard to the content of this documentation.
4) Notwithstanding the fact that Melexis endeavors to take care of the concept and content of this documentation, it may include technical or factual inaccuracies or typographical errors. Melexis disclaims any
responsibility in connection herewith.
5) Melexis reserves the right to change the documentation, the specifications and prices at any time and
without notice. Therefore, prior to designing this product into a system, it is necessary to check with
Melexis for current information.
6) Melexis shall not be liable to recipient or any third party for any damages, including but not limited to
personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the information in this documentation.
7) The product described in this documentation is intended for use in normal commercial applications. Applications requiring operation beyond ranges specified in this documentation, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.
8) Any supply of products by Melexis will be governed by the Melexis Terms of Sale, published on
www.melexis.com.
© Melexis NV. All rights reserved.
For the latest version of this document, go to our website at:
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Asia:
Americas:
Asia:
Phone: +32 1367 0495
Phone: +1 603 223 2362
Phone: +32 1367 0495
E-mail: [email protected]
E-mail: [email protected]
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
39010 72012
Rev. 009
Page 20 of 20
Data Sheet
July/06