MSK MSK0002HRH

MIL-PRF-38534 CERTIFIED
M.S.KENNEDY CORP.
RAD TOLERANT,
HIGH SPEED,
BUFFER AMPLIFIER
0002RH
4707 Dey Road Liverpool, N.Y. 13088
(315) 701-6751
FEATURES:
Total Dose Tested to 300 Krads (Si)
RAD Tolerant LH0002 Replacement
High Input Impedance-180KΩ Min
Low Output Impedance-10Ω Max
Low Harmonic Distortion
DC to 30 MHz Bandwidth
Slew Rate is Typically 400 V/µS
Operating Range from±5V to ±20V
Contact MSK for MIL-PRF-38534 Qualification Status and Appendix G (Radiation Status)
DESCRIPTION:
The MSK 0002RH is a general purpose current amplifier. It is the industry wide RAD tolerant replacement for the
LH0002. The device is ideal for use with an operational amplifier in a closed loop configuration to increase current
output. The MSK 0002RH is designed with a symmetrical output stage that provides low output impedances to both
the positive and negative portions of output pulses. The MSK 0002RH is packaged in a hermetic 8 lead low profile
T0-5 header and is specified over the full military temperature range.
EQUIVALENT SCHEMATIC
TYPICAL APPLICATIONS
PIN-OUT INFORMATION
High Speed D/A Conversion
30MHz Buffer
Line Driver
Precision Current Source
1
2
3
4
1
V1+
V2+
E3
Output
5
6
7
8
E4
V2V1Input
Rev. A
4/07
5
ABSOLUTE MAXIMUM RATINGS
±VCC
VIN
Pd
Tc
Supply Voltage
Input Voltage
Power Dissipation
Case Operating Temperature
(MSK 0002K/H/E RH)
(MSK 0002RH)
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
TST Storage Temperature Range
-65°C to +150°C
TLD Lead Temperature Range
+300°C
(10 Seconds)
TJ Junction Temperature
+175°C
θjC Thermal Resistance @ TC=125°C
Output Devices
55°C/W
±20V
±20V
600mW
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
-55°C to +125°C
-40°C to +85°C
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
ELECTRICAL SPECIFICATIONS
Parameter
Quiescent Current
Test Conditions 1 6
Group A
Subgroup
MSK 0002K/H/E RH
4
MSK 0002RH
Units
Min.
Typ.
Max.
Min.
Typ.
Max.
1
-
±6.3
±10
-
±6.3
±12
mA
1
-
±5
±15
-
±5
±20
µA
2,3
-
±10
±20
-
-
-
µA
1
-
±6
±30
-
±6
±35
mV
2,3
-
±10
±30
-
-
-
mV
4
180
-
-
180
-
-
KΩ
4
-
-
10
-
-
10
Ω
4
±10
±11
-
±10
±11
-
Vp
4
±9.5
-
-
±9.5
-
-
Vp
VIN=3.0VPP f=1.0KHz
4
0.95
0.97
-
0.95
0.97
-
V/V
RS=10KΩ RL=1.0KΩ
5,6
0.92
-
-
-
-
-
V/V
4
-
6
12
-
6
15
nS
VIN=0V
RS=10KΩ RL=1.0KΩ
Input Current
Output Offset Voltage
Input Impedance 3
RS=10KΩ RL=1.0KΩ
RS=300Ω RL=1.0KΩ
VIN=1.0VRMS RS=200KΩ
RL=1KΩ f=1.0KHz
Output Impedance 3
VIN=1.0VRMS Rs=10KΩ
RL=50Ω f=1.0KHz
RL=1.0KΩ
Output Voltage Swing
f=1.0KHz
RL=100Ω
±VCC=±15V f=1.0KHz
Voltage Gain 2
Rise Time
VOUT=2.5VPP f=10KHz
RS=100Ω RL=50Ω
NOTES:
1 Unless otherwise specified ±VCC=±12VDC, RL=1KΩ.
2 Subgroups 5 & 6 shall be tested as part of device initial characterization and after design
and process changes. Parameter shall be guaranteed to the limits specified for subgroups
5 & 6 for all lots not specifically tested.
3 Devices shall be capable of meeting the parameter, but need not be tested.
4 Subgroup 1,4
TA=TC=+25°C
Subgroup 2,5
TA=TC=+125°C
Subgroup 3,6
TA=TC=-55°C
5 Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.
6 Consult factory for post radiation limits.
2
Rev. A
4/07
APPLICATION NOTES
HEAT SINKING
To determine if a heat sink is necessary for your application
and if so, what type, refer to the thermal model and governing
equation below.
Thermal Model:
RΘSA = ((TJ - TA)/PD) - (RΘJC) - (RΘCS)
= ((125°C - 80°C) / 0.36W) - 55°C/W - 0.15°C/W
= 125 - 55.15
= 69.9°C/W
This heat sink in this example must have a thermal resistance
of no more than 69.9°C/W to maintain a junction temperature
of no more than +125°C.
Typical Applications:
Governing Equation:
TJ=PD X (RΘJC +RΘCS +RΘSA) +TA
Where
TJ=Junction Temperature
PD=Total Power Dissipation
RΘJC=Junction to Case Thermal Resistance
RΘCS=Heat Sink to Ambient Thermal Resistance
TC=Case Temperature
TA=Ambient Temperature
TS=Sink Temperature
Example:
This example demonstrates a worst case analysis for the buffer
output stage. This occurs when the output voltage is 1/2 the
power supply voltage. Under this condition, maximum power
transfer occurs and the output is under maximum stress.
Conditions:
VCC= ±12VDC
Vo= ±6Vp Sine Wave, Freq. = 1KHz
RL= 100Ω
For a worst case analysis we will treat the ±6Vp sine wave as
an 6 VDC output voltage.
1.) Find Driver Power Dissipation
PD= (Vcc-Vo) (Vo/RL)
= (12V-6V) (6V/100Ω)
= 360mW
2.) For conservative design, set TJ=+125°C Max.
3.) For this example, worst case TA=+80°C
4.) RΘJC = 55° C/W from MSK 0002RH Data Sheet
5.) RΘCS = 0.15° C/W for most thermal greases
6.) Rearrange governing equation to solve for RΘSA
3
Rev. A
4/07
TYPICAL PERFORMANCE CURVES
4
Rev. A
4/07
RADIATION CURVES
NOTE: All radiation curve test conditions are in accordance with the electrical specifications table (page 2).
See RAD report for bias and dose rate.
5
Rev. A
4/07
RADIATION CURVES CONT'D
NOTE: All radiation curve test conditions are in accordance with the electrical specifications table (page 2).
See RAD report for bias and dose rate.
6
Rev. A
4/07
MECHANICAL SPECIFICATIONS
WEIGHT=1 GRAM TYPICAL
ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED
ORDERING INFORMATION
Part
Number
MSK0002RH
MSK0002ERH
MSK0002HRH
MSK0002KRH
Screening Level
Industrial
Extended Reliability
MIL-PRF-38534 Class H
MIL-PRF-38534 Class K
M.S. Kennedy Corp.
4707 Dey Road, Liverpool, New York 13088
Phone (315) 701-6751
FAX (315) 701-6752
www.mskennedy.com
The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make
changes to its products or specifications without notice, however, and assumes no liability for the use of its products.
Please visit our website for the most recent revision of this datasheet.
Contact MSK for MIL-PRF-38534 qualification status and Appendix G (radiation status)
7
Rev. A
4/07