KERSEMI IRFU18N15D

IRFR18N15D/IRFU18N15D
SMPS MOSFET
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
Benefits
Low Gate to Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
VDSS
150V
RDS(on) max
ID
0.125Ω
18A
l
D-Pak
IRFR18N15D
I-Pak
IRFU18N15D
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
18
13
72
110
0.71
± 30
3.3
-55 to + 175
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
Typical SMPS Topologies
l
1 / 10
Telecom 48V input DC-DC Active Clamp Reset Forward Converter
www.kersemi.com
IRFR18N15D/IRFU18N15D
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
150
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.17
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, I D = 250µA
––– V/°C Reference to 25°C, ID = 1mA †
0.125
Ω
VGS = 10V, ID = 11A „
5.5
V
VDS = VGS, ID = 250µA
25
VDS = 150V, VGS = 0V
µA
250
VDS = 120V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
4.2
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
28
7.6
14
8.8
25
15
9.8
900
190
49
1160
88
95
Max. Units
Conditions
–––
S
VDS = 50V, ID = 11A
43
ID = 11A
11
nC
VDS = 120V
21
VGS = 10V, „
–––
VDD = 75V
–––
ID = 11A
ns
–––
RG = 6.8Ω
–––
VGS = 10V „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 120V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 120V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
200
11
11
mJ
A
mJ
Typ.
Max.
Units
–––
–––
–––
1.4
50
110
°C/W
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2 / 10
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
18
––– –––
showing the
A
G
integral reverse
72
––– –––
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 11A, VGS = 0V „
––– 130 190
ns
TJ = 25°C, IF = 11A
––– 660 980
nC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.kersemi.com
IRFR18N15D/IRFU18N15D
100
100
VGS
15V
10V
9.0V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
VGS
15V
10V
9.0V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
1
6.0V
20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
10
6.0V
100
Fig 1. Typical Output Characteristics
TJ = 175 ° C
10
TJ = 25 ° C
V DS = 50V
20µs PULSE WIDTH
7
8
9
10
11
Fig 3. Typical Transfer Characteristics
3 / 10
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
VGS , Gate-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
100
6
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
1
20µs PULSE WIDTH
TJ = 175 °C
1
0.1
12
ID = 18A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.kersemi.com
IRFR18N15D/IRFU18N15D
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
Coss = Cds + Cgd
1000
Ciss
Coss
100
Crss
VGS , Gate-to-Source Voltage (V)
20
10000
ID = 11A
VDS = 120V
VDS = 75V
VDS = 30V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
10
1
10
100
1000
0
0
VDS , Drain-to-Source Voltage (V)
10
20
30
40
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
100
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
10
TJ = 175 ° C
TJ = 25 ° C
1
0.1
0.2
V GS = 0 V
0.5
0.8
1.1
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4 / 10
1.4
10us
100us
10
1ms
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10ms
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.kersemi.com
1000
IRFR18N15D/IRFU18N15D
20
VDS
VGS
I D , Drain Current (A)
16
RD
D.U.T.
RG
+
-VDD
12
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
8
Fig 10a. Switching Time Test Circuit
4
VDS
90%
0
25
50
75
100
125
TC , Case Temperature
150
175
( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.01
0.00001
P DM
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5 / 10
www.kersemi.com
0.1
IRFR18N15D/IRFU18N15D
500
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
20V
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
1 5V
TOP
400
BOTTOM
ID
4.4A
9.0A
11A
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
IAS
Fig 12b. Unclamped Inductive Waveforms
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
QG
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6 / 10
www.kersemi.com
175
IRFR18N15D/IRFU18N15D
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
D=
Period
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
7 / 10
www.kersemi.com
IRFR18N15D/IRFU18N15D
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .47 6 )
11.9 ( .46 9 )
F E E D D IR E C T IO N
TRL
16 .3 ( .641 )
15 .7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FE E D D IR E C T IO N
N O T ES :
1 . C O N T R O LLIN G D IME N S IO N : M ILL IM ET E R .
2 . A LL D IM EN S IO N S A R E SH O W N IN M ILLIM ET E R S ( IN C H E S ).
3 . O U TL IN E C O N FO R MS T O E IA -481 & E IA -54 1.
1 3 IN C H
16 m m
N O TE S :
1. O U TL IN E C O N F O R M S T O E IA -481 .
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 3.3mH
RG = 25Ω, IAS = 11A.
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
ƒ ISD ≤ 11A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS,
T ≤ 175°C
10 / 10
www.kersemi.com