STMICROELECTRONICS STM32F373R8

STM32F372xx
STM32F373xx
ARM Cortex-M4F 32b MCU+FPU, up to 256KB Flash+32KB SRAM
timers, 4 ADCs (12/16-bit), 3 DACs, 2 comp., 2.0-3.6 V operation
Datasheet  production data
Features
FBGA
■
Core: ARM 32-bit Cortex™-M4F CPU (72 MHz
max), single-cycle multiplication and HW
division, DSP instruction with FPU (floatingpoint unit) and MPU (memory protection unit)
■
Memories
– 64 to 256 Kbytes of Flash memory
– 32 Kbytes of SRAM with HW parity check
■
CRC calculation unit
■
Reset and power management
– Voltage range: 2.0 to 3.6 V
– Power-on/Power down reset (POR/PDR)
– Programmable voltage detector (PVD)
– Low power modes: Sleep, Stop, Standby
– VBAT supply for RTC and backup registers
LQFP48 (7 × 7 mm)
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
UFBGA100 (7 x 7 mm)
■
17 timers
– Two 32-bit timer and three 16-bit timers
with up to 4 IC/OC/PWM or pulse counter
– Two 16-bit timers with up to 2 IC/OC/PWM
or pulse counter
– Four 16-bit timers with up to 1 IC/OC/PWM
or pulse counter
– Independent and system watchdog timers
– SysTick timer: 24-bit downcounter
– Three 16-bit basic timers to drive the DAC
■
Calendar RTC with Alarm and periodic wakeup
from Stop/Standby
■
Communication interfaces
– CAN interface (2.0B Active)
– Two I2C interfaces; supporting Fast Mode
Plus (1 Mbit/s) with 20 mA current sink,
SMBus/PMBus, wakeup from STOP
– Three USARTs supporting master
synchronous SPI and modem control; with
ISO7816 interface, LIN, IrDA capability,
auto baud rate detection, wakeup feature
– Three SPIs (18 Mbit/s) with 4 to 16
programmable bit frame, muxed I2S
– HDMI-CEC bus interface
– USB 2.0 full speed interface
■
Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x16 PLL option
– Internal 40 kHz oscillator
■
Up to 84 fast I/Os
– All mappable on external interrupt vectors
– Up to 45 I/Os with 5 V tolerant capability
■
12-channel DMA controller
■
One 12-bit, 1.0 µs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V
– Separate analog supply from 2.4 up to 3.6
■
Up to three 16-bit Sigma Delta ADC
– Separate analog supply from 2.2 to 3.6 V,
up to 21 single/ 11 diff channels
■
Serial wire devices, JTAG, Cortex-M4F ETM
■
96-bit unique ID
■
Up to three 12-bit DAC channels
Table 1.
■
Two fast rail-to-rail analog comparators with
programmable input and output
■
Up to 24 capacitive sensing channels
supporting touchkey, linear and rotary
touchsensors
December 2012
Reference
Device summary
Part number
STM32F372xx
STM32F372C8, STM32F372R8, STM32F372V8,
STM32F372CB, STM32F372RB, STM32F372VB,
STM32F372CC, STM32F372RC, STM32F372VC
STM32F373xx
STM32F373C8, STM32F373R8, STM32F373V8,
STM32F373CB, STM32F373RB, STM32F373VB,
STM32F373CC, STM32F373RC, STM32F373VC
Doc ID 022691 Rev 3
1/128
www.st.com
1
Contents
STM32F37x
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . . 12
3.2
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 13
3.5
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.10
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.11
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.12
3.11.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
3.11.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
12-bit analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.12.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.12.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.12.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.13
16-bit sigma delta analog-to-digital converters (SDADC) . . . . . . . . . . . . . 18
3.14
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.15
Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.16
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.17
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.17.1
2/128
General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) . . . . . 22
Doc ID 022691 Rev 3
STM32F37x
Contents
3.17.2
Basic timers (TIM6, TIM7, TIM18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.17.3
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17.4
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17.5
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.18
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23
3.19
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.20
Universal synchronous/asynchronous receiver transmitter (USART) . . . 25
3.21
Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 25
3.22
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.23
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.24
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.25
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.26
Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 56
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 57
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Doc ID 022691 Rev 3
3/128
Contents
7
STM32F37x
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.15
NRST characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.16
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.17
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.18
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.19
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.20
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.21
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.22
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.23
USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.24
CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.25
SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 122
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4/128
Doc ID 022691 Rev 3
STM32F37x
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Capacitive sensing GPIOs available on STM32F37x devices . . . . . . . . . . . . . . . . . . . . . . 20
No. of capacitive sensing channels available on STM32F37x devices. . . . . . . . . . . . . . . . 21
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM32F37x I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM32F37x USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F37x SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32F37x pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Alternate functions for port PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Alternate functions for port PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Alternate functions for port PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Alternate functions for port PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Alternate functions for port PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Alternate functions for port PF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
STM32F37x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 59
Typical and maximum current consumption from VDDA supply . . . . . . . . . . . . . . . . . . . . . 61
Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 61
Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 62
Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 62
Typical current consumption in Run mode, code with data processing running from Flash 64
Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 65
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Doc ID 022691 Rev 3
5/128
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
6/128
STM32F37x
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
RSRC max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
SDADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
VREFSD+ pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 115
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 117
LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 119
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Doc ID 022691 Rev 3
STM32F37x
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STM32F37x LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32F37x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM32F37x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STM32F37x BGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
STM32F37x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') . . . . . . . . . . . . 63
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 84
Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 84
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 106
UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
LQFP100 –14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 115
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 117
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 119
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Doc ID 022691 Rev 3
7/128
Introduction
1
STM32F37x
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F37x microcontrollers.
This STM32F37x datasheet should be read in conjunction with the STM32F37x reference
manual. The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Cortex™-M4F core please refer to the Cortex™-M4F Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/index.html
and also refer to the STM32F3xxx and STM32F4xxx Cortex-M4 programming manual
(PM0214) at address:
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
PROGRAMMING_MANUAL/DM00046982.pdf
8/128
Doc ID 022691 Rev 3
STM32F37x
2
Description
Description
The STM32F37x family is based on the high-performance ARM® Cortex™-M4F 32-bit
RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit
(FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The
family incorporates high-speed embedded memories (up to 256 Kbyte of Flash memory, up
to 32 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals
connected to two APB buses.
The STM32F37x devices offer one fast 12-bit ADC (1 Msps), up to three 16-bit Sigma delta
ADCs, up to two comparators, up to two DACs (DAC1 with 2 channels and DAC2 with 1
channel), a low-power RTC, 9 general-purpose 16-bit timers, two general-purpose 32-bit
timers, three basic timers.
They also feature standard and advanced communication interfaces: up to two I2Cs, three
SPIs, all with muxed I2Ss, three USARTs, CAN and USB.
The STM32F37x family operates in the -40 to +85 °C and -40 to +105 °C temperature
ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows
the design of low-power applications.
The STM32F37x family offers devices in five packages ranging from 48 pins to 100 pins.
The set of included peripherals changes with the device chosen.
Doc ID 022691 Rev 3
9/128
Description
Table 2.
STM32F37x
Device overview
STM32F
372Cx
Peripheral
STM32F
372Rx
STM32F
372Vx
STM32F
373Cx
STM32F
373Rx
STM32F
373Vx
Flash (Kbytes)
64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256
SRAM (Kbytes)
16
Timers
24
32
24
32
16
24
32
16
24
32
16
24
32
General
purpose
9 (16-bit)
2 (32 bit)
9 (16-bit)
2 (32 bit)
Basic
3 (16-bit)
3 (16-bit)
3
3
2
2
3
3
1
1
1
1
SPI/I2S
2
I C
Comm.
USART
interfaces
CAN
USB
GPIOs
16
16
24
Normal
I/Os
(TC, TTa)
36
52
84
36
52
84
5 volts
Tolerant
I/Os
(FT, Ftf)
20
28
45
20
28
45
12-bit ADCs
1
1
16-bit ADCs
Sigma- Delta
1 (SDADC1)
3
12-bit DACs outputs
1 (DAC2)
3
Analog comparator
1 (COMP1)
2
Capacitive sensing
channels
14
Max. CPU frequency
17
24
14
17
24
72 MHz
72 MHz
Main operating
voltage
2.0 to 3.6 V
2.0 to 3.6 V
16-bit SDADC
operating voltage
2.2 to 3.6 V
2.2 to 3.6 V
Ambient operating temperature:
40 to 85 °C / 40 to 105 °C
Junction temperature: 40 to 125 °C
Ambient operating temperature:
40 to 85 °C / 40 to 105 °C
Junction temperature: 40 to 125 °C
Operating
temperature
Packages
LQFP48
LQFP64
LQFP100,
UFBGA100(1)
1. UFBGA100 package available on 256-KB versions only.
10/128
Doc ID 022691 Rev 3
LQFP48
LQFP64
32
LQFP100,
UFBGA100(1)
STM32F37x
Block diagram
*4234
*4$)
*4#+37#,+
*4-337$!4
*4$/
AS!&
4RACE
#ONTROLLER
0BUS
&LASH OBL
)NTERFACE
*4!'37
)BUS
#/24%8-&#05
Fmax -(Z
.6)#
.6)#
$BUS
3YSTEM
"US-ATRIX
Figure 1.
Description
6DD18
&LASHUPTO+"
0/2
3500,9
2ESET 350%26)3)/.
)NT
0/20$2
32!-
UPTO+"
@VDDA
$-!
2#,3
0";=
'0)/ 0/24 "
0#;=
'0)/ 0/24 #
0$;=
'0)/ 0/24 $
0&;BITS=
88!&
'0)/ 0/24 %
4)-
4 CHANNEls, ETR
as AF
TIM 19
2848#43243
3MART#ARDAS!&
3$!$#).S
3$!$#).S
SHAREDW
3$!$#
62%&3$
62%&3$
3$!$#).S
SHAREDW3$
6333$
84!,K(Z
/3#?).
/3#?/54
"ACKUP
REG
!.4)4!-0
24#
!75
"ACKUPINTERFACE
CRC
!("TO
!0"
4)-
4)-
4)-
#HANNELS%42
AS!&
4)-
#HANNELS%42
AS!&
4)-
#HANNELS%42
AS!&
4)-
#HANNELS%42
AS!&
4)-2
2 CHANNEL ETR
as AF
4)-
#HANNELAS!&
4)-
#HANNELAS!&
53!24
2848#43243
3MART#ARDAS!&
53!24
2848#43243
3MART#ARDAS!&
77$'
4)-
30))3
4)-
53!24
BIT3$!$# )&
BIT3$!$# )&
@VDDSD12
6"!4
@VSW
3$!$#
#,+
!0"&max-(Z
-/3)-)3/
3#+.33AS!&
3TANDBY
INTERFACE
53!24#,+
#%##,+
!$##,+
%84)4
7+50
#HANNELS
#OMP#HANNEL
"2+AS!&
#HANNEL
#OMP#HANNEL
"2+AS!&
#HANNELS
#OMP#HANNEL
"2+AS!&
/3#?).
/3#?/54
)7$'
!0"0#,+
!0"0#,+
(#,+
&#,+
'0)/ 0/24 &
!("TO
!0"
@VDDIO
84!,/3#
-(Z
!0"&max-(Z
0%;=
!("
'0)/ 0/24 !
!("&MAX-(Z
4OUCH3ENSING
#ONTROLLER
0!;=
@VDDA
0,,
2%3%4
#,/#+
-!.!'4
#42,
.2%3%4
6$$!
633!
06$
2#(3-(Z
$-!
CHANNELS
6$$TO6
6SS
@VDDIO
BIT
CHANNELS
'ROUPSOF
CHANNELSMAX
AS!&
0/7%2
6/,42%'
64/6
30))3
2x(8x16bit)
-/3)-)3/
3#+.33AS!&
30))3
2x(8x16bit)
-/3)-)3/
3#+.33AS!&
)#
3#,3$!3-"!
AS!&
)#
3#,3$!3-"!
AS!&
BX#!.
#!.48#!.28
4)-
32!-"
53"&3
53"?$-53"?$0
($-)#%#
($-)#%#AS!&
)& BIT $!#?/54
$!#?/54AS!&
)& BIT $!#?/54
$!#?/54AS!&
)& BIT $!#?/54
$!#?/54AS!&
BIT3$!$# )&
@VDDSD3
6$$3$
6$$3$
@VDDA
4EMPSENSOR
!).S
62%&
62%&
BIT !$# )&
393#&' #4,
@VDD
#/-0
#/-0
).S/54SAS!&
1.
AF: alternate function on I/O pins.
2.
Example given for STM32F373xx device.
@VDDA
Doc ID 022691 Rev 3
.47
11/128
Functional overview
STM32F37x
3
Functional overview
3.1
ARM® Cortex™-M4F core with embedded Flash and SRAM
The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing
and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded ARM core, the STM32F37x family is compatible with all ARM tools and
software.
Figure 1 shows the general block diagram of the STM32F37x family.
3.2
Memory protection unit
The memory protection unit (MPU) is used to separate the processing of tasks from the data
protection. The MPU can manage up to 8 protection areas that can all be further divided up
into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes
of addressable memory.
The memory protection unit is especially helpful for applications where some critical or
certified code has to be protected against the misbehavior of other tasks. It is usually
managed by an RTOS (real-time operating system). If a program accesses a memory
location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS
environment, the kernel can dynamically update the MPU area setting, based on the
process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
The Cortex-M4F processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:
●
Outstanding processing performance combined with fast interrupt handling
●
Enhanced system debug with extensive breakpoint and trace capabilities
●
Efficient processor core, system and memories
●
Ultralow power consumption with integrated sleep modes
●
Platform security robustness with optional integrated memory protection unit (MPU).
With its embedded ARM core, the STM32F37x devices are compatible with all ARM
development tools and software.
12/128
Doc ID 022691 Rev 3
STM32F37x
3.3
Functional overview
Embedded Flash memory
All STM32F37x devices feature up to 256 Kbytes of embedded Flash memory available for
storing programs and data. The Flash memory access time is adjusted to the CPU clock
frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states
above).
3.4
Cyclic redundancy check (CRC) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
3.5
Embedded SRAM
All STM32F37x devices feature up to 32 Kbytes of embedded SRAM with hardware parity
check. The memory can be accessed in read/write at CPU clock speed with 0 wait states.
3.6
Boot modes
At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
●
Boot from user Flash
●
Boot from system memory
●
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device
firmware upgrade).
Doc ID 022691 Rev 3
13/128
Functional overview
STM32F37x
3.7
Power management
3.7.1
Power supply schemes
3.7.2
●
VDD: external power supply for I/Os and the internal regulator. It is provided externally
through VDD pins, and can be 2.0 to 3.6 V.
●
VDDA = 2.0 to 3.6 V:
–
external analog power supplies for Reset blocks, RCs and PLL
–
supply voltage for 12-bit ADC, DACs and comparators (minimum voltage to be
applied to VDDA is 2.4 V when the 12-bit ADC and DAC are used).
●
VDDSD12 and VDDSD3 = 2.2 to 3.6 V: supply voltages for SDADC1/2 and SDADCD3
sigma delta ADCs. Independent from VDD/VDDA.
●
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers when VDD is not present.
Power supply supervisor
●
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry.
It is always active, and ensures proper operation starting from/down to 2 V. The device
remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the
need for an external reset circuit. The POR monitors only the VDD supply voltage.
During the startup phase it is required that VDDA should arrive first and be greater than
or equal to VDD.
●
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.7.3
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR), and power-down.
●
The MR mode is used in the nominal regulation mode (Run)
●
The LPR mode is used in Stop mode.
●
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
14/128
Doc ID 022691 Rev 3
STM32F37x
3.7.4
Functional overview
Low-power modes
The STM32F37x supports three low-power modes to achieve the best compromise between
low power consumption, short startup time and available wakeup sources:
●
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
●
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the USARTs, the I2Cs, the
CEC, the USB wakeup, and the RTC alarm.
●
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.8
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed
APB domain is 36 MHz.
3.9
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
Doc ID 022691 Rev 3
15/128
Functional overview
STM32F37x
Do not reconfigure GPIO pins which are not present on 48 and 64 pin packages to the
analog mode. Additional current consumption in the range of tens of µA per pin can be
observed if VDDA is higher than VDDIO.
3.10
Direct memory access (DMA)
The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The two DMAs can be used with the main peripherals: SPIs, I2Cs, USARTs, DACs, ADC,
SDADCs, general-purpose timers.
3.11
Interrupts and events
3.11.1
Nested vectored interrupt controller (NVIC)
The STM32F37x devices embed a nested vectored interrupt controller (NVIC) able to
handle up to 60 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
●
Closely coupled NVIC gives low latency interrupt processing
●
Interrupt entry vector table address passed directly to the core
●
Closely coupled NVIC core interface
●
Allows early processing of interrupts
●
Processing of late arriving higher priority interrupts
●
Support for tail chaining
●
Processor state automatically saved
●
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.11.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 29 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 84
GPIOs can be connected to the 16 external interrupt lines.
16/128
Doc ID 022691 Rev 3
STM32F37x
3.12
Functional overview
12-bit analog-to-digital converter (ADC)
The 12-bit analog-to-digital converter is based on a successive approximation register
(SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels
(temperature sensor, voltage reference, VBAT voltage measurement) performing
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed
on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the timers (TIMx) can be internally connected to the ADC start and
injection trigger, respectively, to allow the application to synchronize A/D conversion and
timers.
3.12.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy
of the temperature measurement. As the offset of the temperature sensor varies from chip
to chip due to process variation, the uncalibrated internal temperature sensor is suitable for
applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode. See Table 65:
Temperature sensor calibration values on page 103.
3.12.2
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. The
precise voltage of VREFINT is individually measured for each part by ST during production
test and stored in the system memory area. It is accessible in read-only mode.
3.12.3
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC_IN18. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a divider by 2.
As a consequence, the converted digital value is half the VBAT voltage.
Doc ID 022691 Rev 3
17/128
Functional overview
3.13
STM32F37x
16-bit sigma delta analog-to-digital converters (SDADC)
Up to three 16-bit sigma-delta analog-to-digital converters are embedded in the
STM32F37x. They have up to two separate supply voltages allowing the analog function
voltage range to be independent from the STM32F37x power supply. They share up to 21
input pins which may be configured in any combination of single-ended (up to 21) or
differential inputs (up to 11).
The conversion speed is up to 16.6 ksps for each SDADC when converting multiple
channels and up to 50 ksps per SDADC if single channel conversion is used. There are two
conversion modes: single conversion mode or continuous mode, capable of automatically
scanning any number of channels. The data can be automatically stored in a system RAM
buffer, reducing the software overhead.
A timer triggering system can be used in order to control the start of conversion of the three
SDADCs and/or the 12-bit fast ADC. This timing control is very flexible, capable of triggering
simultaneous conversions or inserting a programmable delay between the ADCs.
Up to two external reference pins (VREFSD+, VREFSD-) and an internal 1.2/1.8 V
reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to
fine-tune the input voltage range of the SDADC.
18/128
Doc ID 022691 Rev 3
STM32F37x
3.14
Functional overview
Digital-to-analog converter (DAC)
The devices feature up to two 12-bit buffered DACs with three output channels that can be
used to convert three digital signals into three analog voltage signal outputs. The internal
structure is composed of integrated resistor strings and an amplifier in inverting
configuration.
This digital Interface supports the following features:
●
3.15
Up to two DAC converters with three output channels:
–
DAC1 with two output channels
–
DAC2 with one output channel.
●
8-bit or 10-bit monotonic output
●
Left or right data alignment in 12-bit mode
●
Synchronized update capability
●
Noise-wave generation
●
triangular-wave generation
●
Dual DAC channel independent or simultaneous conversions (DAC1 only)
●
DMA capability for each channel
●
External triggers for conversion
Fast comparators (COMP)
The STM32F37x embeds up to 2 comparators with rail-to-rail inputs and high-speed output.
The reference voltage can be internal or external (delivered by an I/O).
The threshold can be one of the following:
●
DACs channel outputs
●
External I/O
●
Internal reference voltage (VREFINT) or submultiple (1/4 VREFINT, 1/2 VREFINT and 3/4
VREFINT)
The comparators can be combined into a window comparator.
Both comparators can wake up the device from Stop mode and generate interrupts and
breaks for the timers.
Doc ID 022691 Rev 3
19/128
Functional overview
3.16
STM32F37x
Touch sensing controller (TSC)
The devices provide a simple solution for adding capacitive sensing functionality to any
application. Capacitive sensing technology is able to detect the presence of a finger near an
electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The
capacitive variation introduced by the finger (or any conductive object) is measured using a
proven implementation based on a surface charge transfer acquisition principle. It consists
of charging the electrode capacitance and then transferring a part of the accumulated
charges into a sampling capacitor until the voltage across this capacitor has reached a
specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by
the hardware touch sensing controller and only requires few external components to
operate.
Up to 24 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are
organized in 8 acquisition groups, with up to 4 I/Os in each group.
Table 3.
Group
Capacitive sensing GPIOs available on STM32F37x devices
Capacitive sensing
signal name
Pin name
TSC_G1_IO1
PA0
TSC_G1_IO2
PA1
1
Capacitive sensing
signal name
Pin
name
TSC_G5_IO1
PB3
TSC_G5_IO2
PB4
5
TSC_G1_IO3
PA2
TSC_G5_IO3
PB6
TSC_G1_IO4
PA3
TSC_G5_IO4
PB7
TSC_G2_IO1
PA4
TSC_G6_IO1
PB14
TSC_G2_IO2
PA5
TSC_G6_IO2
PB15
2
6
TSC_G2_IO3
PA6
TSC_G6_IO3
PD8
TSC_G2_IO4
PA7
TSC_G6_IO4
PD9
TSC_G3_IO1
PC4
TSC_G7_IO1
PE2
TSC_G3_IO2
PC5
TSC_G7_IO2
PE3
3
7
TSC_G3_IO3
PB0
TSC_G7_IO3
PE4
TSC_G3_IO4
PB1
TSC_G7_IO4
PE5
TSC_G4_IO1
PA9
TSC_G8_IO1
PD12
TSC_G4_IO2
PA10
TSC_G8_IO2
PD13
4
20/128
Group
8
TSC_G4_IO3
PA13
TSC_G8_IO3
PD14
TSC_G4_IO4
PA14
TSC_G8_IO4
PD15
Doc ID 022691 Rev 3
STM32F37x
Functional overview
Table 4.
No. of capacitive sensing channels available on STM32F37x devices
Number of capacitive sensing channels
Analog I/O group
3.17
STM32F37xCx
STM32F37xRx
STM32F37xVx
G1
3
3
3
G2
2
3
3
G3
1
3
3
G4
3
3
3
G5
3
3
3
G6
2
2
3
G7
0
0
3
G8
0
0
3
Number of capacitive
sensing channels
14
17
24
Timers and watchdogs
The STM32F37x includes two 32-bit and nine 16-bit general-purpose timers, three basic
timers, two watchdog timers and a SysTick timer. The table below compares the features of
the advanced control, general purpose and basic timers.
Table 5.
Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
Channels
Complementary
outputs
Generalpurpose
TIM2
TIM5
32-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
0
Generalpurpose
TIM3,
TIM4,
TIM19
16-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
0
Generalpurpose
TIM12
16-bit
Up
Any integer
between 1
and 65536
No
2
0
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
Generalpurpose
TIM13,
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
0
Doc ID 022691 Rev 3
21/128
Functional overview
Table 5.
STM32F37x
Timer feature comparison (continued)
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
Channels
Complementary
outputs
Generalpurpose
TIM16,
TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6,
TIM7,
TIM18
16-bit
Up
Any integer
between 1
and 65536
Yes
0
0
3.17.1
General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19)
There are eleven synchronizable general-purpose timers embedded in the STM32F37x (see
Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs,
or act as a simple time base.
●
TIM2, 3, 4, 5 and 19
These five timers are full-featured general-purpose timers:
–
TIM2 and TIM5 have 32-bit auto-reload up/downcounters and 32-bit prescalers
–
TIM3, 4, and 19 have 16-bit auto-reload up/downcounters and 16-bit prescalers
These timers all feature 4 independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
●
TIM12, 13, 14, 15, 16, 17
These six timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM12 has 2 channels
–
TIM13 and TIM14 have 1 channel
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.17.2
Basic timers (TIM6, TIM7, TIM18)
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
22/128
Doc ID 022691 Rev 3
STM32F37x
3.17.3
Functional overview
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
3.17.4
System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB1 clock (PCLK1) derived from the main clock. It has an early warning
interrupt capability and the counter can be frozen in debug mode.
3.17.5
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.18
●
A 24-bit down counter
●
Autoreload capability
●
Maskable system interrupt generation when the counter reaches 0
●
Programmable clock source
Real-time clock (RTC) and backup registers
The RTC and the backup registers are supplied through a switch that takes power either
from VDD supply when present or through the VBAT pin. The backup registers are thirty two
32-bit registers used to store 128 bytes of user application data.
They are not reset by a system or power reset, and they are not reset when the device
wakes up from the Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
●
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
●
Automatic correction for 28th, 29th (leap year), 30th and 31st day of the month.
●
2 programmable alarms with wake up from Stop and Standby mode capability.
●
Periodic wakeup unit with programmable resolution and period.
●
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
●
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
●
3 anti-tamper detection pins with programmable filter. The MCU can be woken up from
Stop and Standby modes on tamper event detection.
●
Timestamp feature which can be used to save the calendar content. This function can
triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
Doc ID 022691 Rev 3
23/128
Functional overview
STM32F37x
The RTC clock sources can be:
3.19
●
A 32.768 kHz external crystal
●
A resonator or oscillator
●
The internal low-power RC oscillator (typical frequency of 40 kHz)
●
The high-speed external clock divided by 32
Inter-integrated circuit interface (I2C)
Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support
standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes with
20 mA output drive. They support 7-bit and 10-bit addressing modes, multiple 7-bit slave
addresses (2 addresses, 1 with configurable mask). They also include programmable
analog and digital noise filters.
Table 6.
Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeout verifications and
ALERT protocol management. They also have a clock domain independent from the CPU
clock, allowing the application to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller
Refer to Table 7 for the differences between I2C1 and I2C2.
Table 7.
STM32F37x I2C implementation
I2C features(1)
I2C1
I2C2
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
Independent clock
X
X
SMBus
X
X
Wakeup from STOP
X
X
1. X = supported.
24/128
Doc ID 022691 Rev 3
STM32F37x
3.20
Functional overview
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32F37x embeds three universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART3).
All USARTs interfaces are able to communicate at speeds of up to 9 Mbit/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR
ENDEC, the multiprocessor communication mode, the single-wire half-duplex
communication mode, Smart Card mode (ISO 7816 compliant), autobaudrate feature and
have LIN Master/Slave capability. The USART interfaces can be served by the DMA
controller.
Refer to Table 8 for the features of USART1, USART2 and USART3.
Table 8.
STM32F37x USART implementation
USART modes/features(1)
USART1
USART2
USART3
Hardware flow control for modem
X
X
X
Continuous communication using DMA
X
X
X
Multiprocessor communication
X
X
X
Synchronous mode
X
X
X
Smartcard mode
X
X
X
Single-wire half-duplex communication
X
X
X
IrDA SIR ENDEC block
X
X
X
LIN mode
X
X
X
Dual clock domain and wakeup from Stop mode
X
X
X
Receiver timeout interrupt
X
X
X
Modbus communication
X
X
X
Auto baud rate detection
X
X
X
Driver Enable
X
X
X
1. X = supported.
3.21
Serial peripheral interface (SPI)/Inter-integrated sound
interfaces (I2S)
Up to three SPIs are able to communicate at up to 18 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The SPIs can be served by the DMA controller.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available, that can
be operated in master or slave mode. These interfaces can be configured to operate with
16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up
to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in
Doc ID 022691 Rev 3
25/128
Functional overview
STM32F37x
master mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency.
Refer to Table 9 for the features between SPI1 and SPI2.
Table 9.
STM32F37x SPI/I2S implementation
SPI features(1)
SPI1
SPI2
SPI3
Hardware CRC calculation
X
X
X
Rx/Tx FIFO
X
X
X
NSS pulse mode
X
X
X
I2S mode
X
X
X
TI mode
X
X
X
1. X = supported.
3.22
High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The device embeds a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC
controller to wakeup the MCU from Stop mode on data reception.
3.23
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.24
Universal serial bus (USB)
The STM32F37x embeds an USB device peripheral compatible with the USB full-speed 12
Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has
software-configurable endpoint setting and suspend/resume support. The dedicated 48
MHz clock is generated from the internal main PLL (the clock source must use a HSE
crystal oscillator).
26/128
Doc ID 022691 Rev 3
STM32F37x
3.25
Functional overview
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.26
Embedded trace macrocell™
The ARM embedded trace macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F37x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer running debugger software. TPA
hardware is commercially available from common development tool vendors. It operates
with third party debugger software tools.
Doc ID 022691 Rev 3
27/128
Pinouts and pin description
STM32F37x
Pinouts and pin description
Figure 2.
STM32F37x LQFP48 pinout
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
4
48 47 46 45 44 43 42 41 40 39 38 37
36
35
34
33
4
32
5
31
6
,1&0
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
1
2
3
PA3
PA4
PA5
PA6
VDD_2
PB0
PB1
PB2
PE8
PE9
VSSSD/VREFSDVDDSD
VBAT
PC13
PC14 - OSC32_IN
PC15 - OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST
VSSA/VREFVDDA/VREF+
PA0
PA1
PA2
28/128
Doc ID 022691 Rev 3
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PD8
PB15
PB14
VREFSD+
.47
STM32F37x
STM32F37x LQFP64 pinout
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 3.
Pinouts and pin description
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
,1&0
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD8
PB15
PB14
VREFSD+
VREF+
PA3
VDD_2
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE8
PE9
VSSSD/VREFSDVDDSD
VBAT
PC13
PC14 - OSC32_IN
PC15 - OSC32_OUT
PF0 - OSC_IN
PF1 - OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREFVDDA
PA0
PA1
PA2
-36
Doc ID 022691 Rev 3
29/128
Pinouts and pin description
STM32F37x LQFP100 pinout
6$$?
633?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 4.
STM32F37x
,1&0
6$$?
633?
0&
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
62%&3$
6$$3$
0!
0&
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
62%&3$
6333$
6$$3$
0%
0%
0%
0%
0%
6"!4
0#
0#/3#?).
0#/3#?/54
0&
0&
0&/3#?).
0&/3#?/54
.234
0#
0#
0#
0#
0&
633!62%&
6$$!
62%&
0!
0!
0!
-36
30/128
Doc ID 022691 Rev 3
STM32F37x
Figure 5.
Pinouts and pin description
STM32F37x BGA100 pinout
!
0%
0%
0"
"//4
0$
0$
0"
0"
0!
0!
0!
0!
"
0%
0%
0"
0"
0"
0$
0$
0$
0$
0#
0#
0!
#
0#
0%
0%
0$
0$
0#
0&
0!
$
0#
0%
633?
0!
0!
0#
0#
6"!4
0#
0#
0#
&
0&
0&
633?
6333$
'
0&
0&
6$$?
6$$3$
(
0#
.234
*
0&
+
%
6$$?
0"
0&
6$$?
0$
0$
0$
0#
0#
0$
0$
0$
633!
62%&
0#
0!
0!
0#
0"
62%&3$
,
62%&
0!
0!
0!
0#
0"
-
6$$!
0!
0!
0!
0"
0"
0$
0$
0"
0%
0%
0%
0"
0%
0%
0%
0%
62%&3$ 6$$3$
0%
0%
-36
Doc ID 022691 Rev 3
31/128
Pinouts and pin description
Table 10.
STM32F37x
Legend/abbreviations used in the pinout table
Name
Pin name
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3 V I/O
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
Pin type
I/O structure
Notes
Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Alternate
Functions selected through GPIOx_AFR registers
functions
Pin
functions
BGA100
I/O structure
Notes
STM32F37x pin definitions
LQFP100
Table 11.
Additional
Functions directly selected/enabled through peripheral registers
functions
1
B2
PE2
I/O
FT
(1)
TSC_G7_IO1, TRACECLK
2
A1
PE3
I/O
FT
(1)
TSC_G7_IO2, TRACED0
FT
(1)
TSC_G7_IO3, TRACED1
TSC_G7_IO4, TRACED2
TRACED3
Pin numbers
3
LQFP48
LQFP64
Pin name
B1
(function
after reset)
PE4
Pin
type
I/O
Pin functions
Alternate function
Additional functions
4
C2
PE5
I/O
FT
(1)
5
D2
PE6
I/O
FT
(1)
6
E2
1
1
VBAT
S
7
C1
2
2
PC13
I/O
TC
WKUP2_ALARM_OUT_
CALIB_OUT_TIMESTAMP,
RTC_TAMPER1
8
D1
3
3
PC14 OSC32_IN
I/O
TC
OSC32_IN
9
E1
4
4
PC15 OSC32_OUT
I/O
TC
OSC32_OUT
10
F2
PF9
I/O
FT
32/128
WKUP3, RTC_TAMPER3
Backup power supply
(1)
TIM14_CH1
Doc ID 022691 Rev 3
STM32F37x
Pin
type
Notes
STM32F37x pin definitions (continued)
I/O structure
Table 11.
Pinouts and pin description
PF10
I/O
FT
(1)
Pin numbers
G2
12
F1
5
5
PF0 OSC_IN
I/O
FTf
I2C2_SDA
OSC_IN
13
G1
6
6
PF1 OSC_OUT
I/O
FTf
I2C2_SCL
OSC_OUT
14
H2
7
7
NRST
I/O
RST
15
H1
LQFP48
11
LQFP64
BGA100
Pin functions
LQFP100
Pin name
8
(function
after reset)
PC0
I/O
Alternate function
Additional functions
Device reset input / internal reset output (active low)
TTa
(1)
TIM5_CH1_ETR
ADC_IN10
TIM5_CH2
ADCIN11
16
J2
9
PC1
I/O
TTa
(1)
17
J3
10
PC2
I/O
TTa
(1)
SPI2_MISO/I2S2_MCK,
TIM5_CH3
ADC_IN12
18
K2
11
PC3
I/O
TTa
(1)
SPI2_MOSI/I2S2_SD,
TIM5_CH4
ADC_IN13
19
J1
PF2
I/O
FT
(1)
I2C2_SMBA
20
K1
8
VSSA/VREF-
S
9
VDDA/VREF+
S
(1)
Analog power supply / Reference voltage for ADC, COMP,
DAC
VDDA
S
(1)
Analog power supply
S
(1)
Reference voltage for ADC, COMP, DAC
21
22
23
24
25
M1
L1
L2
M2
K3
26
L3
27
E3
28
H3
12
13
17
14 10
15 11
16 12
18 13
19 17
VREF+
PA0
PA1
PA2
I/O
I/O
I/O
Analog ground
TTa
USART2_CTS,
TIM2_CH1_ETR,
TIM5_CH1_ETR, TIM19_CH1,
TSC_G1_IO1, COMP1_OUT
RTC_ TAMPER2, WKUP1,
ADC_IN0, COMP1_INM
TTa
SPI3_SCK/I2S3_CK,
USART2_RTS, TIM2_CH2,
TIM15_CH1N, TIM5_CH2,
TIM19_CH2, TSC_G1_IO2,
ADC_IN1, COMP1_INP,
RTC_REF_CLK_IN
TTa
COMP2_OUT,
SPI3_MISO/I2S3_MCK,
USART2_TX, TIM2_CH3,
TIM15_CH1, TIM5_CH3,
TIM19_CH3, TSC_G1_IO3
ADC_IN2,
COMP2_INM
SPI3_MOSI/I2S3_SD,
USART2_RX, TIM2_CH4,
TIM15_CH2, TIM5_CH4,
TIM19_CH4, TSC_G1_IO4
ADC_IN3, COMP2_INP
PA3
I/O
TTa
PF4
I/O
FT
VDD_2
S
(1)
Digital power supply
Doc ID 022691 Rev 3
33/128
Pinouts and pin description
STM32F37x pin definitions (continued)
(function
after reset)
Pin
type
Pin functions
Notes
LQFP48
LQFP64
Pin name
BGA100
LQFP100
Pin numbers
I/O structure
Table 11.
STM32F37x
Alternate function
Additional functions
29
M3
20 14
PA4
I/O
TTa
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK, TIM3_CH2,
TIM12_CH1, TSC_G2_IO1,
30
K4
21 15
PA5
I/O
TTa
SPI1_SCK/I2S1_CK, CEC,
TIM2_CH1_ETR, TIM14_CH1,
TIM12_CH2, TSC_G2_IO2
ADC_IN5, DAC1_OUT2
TTa
SPI1_MISO/I2S1_MCK,
COMP1_OUT, TIM3_CH1,
TIM13_CH1, TIM16_CH1,
TSC_G2_IO3
ADC_IN6, DAC2_OUT1,
31
L4
22 16
PA6
I/O
ADC_IN4, DAC1_OUT1
32
M4
23
PA7
I/O
TTa
TSC_G2_IO4, TIM14_CH1,
(1) SPI1_MOSI/I2S1_SD,
TIM17_CH1, TIM3_CH2,
COMP2_OUT
33
K5
24
PC4
I/O
TTa
(1)
TIM13_CH1, TSC_G3_IO1,
USART1_TX
ADC_IN14
34
L5
25
PC5
I/O
TTa
(1)
TSC_G3_IO2, USART1_RX
ADC_IN15
35
M5
26 18
PB0
I/O
TTa
SPI1_MOSI/I2S1_SD,
TIM3_CH3, TSC_G3_IO3,
TIM3_CH2
ADC_IN8, SDADC1_AIN6P
36
M6
27 19
PB1
I/O
TTa
TIM3_CH4, TSC_G3_IO4
ADC_IN9, SDADC1_AIN5P,
SDADC1_AIN6M
37
L6
28 20
PB2
I/O
TC
(2)
M7
39
L7
40
M8
41
42
29 21
30 22
SDADC1_AIN4P,
SDADC2_AIN6P
PE7
I/O
TC
(1)
SDADC1_AIN3P,
SDADC1_AIN4M,
SDADC2_AIN5P,
SDADC2_AIN6M
PE8
I/O
TC
(2)
SDADC1_AIN8P,
SDADC2_AIN8P
(2)
SDADC1_AIN7P,
SDADC1_AIN8M,
SDADC2_AIN7P,
SDADC2_AIN8M
(2)
38
ADC_IN7
PE9
I/O
TC
L8
PE10
I/O
TC
M9
PE11
I/O
TC
(2)
34/128
(1)
SDADC1_AIN2P
(2)
SDADC1_AIN1P,
SDADC1_AIN2M,
SDADC2_AIN4P
(1)
Doc ID 022691 Rev 3
STM32F37x
STM32F37x pin definitions (continued)
Pin numbers
Pin functions
L9
PE12
I/O
TC
44
M10
PE13
I/O
TC
45
M11
PE14
I/O
TC
46
M12
PE15
I/O
TC
47
L10
PB10
I/O
TC
48
L11
VREFSD-
S
(1)
External reference voltage for SDADC1, SDADC2, SDADC3
(negative input)
49
F12
VSSSD
S
(1)
SDADC1, SDADC2, SDADC3 ground
VSSSD/
VREFSD-
S
VDDSD12
S
VDDSD
S
LQFP48
BGA100
43
LQFP64
LQFP100
Pin name
Notes
Pin
type
I/O structure
Table 11.
Pinouts and pin description
(function
after reset)
Alternate function
Additional functions
SDADC1_AIN0P,
SDADC2_AIN3P,
SDADC2_AIN4M
(2)
(1)
(2)
SDADC1_AIN0M ,
SDADC2_AIN2P
(1)
(2)
SDADC2_AIN1P,
SDADC2_AIN2M
(1)
(2)
(1)
USART3_RX
SDADC2_AIN0P
SPI2_SCK/I2S2_CK,
(1) USART3_TX, CEC,
TSC_SYNC, TIM2_CH3
(2)
31 23
50
G12
32 24
SDADC2_AIN0M
SDADC1, SDADC2, SDADC3 ground / External reference
voltage for SDADC1, SDADC2, SDADC3 (negative input)
(1)
SDADC1 and SDADC2 power supply
SDADC1, SDADC2, SDADC3 power supply
(1)
51
L12
VDDSD3
S
52
K12 33 25
VREFSD+
S
53
K11 34 26
PB14
I/O
TC
(3)
SPI2_MISO/I2S2_MCK,
USART3_RTS, TIM15_CH1,
TIM12_CH1, TSC_G6_IO1
SDADC3_AIN8P
54
K10 35 27
PB15
I/O
TC
(3)
SPI2_MOSI/I2S2_SD,
TIM15_CH1N, TIM15_CH2,
TIM12_CH2, TSC_G6_IO2
SDADC3_AIN7P,
SDADC3_AIN8M,
RTC_REFCLKIN
55
K9
PD8
I/O
TC
(3)
SPI2_SCK/I2S2_CK,
USART3_TX, TSC_G6_IO3
SDADC3_AIN6P
56
K8
PD9
I/O
TC
USART3_RX, TSC_G6_IO4
SDADC3_AIN5P,
SDADC3_AIN6M
57
J12
PD10
I/O
TC
USART3_CK
SDADC3_AIN4P
58
J11
PD11
I/O
TC
(1)
USART3_CTS
SDADC3_AIN3P,
SDADC3_AIN4M
(3)
59
J10
PD12
I/O
TC
USART3_RTS, TIM4_CH1,
TSC_G8_IO1
SDADC3_AIN2P
36 28
SDADC3 power supply
External reference voltage for SDADC1, SDADC2, SDADC3
(positive input)
(3)
(1)
(3)
(1)
(3)
(1)
Doc ID 022691 Rev 3
35/128
Pinouts and pin description
STM32F37x pin definitions (continued)
Pin numbers
H12
PD13
I/O
TC
61
H11
PD14
I/O
TC
62
H10
PD15
I/O
TC
63
E12 37
PC6
I/O
64
E11 38
PC7
65
E10 39
66
D12 40
LQFP48
BGA100
60
LQFP64
LQFP100
Pin name
(function
after reset)
Pin functions
Notes
Pin
type
I/O structure
Table 11.
STM32F37x
Alternate function
(3)
Additional functions
TIM4_CH2, TSC_G8_IO2
SDADC3_AIN1P,
SDADC3_AIN2M
TIM4_CH3, TSC_G8_IO3
SDADC3_AIN0P
(1)
TIM4_CH4, TSC_G8_IO4
SDADC3_AIN0M
FT
(1)
TIM3_CH1,
SPI1_NSS/I2S1_WS
I/O
FT
(1)
TIM3_CH2,
SPI1_SCK/I2S1_CK,
PC8
I/O
FT
(1)
SPI1_MISO/I2S1_MCK,
TIM3_CH3
PC9
I/O
FT
(1)
SPI1_MOSI/I2S1_SD,
TIM3_CH4
(1)
(3)
(1)
(3)
67
68
69
70
71
72
D11 41 29
D10 42 30
C12 43 31
B12 44 32
A12 45 33
A11 46 34
36/128
PA8
PA9
PA10
PA11
PA12
PA13
I/O
I/O
I/O
I/O
I/O
I/O
FT
SPI2_SCK/I2S2_CK,
I2C2_SMBA, USART1_CK,
TIM4_ETR, TIM5_CH1_ETR,
MCO
FTf
SPI2_MISO/I2S2_MCK,
I2C2_SCL, USART1_TX,
TIM2_CH3, TIM15_BKIN,
TIM13_CH1, TSC_G4_IO1
FTf
SPI2_MOSI/I2S2_SD,
I2C2_SDA, USART1_RX,
TIM2_CH4, TIM17_BKIN,
TIM14_CH1, TSC_G4_IO2
FT
SPI2_NSS/I2S2_WS,
SPI1_NSS/I2S1_WS,
USART1_CTS, CAN_RX,
TIM4_CH1, USB_DM,
TIM5_CH2, COMP1_OUT
FT
SPI1_SCK/I2S1_CK,
USART1_RTS, CAN_TX,
USB_DP, TIM16_CH1,
TIM4_CH2, TIM5_CH3,
COMP2_OUT
FT
SPI1_MISO/I2S1_MCK,
USART3_CTS, IR_OUT,
TIM16_CH1N, TIM4_CH3,
TIM5_CH4, TSC_G4_IO3,
SWDIO-JTMS
Doc ID 022691 Rev 3
STM32F37x
STM32F37x pin definitions (continued)
Pin
type
I/O structure
PF6
I/O
FTf
LQFP48
LQFP64
Pin name
BGA100
LQFP100
Pin numbers
(function
after reset)
Pin functions
Notes
Table 11.
Pinouts and pin description
Alternate function
Additional functions
SPI1_MOSI/I2S1_SD,
USART3_RTS, TIM4_CH4,
I2C2_SCL
73
C11 47 35
74
F11
VSS_3
S
(1)
Ground
75
G11
VDD_3
S
(1)
Digital power supply
48 36
PF7
I/O
FTf
I2C2_SDA, USART2_CK
A10 49 37
PA14
I/O
FTf
I2C1_SDA, TIM12_CH1,
TSC_G4_IO4, SWCLK-JTCK
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
I2C1_SCL, TIM2_CH1_ETR,
TIM12_CH2, TSC_SYNC, JTDI
76
77
A9
78
PA15
I/O
FTf
B11 51
PC10
I/O
FT
(1)
SPI3_SCK/I2S3_CK,
USART3_TX, TIM19_CH1
79
C10 52
PC11
I/O
FT
(1)
SPI3_MISO/I2S3_MCK,
USART3_RX, TIM19_CH2
80
B10 53
PC12
I/O
FT
(1)
SPI3_MOSI/I2S3_SD,
USART3_CK, TIM19_CH3
81
C9
PD0
I/O
FT
(1)
CAN_RX, TIM19_CH4
FT
(1)
CAN_TX, TIM19_ETR
TIM3_ETR
82
50 38
B9
PD1
I/O
PD2
I/O
FT
(1)
B8
PD3
I/O
FT
(1)
SPI2_MISO/I2S2_MCK,
USART2_CTS
85
B7
PD4
I/O
FT
(1)
SPI2_MOSI/I2S2_SD,
USART2_RTS
86
A6
PD5
I/O
FT
(1)
USART2_TX
87
B6
PD6
I/O
FT
(1)
SPI2_NSS/I2S2_WS,
USART2_RX
88
A5
PD7
I/O
FT
(1)
SPI2_SCK/I2S2_CK,
USART2_CK
83
C8
84
89
A8
54
55 39
PB3
I/O
FT
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
USART2_TX, TIM2_CH2,
TIM3_ETR, TIM4_ETR,
TIM13_CH1, TSC_G5_IO1,
JTDO-TRACESWO
Doc ID 022691 Rev 3
37/128
Pinouts and pin description
STM32F37x pin definitions (continued)
90
91
92
A7
C5
B5
56 40
57 41
58 42
(function
after reset)
Pin
type
PB4
PB5
PB6
I/O
I/O
I/O
Pin functions
Notes
LQFP48
LQFP64
Pin name
BGA100
LQFP100
Pin numbers
I/O structure
Table 11.
STM32F37x
FT
FT
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
I2C1_SMBAl, USART2_CK,
TIM16_BKIN, TIM3_CH2,
TIM17_CH1, TIM19_ETR
FTf
I2C1_SCL, USART1_TX,
TIM16_CH1N, TIM3_CH3,
TIM4_CH1, TIM19_CH1,
TIM15_CH1, TSC_G5_IO3
I2C1_SDA, USART1_RX,
TIM17_CH1N, TIM3_CH4,
TIM4_CH2, TIM19_CH2,
TIM15_CH2, TSC_G5_IO4
B4
59 43
PB7
I/O
FTf
94
A4
60 44
BOOT0
I
B
A3
96
B3
97
C3
98
A2
99
D3
100
C4
61 45
62 46
PB8
I/O
Additional functions
SPI1_MISO/I2S1_MCK,
SPI3_MISO/I2S3_MCK,
USART2_RX, TIM16_CH1,
TIM3_CH1, TIM17_BKIN,
TIM15_CH1N, TSC_G5_IO2,
JNTRST
93
95
Alternate function
Boot memory selection
FTf
SPI2_SCK/I2S2_CK,
I2C1_SCL, USART3_TX,
CAN_RX, CEC, TIM16_CH1,
TIM4_CH3, TIM19_CH3,
COMP1_OUT, TSC_SYNC
SPI2_NSS/I2S2_WS,
I2C1_SDA, USART3_RX,
CAN_TX, IR_OUT,
TIM17_CH1, TIM4_CH4,
TIM19_CH4, COMP2_OUT
PB9
I/O
FTf
PE0
I/O
FT
(1)
USART1_TX, TIM4_ETR
FT
(1)
USART1_RX
PE1
I/O
63 47
VSS_1
S
Ground
64 48
VDD_1
S
Digital power supply
1. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must
not be configured in analog mode.
2. these pins are powered by VDDSD12.
3. these pins are powered by VDDSD3.
38/128
Doc ID 022691 Rev 3
Pin
Name
Alternate functions for port PA
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
USART2_CTS
COMP1
_OUT
Doc ID 022691 Rev 3
PA0
TIM2_
CH1_
ETR
TIM5_
TSC_
CH1_
G1_IO1
ETR
PA1
TIM2_
CH2
TIM5_ TSC_
CH2
G1_IO2
SPI3_SCK/
I2S3_CK
PA2
TIM2_
CH3
TIM5_ TSC_
CH3
G1_IO3
SPI3_MISO/
USART2_TX
I2S3_MCK
PA3
TIM2_
CH4
TIM5_ TSC_
CH4
G1_IO4
SPI3_MOSI
/I2S3_SD
USART2_RX
SPI3_NSS/
I2S3_WS
USART2_CK
PA4
TIM3_ TSC_
CH2
G2_IO1
SPI1_NSS/
I2S1_WS
TSC_
G2_IO2
SPI1_SCK/
I2S1_CK
USART2_RTS
AF9
AF10
AF11
AF14
AF15
TIM19
_CH1
EVENT
OUT
TIM15_
CH1N
TIM19
_CH2
EVENT
OUT
COMP2 TIM15_
_OUT
CH1
TIM19
_CH3
EVENT
OUT
TIM15_
CH2
TIM19
_CH4
EVENT
OUT
TIM12
_CH1
EVENT
OUT
TIM12
_CH2
EVENT
OUT
PA5
TIM2_
CH1_
ETR
PA6
TIM16_
CH1
TIM3_ TSC_
G2_IO3
CH1
SPI1_MISO
/I2S1_MCK
COMP1 TIM13_
_OUT
CH1
EVENT
OUT
PA7
TIM17_
CH1
TIM3_ TSC_
CH2
G2_IO4
SPI1_MOSI
/I2S1_SD
COMP2 TIM14_
_OUT
CH1
EVENT
OUT
TIM5_
CH1_
ETR
MCO
PA9
PA10
SPI2_SCK/
I2S2_CK
USART1_CK
TIM13 TSC_
I2C2_
_CH1 G4_IO1 SCL
SPI2_MISO
/I2S2_MCK
USART1_TX
TSC_
I2C2_
G4_IO2 SDA
SPI2_MOSI
/I2S2_SD
USART1_RX
TIM17_
BKIN
TIM5_
CH2
PA11
39/128
PA12
I2C2_
SMBA
TIM16_
CH1
TIM5_
CH3
SPI2_NSS/
I2S2_WS
TIM14_
CH1
TIM4_
ETR
EVENT
OUT
TIM15_
BKIN
TIM2_
CH3
EVENT
OUT
TIM14_
CH1
TIM2_
CH4
EVENT
OUT
SPI1_NSS/
I2S1_WS
USART1_CTS
COMP1 CAN_
_OUT
RX
TIM4_
CH1
USB_
DM
EVENT
OUT
SPI1_SCK/
I2S1_CK
USART1_RTS
COMP2
TIM4_
CAN_TX
_OUT
CH2
USB_
DP
EVENT
OUT
Pinouts and pin description
PA8
CEC
STM32F37x
Table 12.
Pin
Name
Alternate functions for port PA (continued)
AF0
AF1
PA13
JTMS- TIM16_
SWDIO CH1N
PA14
JTCKSWCLK
PA15
JTDI
AF2
AF3
AF4
TIM5_ TSC_
CH4
G4_IO3
AF5
IR-OUT
AF6
AF7
SPI1_MISO
/I2S1_MCK
USART3_CTS
TSC_
I2C1_
G4_IO4 SDA
TIM2_
CH1_ETR
TSC_
SYNC
I2C1_
SCL
SPI1_NSS/
I2S1_WS
SPI3_NSS/
I2S3_WS
AF8
AF9
AF10
AF11
AF14
AF15
TIM4_
CH3
EVENT
OUT
TIM12
_CH1
EVENT
OUT
TIM12
_CH2
EVENT
OUT
Pinouts and pin description
40/128
Table 12.
Doc ID 022691 Rev 3
STM32F37x
Pin
Name
Alternate functions for port PB
AF0
AF1
AF2
AF3
PB0
TIM3_CH3
TSC_
G3_IO3
PB1
TIM3_CH4
TSC_
G3_IO4
AF4
AF5
AF6
AF7
AF8
AF9
SPI_MOSI/
I2S1_SD
AF10
TIM3_
CH2
AF11
AF15
STM32F37x
Table 13.
EVENTOUT
EVENTOUT
PB2
EVENTOUT
PB3
JTDO/
TIM2_
TRACESWO CH2
PB4
JTRST
TIM4_ETR
TSC_
G5_IO1
SPI1_SCK/
I2S1_CK
TIM16_
TSC_
TIM3_CH1
CH1
G5_IO2
SPI3_SCK/
I2S3_CK
USART2_TX
TIM13_ TIM3_
CH1
ETR
EVENTOUT
SPI1_MISO SPI3_MISO/
USART2_RX
/I2S1_MCK I2S3_MCK
TIM15_ TIM17
CH1N _BKIN
EVENTOUT
Doc ID 022691 Rev 3
TIM16_
TIM3_CH2
BKIN
I2C1_
SMBA
SPI1_MOSI SPI3_MOSI
USART2_CK
/I2S1_SD
/I2S3_SD
TIM17
_CH1
TIM19
EVENTOUT
_ETR
PB6
TIM16_
TSC_
I2C1_
TIM4_CH1
CH1N
G5_IO3 SCL
USART1_TX
TIM15_ TIM3_
CH1
CH3
TIM19
EVENTOUT
_CH1
PB7
TIM17_
TSC_
I2C1_
TIM4_CH2
CH1N
G5_IO4 SDA
USART1_RX
TIM15_ TIM3_
CH2
CH4
TIM19
EVENTOUT
_CH2
PB8
TSC_
TIM16_
TIM4_CH3
CH1
SYNC
I2C1_
SCL
SPI2_SCK/
I2S2_CK
CEC
USART3_TX
COMP1 CAN_
_OUT
RX
TIM19
EVENTOUT
_CH3
PB9
TIM17_
TIM4_CH4
CH1
I2C1_
SDA
SPI2_NSS/
I2S2_WS
IR-OUT
USART3_RX
COMP2 CAN_
_OUT
TX
TIM19
EVENTOUT
_CH4
PB10
TIM2_
CH3
TSC_
SYNCH
SPI2_SCK/
I2S2_CK
CEC
USART3_TX
PB14
TIM15_
CH1
TSC_
G6_IO1
SPI2_MISO
/I2S2_MCK
PB15
TIM15_ TIM15_
CH2
CH1N
TSC_
G6_IO2
SPI2_MOSI
/I2S2_SD
USART3_RTS
EVENTOUT
TIM12_
CH1
EVENTOUT
TIM12_
CH2
EVENTOUT
41/128
Pinouts and pin description
PB5
Pin Name
Alternate functions for port PC
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
Doc ID 022691 Rev 3
PC0
EVENTOUT
TIM5_CH1_ETR
PC1
EVENTOUT
TIM5_CH2
PC2
EVENTOUT
TIM5_CH3
SPI2_MISO/I2S2_MCK
PC3
EVENTOUT
TIM5_CH4
SPI2_MOSI/I2S2_SD
PC4
EVENTOUT
TIM13_CH1
PC5
EVENTOUT
PC6
EVENTOUT
TIM3_CH1
SPI1_NSS/I2S1_WS
PC7
EVENTOUT
TIM3_CH2
SPI1_SCK/I2S1_CK
PC8
EVENTOUT
TIM3_CH3
SPI1_MISO/I2S1_MCK
PC9
EVENTOUT
TIM3_CH4
SPI1_MOSI/I2S1_SD
PC10
EVENTOUT
TIM19_CH1
SPI3_SCK/I2S3_CK
USART3_TX
PC11
EVENTOUT
TIM19_CH2
SPI3_MISO/I2S3_MCK
USART3_RX
PC12
EVENTOUT
TIM19_CH3
SPI3_MOSI/I2S3_SD
USART3_CK
TSC_G3_IO1
USART1_TX
TSC_G3_IO2
USART1_RX
Pinouts and pin description
42/128
Table 14.
PC13
PC14
PC15
STM32F37x
Pin Name
Alternate functions for port PD
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
Doc ID 022691 Rev 3
PD0
EVENTOUT
TIM19_CH4
CAN_RX
PD1
EVENTOUT
TIM19_ETR
CAN_TX
PD2
EVENTOUT
TIM3_ETR
PD3
EVENTOUT
SPI2_MISO/I2S2_MCK
USART2_CTS
PD4
EVENTOUT
SPI2_MOSI/I2S2_SD
USART2_RTS
PD5
EVENTOUT
PD6
EVENTOUT
SPI2_NSS/I2S2_WS
USART2_RX
PD7
EVENTOUT
SPI2_SCK/I2S2_CK
USART2_CK
PD8
EVENTOUT
TSC_G6_IO3
SPI2_SCK/I2S2_CK
USART3_TX
PD9
EVENTOUT
TSC_G6_IO4
PD10
EVENTOUT
USART3_CK
PD11
EVENTOUT
USART3_CTS
PD12
EVENTOUT
TIM4_CH1
TSC_G8_IO1
PD13
EVENTOUT
TIM4_CH2
TSC_G8_IO2
PD14
EVENTOUT
TIM4_CH3
TSC_G8_IO3
PD15
EVENTOUT
TIM4_CH4
TSC_G8_IO4
STM32F37x
Table 15.
USART2_TX
USART3_RX
USART3_RTS
Pinouts and pin description
43/128
Pin Name
Alternate functions for port PE
AF0
AF1
PE0
EVENTOUT
PE1
EVENTOUT
AF2
AF3
TIM4_ETR
EVENTOUT
TSC_G7_IO1
PE3
TRACED0
EVENTOUT
TSC_G7_IO2
PE4
TRACED1
EVENTOUT
TSC_G7_IO3
PE5
TRACED2
EVENTOUT
TSC_G7_IO4
PE6
TRACED3
EVENTOUT
Doc ID 022691 Rev 3
PE8
EVENTOUT
PE9
EVENTOUT
PE10
EVENTOUT
PE11
EVENTOUT
PE12
EVENTOUT
PE13
EVENTOUT
PE14
EVENTOUT
PE15
EVENTOUT
AF6
AF7
USART1_RX
TRACECLK
EVENTOUT
AF5
USART1_TX
PE2
PE7
AF4
Pinouts and pin description
44/128
Table 16.
USART3_RX
STM32F37x
Pin Name
Alternate functions for port PF
AF0
AF1
AF2
AF3
AF4
PF0
I2C2_SDA
PF1
I2C2_SCL
PF2
EVENTOUT
PF4
EVENTOUT
PF6
EVENTOUT
PF7
EVENTOUT
PF9
EVENTOUT
PF10
EVENTOUT
AF5
AF6
AF7
STM32F37x
Table 17.
I2C2_SMBA
TIM4_CH4
I2C2_SCL
I2C2_SDA
SPI1_MOSI/I2S1_SD
USART3_RTS
USART2_CK
TIM14_CH1
Doc ID 022691 Rev 3
Pinouts and pin description
45/128
Memory mapping
5
STM32F37x
Memory mapping
Figure 6.
STM32F37x memory map
0xFFFF FFFF
7
0x4800 17FF
Cortex-M4F
Internal
Peripherals
0xE000 0000
AHB2
0x4800 0000
Reserved
0x4002 43FF
AHB1
6
0x4002 0000
Reserved
0xC000 0000
0x4001 6C00
APB2
5
0x4001 0000
Reserved
0xA000 0000
0x4000 A000
APB1
4
0x4000 0000
0x8000 0000
3
0x1FFF FFFF
0x6000 0000
Option bytes
0x1FFF F800
2
System memory
0x1FFF D800
0x4000 0000
Peripherals
Reserved
1
0x2000 0000
0
0x0804 0000
SRAM
Flash memory
0x0800 0000
CODE
Reserved
0x0004 0000
0x0000 0000
Reserved
Flash, system memory
or SRAM, depending
on BOOT configuration
0x0000 0000
MS30360V1
46/128
Doc ID 022691 Rev 3
STM32F37x
Memory mapping
Table 18.
Bus
STM32F37x peripheral register boundary addresses
Boundary address
Size
Peripheral
0x4800 1400 - 0x4800 17FF
1KB
GPIOF
0x4800 1000 - 0x4800 13FF
1KB
GPIOE
0x4800 0C00 - 0x4800 0FFF
1KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1KB
GPIOC
0x4800 0400 - 0x4800 07FF
1KB
GPIOB
0x4800 0000 - 0x4800 03FF
1KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 MB
Reserved
0x4002 4000 - 0x4002 43FF
1 KB
TSC
0x4002 3400 - 0x4002 3FFF
3 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH memory interface
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0800- 0x4002 0FFF
2 KB
Reserved
0x4002 0400 - 0x4002 07FF
1 KB
DMA2
0x4002 0000 - 0x4002 03FF
1 KB
DMA1
0x4001 6C00 - 0x4001 FFFF
37 KB
Reserved
AHB2
AHB1
Doc ID 022691 Rev 3
47/128
Memory mapping
Table 18.
Bus
APB2
APB1
48/128
STM32F37x
STM32F37x peripheral register boundary addresses (continued)
Boundary address
Size
Peripheral
0x4001 6800 - 0x4001 6BFF
1 KB
SDADC3
0x4001 6400 - 0x4001 67FF
1 KB
SDADC2
0x4001 6000 - 0x4001 63FF
1 KB
SDADC1
0x4001 5C00 - 0x4001 5FFF
1 KB
TIM19
0x4001 4C00 - 0x4001 5BFF
4 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1/I2S1
0x4001 2800 - 0x4001 2FFF
1 KB
Reserved
0x4001 2400 - 0x4001 27FF
1 KB
ADC
0x4001 0800 - 0x4001 23FF
7 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0000 - 0x4001 03FF
1 KB
SYSCFG
0x4000 4000 - 0x4000 FFFF
24 KB
Reserved
0x4000 9C00 – 0x4000 9FFF
1 KB
TIM18
0x4000 9800 - 0x4000 9BFF
1 KB
DAC2
0x4000 7C00 - 0x4000 97FF
8 KB
Reserved
0x4000 7800 - 0x4000 7BFF
1 KB
CEC
0x4000 7400 - 0x4000 77FF
1 KB
DAC1
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 6800 - 0x4000 6FFF
2 KB
Reserved
0x4000 6400 - 0x4000 67FF
1 KB
CAN
0x4000 6000 - 0x4000 63FF
1 KB
USB packet SRAM
0x4000 5C00 - 0x4000 5FFF
1 KB
USB FS
Doc ID 022691 Rev 3
STM32F37x
Memory mapping
Table 18.
Bus
STM32F37x peripheral register boundary addresses (continued)
Boundary address
Size
Peripheral
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 4C00 - 0x4000 53FF
2 KB
Reserved
0x4000 4800 - 0x4000 4BFF
1 KB
USART3
0x4000 4400 - 0x4000 47FF
1 KB
USART2
0x4000 4000 - 0x4000 43FF
1 KB
Reserved
0x4000 3C00 - 0x4000 3FFF
1 KB
SPI3/I2S3
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2/I2S2
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
Reserved
0x4000 2000 - 0x4000 23FF
1 KB
TIM14
0x4000 1C00 - 0x4000 1FFF
1 KB
TIM13
0x4000 1800 - 0x4000 1BFF
1 KB
TIM12
0x4000 1400 - 0x4000 17FF
1 KB
TIM7
0x4000 1000 - 0x4000 13FF
1 KB
TIM6
0x4000 0C00 - 0x4000 0FFF
1 KB
TIM5
0x4000 0800 - 0x4000 0BFF
1 KB
TIM4
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
TIM2
APB1
Doc ID 022691 Rev 3
49/128
Electrical characteristics
STM32F37x
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = VDDSDx =
3.3 V. They are given only as design guidelines and are not tested.
Typical ADC and SDADC accuracy values are determined by characterization of a batch of
samples from a standard diffusion lot over the full temperature range, where 95% of the
devices have an error less than or equal to the value indicated (mean±2).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Figure 7.
Pin loading conditions
Figure 8.
Pin input voltage
-#5PIN
-#5PIN
C = 50 pF
6).
-36
50/128
Doc ID 022691 Rev 3
-36
STM32F37x
Power supply scheme
Figure 9.
Power supply scheme
VBAT
Backup circuitry
(LSE,RTC,
Wakeup logic
Backup registers)
Level shifter
Po wer swi tch
1.65 - 3.6 V
OUT
GP I/Os
@VDD
IN
IO
Logic
VDD
3 × VDD
2 × 100 nF
+ 1 × 4.7 μF
Regulator
1.8 V
Kernel logic
(CPU,
Digital
& Memories)
OUT
GP I/Os
@VDDSD3
IN
OUT
GP I/Os
@VDDSD12
VDDSD12
IN
Level shifter
2 × VSS
IO
Logic
Level shifter
6.1.6
Electrical characteristics
IO
Logic
VDDSD12
VDDSD3
VDDSD3
10 nF
+ 1 μF
10 nF
+ 1 μF
Sigma
Delta
ADCs
VSSSD
VREFSD+
VREFSD+
10 nF
+ 1 μF
VREFSD-
VDDA
VDDA
VREF
10 nF
+ 1 μF
VREF+
VREF+
VREF-
10 nF
+ 1 μF
ADC/
DAC
Analog:
RCs, PLL, COMP,
...
VSSA
MS19232V3
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply
pins.
Doc ID 022691 Rev 3
51/128
Electrical characteristics
STM32F37x
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below, the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
6.1.7
Current consumption measurement
Figure 10. Current consumption measurement scheme
)$$?6"!4
6"!4
)$$
6$$
)$$!
6$$!
)$$3$
6$$3$
)$$3$
6$$3$
-36
52/128
Doc ID 022691 Rev 3
STM32F37x
6.2
Electrical characteristics
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics,
Table 20: Current characteristics, and Table 21: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 19.
Voltage characteristics(1)
Symbol
Ratings
Min
Max
0.3
4.0
VDD–VSS
External main supply voltage (including VDDA, VDDSDx,
VBAT and VDD)
VDD–VDDA
Allowed voltage difference for VDD > VDDA
0.4
Allowed voltage difference for VDDSDx > VDDA
0.4
Allowed voltage difference for VREFSD+ > VDDSD3
0.4
Allowed voltage difference for VREF+ > VDDA
0.4
VDDSDx – VDDA
VREFSD+ –
VDDSD3
VREF+ – VDDA
V
Input voltage on FT and FTf pins
Input voltage on TTa pins
VIN(2)
Input voltage on TC pins on SDADCx channels inputs
Input voltage on any other pin
|VSSX VSS|
VESD(HBM)
Unit
Variations between all the different ground pins
Electrostatic discharge voltage (human body model)
(3)
VSS  0.3
VDD + 4.0
VSS  0.3
4.0
VSS 0.3
4.0
VSS 0.3
4.0
50
mV
see Section 6.3.12:
Electrical sensitivity
characteristics
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected
current values.
3. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (I/O ground pin is internally connected to
VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (I/O ground pin is internally
connected to VSS).
All main power (VDD, VDDSD12, VDDSD3 and VDDA) and ground (VSS, VSSSD, and
VSSA) pins must always be connected to the external power supply, in the permitted range.
The following relationship must be respected between VDDA and VDD: VDDA must power on
before or at the same time as VDD in the power up sequence. VDDA must be greater than or
equal to VDD.
The following relationship must be respected between VDDA and VDDSD12: VDDA must power
on before or at the same time as VDDSD12 or VDDSD3 in the power up sequence. VDDA must
be greater than or equal to VDDSD12 or VDDSD3.
The following relationship must be respected between VDDSD12 and VDDSD3: VDDSD3 must
power on before or at the same time as VDDSD12 in the power up sequence.
After power up (VDDSD12 > Vrefint = 1.2 V) VDDSD3 can be higher or lower than VDDSD12.
The following relationship must be respected between VREFSD+ and VDDSD12, VDDSD3:
VREFSD+ must be lower than VDDSD3.
Doc ID 022691 Rev 3
53/128
Electrical characteristics
STM32F37x
Depending on the SDADCx operation mode, there can be more constraints between
VREFSD+, VDDSD12 and VDDSD3 which are described in reference manual RM0313.
Table 20.
Current characteristics
Symbol
Ratings
Max.
IVDD(
Total current into sum of all VDD_x and VDDSDx power lines
(source)(1)
160
IVSS(
Total current out of sum of all VSS_x and VSSSD ground lines
(sink)(1)
-160
IVDD(PIN)
Maximum current into each VDD_x or VDDSDx power pin (source)(1)
100
IVSS(PIN)
Maximum current out of each VSS_x or VSSSD ground pin (sink)(1)
-100
Output current sunk by any I/O and control pin
IIO(PIN)
Output current source by any I/O and control pin
IIO(PIN)
IINJ(PIN)
- 25
80
Total output current sourced by sum of all IOs and control pins(2)
-80
pins(3)
-5/+0
(4)
±5
Injected current on TC and RST pin
pins(5)
±5
Total injected current (sum of all I/O and control pins)(6)
± 25
Injected current on TTa
IINJ(PIN)
25
Total output current sunk by sum of all IOs and control pins(2)
Injected current on FT, FTf and B
Unit
mA
1. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally
connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground
is internally connected to VSS). VDD (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is
internally connected to VSS).
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer to Table 19: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note (2) below Table 62.
6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 21.
Thermal characteristics
Symbol
TSTG
TJ
54/128
Ratings
Storage temperature range
Maximum junction temperature
Doc ID 022691 Rev 3
Value
Unit
–65 to +150
°C
150
°C
STM32F37x
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 22.
Symbol
General operating conditions
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
0
72
fPCLK1
Internal APB1 clock frequency
0
36
fPCLK2
Internal APB2 clock frequency
0
72
2
3.6
2.4
3.6
2
3.6
2.2
3.6
2.0
3.6
2.2
3.6
2.0
3.6
Backup operating voltage
1.65
3.6
Input voltage on FT and FTf
pins(2)
- 0.3
5.5
Input voltage on TTa pins
- 0.3
VDDA +
0.3
Input voltage on TC pins on
SDADCx channels inputs(3)
- 0.3
VDDSDx
+ 0.3
Input voltage on BOOT0 pin
0
5.5
- 0.3
VDD +
0.3
VDD
VDDA(1)
Standard operating voltage
Analog operating voltage
(ADC and DAC used)
Analog operating voltage
(ADC and DAC not used)
VDDSD12 operating voltage
(SDADC used)
VDDSD12
VDDSD12 operating voltage
(SDADC not used)
VDDSD3 operating voltage
(SDADC used)
VDDSD3
VBAT
VIN
VDDSD3 operating voltage
(SDADC not used)
Must have a potential equal
to or lower than VDDA
Must have a potential equal
to or higher than VDD
Must have a potential equal
to or lower than VDDA
Must have a potential equal
to or lower than VDDA
Input voltage on any other pin
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(4)
Unit
MHz
V
V
V
V
LQFP100
434
LQFP64
444
LQFP48
364
BGA100
338
V
V
mW
Ambient temperature for 6 suffix
version
Maximum power dissipation
Ambient temperature for 7 suffix
version
Maximum power dissipation
Low power dissipation
(5)
–40
85
–40
105
–40
105
–40
125
°C
TA
Low power dissipation
Doc ID 022691 Rev 3
(5)
°C
55/128
Electrical characteristics
Table 22.
Symbol
TJ
STM32F37x
General operating conditions (continued)
Parameter
Conditions
Min
Max
6 suffix version
–40
105
7 suffix version
–40
125
Unit
Junction temperature range
°C
1. When the ADC is used, refer to Table 60: ADC characteristics.
2. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
3. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is
internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15
I/O pins (the I/O pin ground is internally connected to VSS).
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 21: Thermal
characteristics).
5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 21: Thermal characteristics).
6.3.2
Operating conditions at power-up / power-down
The parameters given in Table 23 are derived from tests performed under the ambient
temperature condition summarized in Table 22.
Table 23.
Symbol
tVDD
tVDDA
56/128
Operating conditions at power-up / power-down
Parameter
Conditions
Min
VDD rise time rate
0
VDD fall time rate
20
VDDA rise time rate
0
VDDA fall time rate
20
Doc ID 022691 Rev 3
Max
Unit




µs/V
STM32F37x
6.3.3
Electrical characteristics
Embedded reset and power control block characteristics
The parameters given in Table 24 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22.
Table 24.
Embedded reset and power control block characteristics
Symbol
Parameter
Conditions
VPOR/PDR(1)
Power on/power down reset Falling edge
threshold
Rising edge
VPDRhyst(3)
PDR hysteresis
tRSTTEMPO
(3)
Min
Typ
Max
Unit
1.8(2)
1.88
1.96
V
1.84
1.92
2.0
V
40
POR reset temporization
1.5
2.5
mV
4.5
ms
1. The PDR detector monitors VDD, VDDA and VDDSD12 (if kept enabled in the option bytes). The POR
detector monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Guaranteed by design, not tested in production.
Table 25.
Symbol
Programmable voltage detector characteristics
Min(1)
Typ
Max(1)
Unit
Rising edge
2.1
2.18
2.26
V
Falling edge
2
2.08
2.16
V
Rising edge
2.19
2.28
2.37
V
Falling edge
2.09
2.18
2.27
V
Rising edge
2.28
2.38
2.48
V
Falling edge
2.18
2.28
2.38
V
Rising edge
2.38
2.48
2.58
V
Falling edge
2.28
2.38
2.48
V
Rising edge
2.47
2.58
2.69
V
Falling edge
2.37
2.48
2.59
V
Rising edge
2.57
2.68
2.79
V
Falling edge
2.47
2.58
2.69
V
Rising edge
2.66
2.78
2.9
V
Falling edge
2.56
2.68
2.8
V
Rising edge
2.76
2.88
3
V
Falling edge
2.66
2.78
2.9
V
Parameter
Conditions
VPVD0
PVD threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
VPVD7
PVD threshold 7
VPVDhyst(2)
PVD hysteresis
100
PVD current
consumption
0.15
IDD(PVD)(2)
mV
0.26
µA
1. Data based on characterization results only, not tested in production.
2. Guaranteed by design, not tested in production.
Doc ID 022691 Rev 3
57/128
Electrical characteristics
6.3.4
STM32F37x
Embedded reference voltage
The parameters given in Table 27 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22.
Table 26.
Embedded internal reference voltage calibration values
Calibration value name
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
VREFINT_CAL
Table 27.
TS_vrefint(2)
VREFINT_s(3)
Memory address
0x1FFF F7BA - 0x1FFF F7BB
Embedded internal reference voltage
Symbol
VREFINT
Description
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
–40 °C < TA < +105 °C
1.16
1.21
1.26
–40 °C < TA < +85 °C
1.16
1.2
1.24(1)
17.1
-
-
µs
-
10
mV
ADC sampling time when reading the
internal reference voltage
Internal reference voltage spread over the
temperature range
VDD = 3 V ±10 mV
Unit
V
TCoeff(3)
Temperature coefficient
-
100
ppm/°C
tSTART(3)
Startup time
-
10
µs
1. Data based on characterization results, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
3. Guaranteed by design, not tested in production.
58/128
Doc ID 022691 Rev 3
STM32F37x
6.3.5
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
●
All I/O pins are in input mode with a static value at VDD or VSS (no load)
●
All peripherals are disabled except when explicitly mentioned
●
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
●
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
●
When the peripherals are enabled fAPB1 = fAHB/2 , fAPB2 = fAHB
●
When fHCLK > 8 MHz PLL is ON and PLL inputs is equal to HSI/2 = 4 MHz (if internal
clock is used) or HSE = 8 MHz (if HSE bypass mode is used)
The parameters given in Table 28 to Table 34 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 22.
Table 28.
Typical and maximum current consumption from VDD supply at VDD = 3.6 V
All peripherals enabled
Symbol Parameter Conditions
Max @ TA(1)
fHCLK
Max @ TA(1)
Typ
HSE
bypass,
PLL on
IDD
Supply
current in
Run mode,
code
executing
from Flash
HSE
bypass,
PLL off
HSI clock,
PLL on
HSI clock,
PLL off
All peripherals disabled
Unit
Typ
25 °C
85 °C
105 °C
25 °C
85 °C 105 °C
72 MHz 63.1
70.7
71.5
73.4
29.2
31.1
31.7
34.2
64 MHz 56.3
63.3
64.1
64.9
26.1
27.8
28.4
30.4
48 MHz 42.5
48.5
48.0
50.1
19.9
22.6
21.9
23.1
32 MHz 28.8
31.4
32.2
34.3
13.1
16.1
14.9
16.2
24 MHz 21.9
24.4
24.4
25.8
10.1
10.9
11.9
12.4
8 MHz
7.3
8.0
9.3
9.3
3.7
4.1
4.4
5.0
1 MHz
1.1
1.5
1.8
2.3
0.8
1.1
1.4
1.9
64 MHz 51.7
57.7
58.0
60.4
25.8
27.6
28.1
30.1
48 MHz 38.6
45.9
43.5
46.9
19.8
21.9
21.7
22.8
32 MHz 26.4
31.1
29.7
31.9
13.1
15.7
14.8
16.2
24 MHz 20.3
22.6
22.6
23.7
6.9
7.5
8.1
8.8
8 MHz
7.6
8.8
8.8
3.7
4.1
4.4
5.0
7.0
Doc ID 022691 Rev 3
mA
59/128
Electrical characteristics
Table 28.
STM32F37x
Typical and maximum current consumption from VDD supply at VDD = 3.6 V
All peripherals enabled
Symbol Parameter Conditions
Max @ TA(1)
fHCLK
Max @ TA(1)
Typ
HSE
bypass,
PLL on
Supply
current in
Run mode,
code
executing
from RAM
HSE
bypass,
PLL off
HSI clock,
PLL on
HSI clock,
PLL off
IDD
HSE
bypass,
PLL on
Supply
current in
Sleep
mode,
code
executing
from Flash
or RAM
HSE
bypass,
PLL off
HSI clock,
PLL on
HSI clock,
PLL off
63.6
(2)
85 °C
105 °C
25 °C
70.7(2) 75.7(2)
72.3(2)
30.0
(2)
85 °C 105 °C
31.9(2) 32.6(2) 33.8(2)
64 MHz 56.7
62.5
67.1
64.0
26.7
28.6
29.3
30.0
48 MHz 42.0
50.5
47.4
50.1
20.2
21.5
22.1
22.7
32 MHz 28.3
32.1
31.8
33.7
13.4
14.6
14.8
15.7
24 MHz 21.1
25.0
24.2
25.9
10.0
11.3
11.2
12.6
8 MHz
6.9
7.4
8.3
8.7
3.4
3.7
4.1
4.8
1 MHz
0.8
1.2
1.5
2.0
0.4
0.6
1.0
1.5
64 MHz 51.9
59.5
59.4
58.6
26.4
28.1
28.7
29.5
48 MHz 38.1
44.7
43.8
45.4
20.0
21.3
21.9
22.3
32 MHz 25.9
31.2
29.4
30.5
13.2
14.3
14.6
15.5
24 MHz 19.6
22.7
22.6
23.2
6.5
7.0
7.9
8.2
8 MHz
7.1
8.0
8.4
3.3
3.7
4.0
4.7
6.6
mA
72 MHz 43.2
46.9
48.7
52.5
6.7
7.2
7.6
8.3
64 MHz 38.5
41.6
43.7
46.6
5.9
6.5
6.8
7.5
48 MHz 29.1
31.3
32.5
34.1
4.5
4.9
5.3
5.9
32 MHz 19.4
21.1
24.6
23.0
3.0
3.4
3.8
4.4
24 MHz 14.7
16.1
18.5
17.6
2.4
2.6
3.0
3.6
8 MHz
4.9
5.3
6.1
6.6
0.8
1.0
1.4
1.9
1 MHz
0.6
0.9
1.3
1.8
0.1
0.3
0.6
1.2
64 MHz 34.5
37.1
39.6
42.0
5.6
6.1
6.5
7.1
48 MHz 26.1
28.0
29.0
30.7
4.2
4.6
5.0
5.6
32 MHz 17.4
19.1
21.1
20.8
2.9
3.2
3.6
4.2
24 MHz 13.3
14.6
16.1
16.0
1.5
1.8
2.2
2.6
8 MHz
4.9
5.5
6.1
0.7
0.9
1.3
1.8
4.5
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.
60/128
Unit
Typ
25 °C
72 MHz
All peripherals disabled
Doc ID 022691 Rev 3
STM32F37x
Table 29.
Electrical characteristics
Typical and maximum current consumption from VDDA supply
VDDA= 2.4 V
Symbol Parameter
Conditions
(1)
VDDA= 3.6 V
Max @ TA(2)
fHCLK
Max @ TA(2)
Typ
HSE
bypass,
PLL on
IDDA
Supply
current in
Run or
Sleep
mode,
code
executing
from Flash
or RAM
HSE
bypass,
PLL off
HSI clock,
PLL on
HSI clock,
PLL off
Unit
Typ
25 °C
85 °C
105 °C
72 MHz 228
261
274
280
249
288
304
311
64 MHz 201
235
247
251
220
257
269
275
48 MHz 152
182
190
195
164
196
208
212
32 MHz 104
132
137
141
112
141
147
150
24 MHz
81
108
112
111
87
115
119
119
8 MHz
2
4
4
5
3
5
5
6
1 MHz
2
4
5
5
3
5
5
6
64 MHz 270
307
320
326
298
337
353
361
48 MHz 220
254
264
269
243
276
292
297
32 MHz 172
203
211
214
191
222
232
235
24 MHz 151
181
185
189
166
194
201
204
8 MHz
85
87
87
81
93
96
98
70
25 °C
85 °C 105 °C
µA
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the
PLL is off, IDDA is independent from the frequency.
2. Data based on characterization results, not tested in production unless otherwise specified.
Table 30.
Typical and maximum VDD consumption in Stop and Standby modes
[email protected] (VDD=VDDA)
Symbol Parameter
Conditions
3.0 V
3.3 V
3.6 V
TA=
TA=
25 °C 85 °C
Regulators in
run mode, all
19.33 19.58 19.68 19.73
oscillators
OFF
19.76
19.84
46.5
480
1019
31.8
451.4
966.0
2.7
3.5
5.3
2.0 V 2.4 V 2.7 V
IDD
Supply
current in
Regulators in
Stop mode
low-power
mode, all
oscillators
OFF
Supply
current in
Standby
mode
Note:
Max
7.72
7.88
8.01
8.13
8.25
8.27
LSI ON and
IWDG ON
0.78
0.95
1.07
1.21
1.32
1.45
LSI OFF and
IWDG OFF
0.61
0.72
0.81
0.90
0.98
1.08
TA=
105 °C
Unit
µA
VDDA monitoring is OFF and VDDSD12 monitoring is OFF
Doc ID 022691 Rev 3
61/128
Electrical characteristics
Table 31.
Typical and maximum VDDA consumption in Stop and Standby modes
Parameter
Supply
current in
Stop mode
IDDA
Supply
current in
Standby
mode
Supply
current for
IDDAmon VDDA and
VDDSD12
monitoring
[email protected] (VDD=VDDA)
Max(1)
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
TA=
TA= TA=
25 °C 85 °C 105 °C
Conditions
VDDA and VDDSD12
Symbol
STM32F37x
Regulator in
run mode, all
1.99
oscillators OFF
2.07
2.19
2.33
2.46
2.64
10.8
11.8
12.4
Regulator in
low-power
1.99
mode, all
oscillators OFF
2.07
2.18
2.32
2.47
2.63
10.6
11.5
12.5
LSI ON and
IWDG ON
2.44
2.53
2.7
2.89
3.09
3.33
LSI OFF and
IWDG OFF
1.87
1.94
2.06
2.19
2.35
2.51
0.95
1.02
1.12
1.2
1.27
1.4
-
Unit
µA
4.1
4.5
4.8
1. Data based on characterization results and tested in production.
2. To obtain data with monitoring OFF is necessary to substract the IDDAmon current.
Table 32.
Typical and maximum current consumption from VBAT supply(1)
Max(2)
IDD_
VBAT
Backup
domain
supply
current
LSE & RTC ON;
"Xtal mode" lower
0.50 0.52 0.55 0.63 0.70 0.87 0.95
driving capability;
LSEDRV[1:0] = '00'
TA=
25 °C
1.1
TA=
TA=
85 °C 105 °C
1.6
Unit
2.2
µA
LSE & RTC ON;
"Xtal mode" higher
0.85 0.90 0.93 1.02 1.10 1.27 1.38
driving capability;
LSEDRV[1:0] = '11'
1. Crystal used: Abracon ABS07-120-32.768kHz-T with 6 pF of CL for typical values.
2. Data based on characterization results, not tested in production.
62/128
= 3.6 V
= 3.3 V
= 2.7 V
= 2.4 V
= 2.0 V
Conditions
= 1.8 V
Symbol Parameter
= 1.65 V
Typ @ VBAT
Doc ID 022691 Rev 3
1.6
2.4
3.0
STM32F37x
Electrical characteristics
Figure 11. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00')
1.6
1.4
1.65 V
)
6"!4—!
1.2
1.8 V
1
2V
2.4 V
0.8
2.7 V
0.6
3V
0.4
3.3 V
0.2
3.6 V
0
25°C
60°C
85°C
105°C
4! #
-36
Typical current consumption
The MCU is placed under the following conditions:
●
VDD = VDDA = VDDSD12 = VDDSD3 = 3.3 V
●
All I/O pins are in analog input configuration
●
The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
●
Prefetch is ON
●
When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB
●
PLL is used for frequencies greater than 8 MHz
●
AHB prescaler of 2, 4, 8, 16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
500 kHz and 125 kHz respectively
Doc ID 022691 Rev 3
63/128
Electrical characteristics
Table 33.
STM32F37x
Typical current consumption in Run mode, code with data processing running from
Flash
Typ
Symbol
Parameter
Conditions
Running from HSE
crystal clock 8 MHz,
code executing from
Flash, PLL on
IDD
Supply current in
Run mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash, PLL on
Supply current in
Run mode from
VDDA supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash, PLL off
ISDADC12 +
ISDADC3
Peripherals
enabled
Peripherals
disabled
72 MHz
61.4
28.8
64 MHz
55.4
25.9
48 MHz
42.3
20.0
32 MHz
28.7
13.8
24 MHz
21.9
10.7
16 MHz
14.8
7.4
8 MHz
7.8
4.1
4 MHz
4.6
2.6
2 MHz
2.9
1.8
1 MHz
2.0
1.3
500 kHz
1.5
1.1
125 kHz
1.2
1.0
72 MHz
243.3
242.4
64 MHz
214.3
213.3
48 MHz
159.3
158.3
32 MHz
107.7
107.3
24 MHz
82.8
82.6
16 MHz
58.4
58.2
8 MHz
1.2
1.2
4 MHz
1.2
1.2
2 MHz
1.2
1.2
1 MHz
1.2
1.2
500 kHz
1.2
1.2
125 kHz
1.2
1.2
-
2.5
1
Unit
mA
Running from HSE
crystal clock 8 MHz,
code executing from
Flash, PLL off
IDDA(1)(2)
fHCLK
Supply currents in
Run mode from
VDDSD12 and
VDDSD3 (SDADCs
are off)
µA
1. VDDA monitoring is off, VDDSD12 monitoring is off.
2. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators,
etc. is not included. Refer to those peripherals characteristics in the subsequent sections.
64/128
Doc ID 022691 Rev 3
STM32F37x
Table 34.
Electrical characteristics
Typical current consumption in Sleep mode, code running from Flash or RAM
Typ
Symbol
Parameter
Conditions
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM,
PLL on
IDD
Supply current in
Sleep mode from
VDD supply
Peripherals
enabled
Peripherals
disabled
72 MHz
42.8
6.9
64 MHz
38.2
6.2
48 MHz
28.9
4.8
32 MHz
19.5
3.4
24 MHz
14.7
2.7
16 MHz
10.2
2.0
8 MHz
5.2
1.2
4 MHz
3.4
1.1
2 MHz
2.2
0.9
1 MHz
1.6
0.9
500 kHz
1.4
0.8
125 kHz
1.1
0.8
72 MHz
242.9
241.5
64 MHz
213.7
212.7
48 MHz
158.8
158.0
32 MHz
107.6
107.3
24 MHz
82.7
82.6
16 MHz
58.3
58.2
8 MHz
1.2
1.2
4 MHz
1.2
1.2
2 MHz
1.2
1.2
1 MHz
1.2
1.2
500 kHz
1.2
1.2
125 kHz
1.2
1.2
Unit
mA
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM,
PLL off
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM,
PLL on
IDDA(1)
fHCLK
Supply current in
Sleep mode from
VDDA supply
µA
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM,
PLL off
1. VDDA monitoring is off, VDDSD12 monitoring is off.
Doc ID 022691 Rev 3
65/128
Electrical characteristics
STM32F37x
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 52: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC and SDADC input pins which
should be configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode. Under reset conditions all I/Os are configured in input floating mode so if some inputs do not have a defined voltage level then they can generate additional
consumption. This consumption is visible on VDD supply and also on VDDSDx supply because
some I/Os are powered from SDADCx supply (all I/Os which have SDADC analog input
functionality).
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 36: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD  f SW  C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+ CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
66/128
Doc ID 022691 Rev 3
STM32F37x
Table 35.
Symbol
Electrical characteristics
Switching output I/O current consumption
Parameter
Conditions(1)
I/O toggling
frequency (fSW)
Typ
2 MHz
0.77
4 MHz
0.87
8 MHz
0.95
18 MHz
1.59
36 MHz
2.57
48 MHz
3.11
2 MHz
0.96
4 MHz
1.0
8 MHz
1.08
18 MHz
2.17
36 MHz
3.42
48 MHz
5.50
2 MHz
0.98
4 MHz
1.23
8 MHz
1.48
18 MHz
2.93
36 MHz
6.59
48 MHz
7.03
2 MHz
1.03
4 MHz
1.3
8 MHz
1.81
18 MHz
3.42
36 MHz
8.27
2 MHz
1.09
4 MHz
1.55
8 MHz
2.18
18 MHz
4.38
36 MHz
9.65
VDD = 3.3 V
Cext = 0 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 10 pF
C = CINT + CEXT+ CS
ISW
I/O current
consumption
VDD = 3.3 V
Cext = 22 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 33 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 47 pF
C = CINT + CEXT+ CS
Unit
mA
mA
1. CS = 5 pF (estimated value).
Doc ID 022691 Rev 3
67/128
Electrical characteristics
STM32F37x
On-chip peripheral current consumption
The MCU is placed under the following conditions:
●
all I/O pins are in analog input configuration
●
all peripherals are disabled unless otherwise mentioned
●
the given value is calculated by measuring the current consumption
●
–
with all peripherals clocked off
–
with only one peripheral clocked on
Ambient operating temperature at 25°C and VDD = VDDA= 3.3 Volts
Table 36.
Peripheral current consumption
Typical consumption(1)
Peripheral
Unit
AHB peripherals
BusMatrix(2)
6.9
DMA1
18.3
DMA2
4.8
CRC
2.6
GPIOA
12.2
GPIOB
11.9
GPIOC
4.3
GPIOD
12.0
GPIOE
4.4
GPIOF
3.7
TSC
5.7
APB2 peripherals
µA/MHz
(3)
4.2
APB2-Bridge
68/128
SYSCFG
2.8
ADC1
17.7
SPI1
12.3
USART1
22.9
TIM15
15.7
TIM16
12.2
TIM17
12.1
TIM19
18.5
SDAC1
10.8
SDAC2
10.5
SDAC3
10.3
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
Table 36.
Peripheral current consumption
Peripheral
Typical consumption(1)
Unit
APB1 peripherals
APB1-Bridge(3)
6.9
TIM2
47.9
TIM3
36.8
TIM4
36.9
TIM5
45.5
TIM6
8.4
TIM7
8.2
TIM12
21.3
TIM13
14.2
TIM14
14.4
TIM18
10.1
WWDG
4.7
SPI2
24.3
SPI3
25.3
USART2
45.3
USART3
43.1
I2C1
14.0
I2C2
13.9
USB
27.9
CAN
38.1
DAC2
7.7
PWR
5.4
DAC1
14.8
CEC
5.4
µA/MHz
1. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs,
Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections.
2. The BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).
3. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.
Doc ID 022691 Rev 3
69/128
Electrical characteristics
6.3.6
STM32F37x
Wakeup time from low-power mode
The wakeup times given in Table 37 are measured from the wakeup event trigger to the first
instruction executed by the CPU. The clock source used to wake up the device depends
from the current operating mode:
●
Stop or sleep mode: the wakeup event is WFE
●
WKUP1 (PA0) pin is used to wakeup from standby, stop and sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 22.
Table 37.
Low-power mode wakeup timings
Typ @VDD = VDDA
Symbol
Parameter
Conditions
Max
= 2.0 V = 2.4 V = 2.7 V
tWUSTOP
Wakeup from Stop
mode
= 3.3 V
Regulator in run mode
4.1
3.9
3.8
3.7
3.6
4.5
Regulator in low
power mode
7.9
6.7
6.1
5.7
5.4
8.6
LSI and IWDG off
62.6
53.7
49.2
45.7
42.7
100
tWUSTANDBY
Wakeup from
Standby mode
tWUSLEEP
Wakeup from Sleep
After WFE instruction
mode
6.3.7
=3V
Unit
µs
CPU
clock
cycles
6
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 12.
Table 38.
Symbol
High-speed external user clock characteristics
Parameter(1)
Conditions
Typ
Max
Unit
1
8
32
MHz
fHSE_ext
User external clock source
frequency
VHSEH
OSC_IN input pin high level voltage
0.7VDD
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
0.3VDD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
V
15
ns
1. Guaranteed by design, not tested in production.
70/128
Min
Doc ID 022691 Rev 3
20
STM32F37x
Electrical characteristics
Figure 12. High-speed external clock source AC timing diagram
T7(3%(
6(3%(
6(3%,
TR(3%
TF(3%
T
T7(3%,
4(3%
-36
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 13.
Table 39.
Symbol
Low-speed external user clock characteristics
Parameter(1)
Conditions
Min
Typ
Max
Unit
32.768
1000
kHz
fLSE_ext
User External clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
0.7VDD
VDD
VLSEL
OSC32_IN input pin low level
voltage
VSS
0.3VDD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time
450
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
V
ns
50
1. Guaranteed by design, not tested in production.
Doc ID 022691 Rev 3
71/128
Electrical characteristics
STM32F37x
Figure 13. Low-speed external clock source AC timing diagram
T7,3%(
6,3%(
6,3%,
TR,3%
TF,3%
T
T7,3%,
4,3%
-36
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 40. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 40.
HSE oscillator characteristics
Symbol
Parameter
fOSC_IN
Oscillator frequency
RF
Conditions(1)
Min(2)
Typ
Max(2)
Unit
4
8
32
MHz
Feedback resistor
200
During startup(3)
IDD
gm
tSU(HSE)(4)
HSE current consumption
8.5
VDD = 3.3 V, Rm= 30 ,
CL= 10 [email protected] MHz
0.4
VDD = 3.3 V, Rm= 45 ,
CL= 10 [email protected] MHz
0.5
VDD = 3.3 V, Rm= 30 ,
CL=5 [email protected] MHz
0.8
VDD = 3.3 V, Rm= 30 ,
CL= 10 [email protected] MHz
1
VDD = 3.3 V, Rm= 30 ,
CL= 20 [email protected] MHz
1.5
Oscillator transconductance
Startup time
Startup
k
mA
10
VDD is stabilized
mA/V
2
ms
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
72/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 14). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 14. Typical application with an 8 MHz crystal
2ESONATORWITH
INTEGRATEDCAPACITORS
#,
F(3%
/3#?).
-( Z
RESONATOR
#,
2%84
2&
"IAS
CONTROLLED
GAIN
/3#?/5 4
-36
1. REXT value depends on the crystal characteristics.
Doc ID 022691 Rev 3
73/128
Electrical characteristics
STM32F37x
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 41. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 41.
Symbol
LSE oscillator characteristics (fLSE = 32.768 kHz)
Parameter
Conditions(1)
Min(2)
LSEDRV[1:0]=00
lower driving capability
Typ
0.5
LSEDRV[1:0]= 01
medium low driving capability
IDD
gm
Max(2) Unit
0.9
1
LSE current consumption
Oscillator
transconductance
tSU(LSE)(3) Startup time
µA
LSEDRV[1:0] = 10
medium high driving capability
1.3
LSEDRV[1:0]=11
higher driving capability
1.6
LSEDRV[1:0]=00
lower driving capability
5
LSEDRV[1:0]= 01
medium low driving capability
8
µA/V
LSEDRV[1:0] = 10
medium high driving capability
15
LSEDRV[1:0]=11
higher driving capability
25
VDD is stabilized
2
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note:
74/128
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Doc ID 022691 Rev 3
s
STM32F37x
Electrical characteristics
Figure 15. Typical application with a 32.768 kHz crystal
2ESONATORWITH
INTEGRATEDCAPACITORS
#,
F,3%
/3#?).
$RIVE
PROGRAMMABLE
AMPLIFIER
K( Z
RESONATOR
/3#?/5 4
#,
-36
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8
Internal clock source characteristics
The parameters given in Table 42 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22.
The provided curves are chararacterization results, not tested in production.
High-speed internal (HSI) RC oscillator
Table 42.
Symbol
fHSI
TRIM
DuCy(HSI)
ACCHSI
HSI oscillator characteristics(1)
Parameter
Conditions
Min
Frequency
Typ
Max
8
HSI user trimming step
HSI oscillator startup
time
IDD(HSI)
HSI oscillator power
consumption
(2)
%
45(2)
55(2)
%
TA = –40 to 105 °C
–3.8(3)
4.6(3)
%
TA = –10 to 85 °C
–2.9(3)
2.9(3)
%
TA = 0 to 70 °C
TA = 25 °C
tsu(HSI)
MHz
1
Duty cycle
Accuracy of the HSI
oscillator (factory
calibrated)
Unit
%
–1
1
%
1(3)
2(3)
µs
100(3)
µA
80
1. VDDA =3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Doc ID 022691 Rev 3
75/128
Electrical characteristics
STM32F37x
Figure 16. HSI oscillator accuracy characterization results
!## (3)
-!8
-).
4!; #=
-36
Low-speed internal (LSI) RC oscillator
Table 43.
LSI oscillator characteristics(1)
Symbol
fLSI
Parameter
Min
Typ
Max
Unit
30
40
60
kHz
85
µs
1.2
µA
Frequency
tsu(LSI)(2)
LSI oscillator startup time
IDD(LSI)(2)
LSI oscillator power consumption
0.75
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 44 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22.
Table 44.
PLL characteristics
Value
Symbol
Parameter
Unit
Min
fPLL_IN
fPLL_OUT
tLOCK
Jitter
76/128
Typ
Max
PLL input clock(1)
1(2)
24(2)
MHz
PLL input clock duty cycle
40(2)
60(2)
%
PLL multiplier output clock
(2)
72
MHz
200(2)
µs
(2)
ps
PLL lock time
Cycle-to-cycle jitter
Doc ID 022691 Rev 3
16
300
STM32F37x
Electrical characteristics
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
6.3.10
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 45.
Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA–40 to +105 °C
40
53.5
60
µs
Page (2 kB) erase time
TA –40 to +105 °C
20
40
ms
tME
Mass erase time
TA –40 to +105 °C
20
40
ms
Write mode
10
mA
IDD
Supply current
Erase mode
12
mA
Symbol
tprog
tERASE
Parameter
Conditions
1. Guaranteed by design, not tested in production.
Table 46.
Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1
kcycle(2)
10 kcycles
at TA = 105 °C
10
(2)
20
at TA = 55 °C
Unit
kcycles
Years
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
Doc ID 022691 Rev 3
77/128
Electrical characteristics
6.3.11
STM32F37x
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
●
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
●
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 47. They are based on the EMS levels and classes
defined in application note AN1709.
Table 47.
EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD 3.3 V, LQFP100, TA +25 °C,
Voltage limits to be applied on any I/O pin
fHCLK 72 MHz
to induce a functional disturbance
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD3.3 V, LQFP100, TA +25 °C,
fHCLK 72 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
78/128
●
Corrupted program counter
●
Unexpected reset
●
Critical Data corruption (control registers...)
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 48.
EMI characteristics
Symbol Parameter
SEMI
6.3.12
Conditions
Max vs. [fHSE/fHCLK]
Monitored
frequency band
Unit
8/72 MHz
0.1 to 30 MHz
VDD 3.3 V, TA 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with IEC
130 MHz to 1 GHz
61967-2
SAE EMI Level
9
26
dBµV
30
4
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 49.
Symbol
ESD absolute maximum ratings
Ratings
Conditions
Class Maximum value(1) Unit
Electrostatic discharge
TA +25 °C, conforming
voltage (human body model) to JESD22-A114
2
2000
TA +25 °C, conforming
to JESD22-C101,
LQFP100, LQFP64,
LQFP48 and BGA100
Electrostatic discharge
VESD(CDM)
voltage (charge device model) packages
II
500
TA +25 °C, conforming
to JESD22-C101,
WLCSP66 package
II
250
VESD(HBM)
V
1. Data based on characterization results, not tested in production.
Doc ID 022691 Rev 3
79/128
Electrical characteristics
STM32F37x
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
●
A supply overvoltage is applied to each power supply pin
●
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 50.
Symbol
LU
6.3.13
Electrical sensitivities
Parameter
Conditions
Static latch-up class
TA +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator
frequency deviation).
The test results are given in Table 51.
80/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
Table 51. I/O current injection susceptibility
Functional
susceptibility
Symbol
Description
Unit
Negative Positive
injection injection
IINJ
Note:
1
Injected current on BOOT0 pin
-0
NA
Injected current on PC0 pin
-0
+5
Injected current on TC type I/O pins on VDDSD12 power
domain: PB0, PB1, PB2, PE7, PE8, PE9, PE10, PE11, PE12,
PE13, PE14, PE15, PB10 with induced leakage current on
other pins from this group less than -50 µA
-5
+5
Injected current on TC type I/O pins on VDDSD3 power
domain: PB14, PB15, PD8, PD9, PD10, PD12, PD13, PD14,
PD15 with induced leakage current on other pins from this
group less than -50 µA
-5
+5
Injected current on TTa type pins: PA4, PA5, PA6 with induced
leakage current on adjacent pins less than -10 µA
-5
+5
Injected current on any other FT and FTf pins
-5
NA
Injected current on any other pins
-5
+5
mA
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
Doc ID 022691 Rev 3
81/128
Electrical characteristics
6.3.14
STM32F37x
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 52 are derived from tests
performed under the conditions summarized in Table 22. All I/Os are CMOS and TTL
compliant.
Table 52.
Symbol
VIL
VIH
Vhys
Ilkg
I/O static characteristics (1)
Parameter
Low level input
voltage
High level input
voltage
Schmitt trigger
hysteresis
Input leakage
current (3)
Conditions
Min
Typ
Max
Unit
(2)
TC and TTa I/O
-
-
0.3VDD+0.07
FT and FTf I/O
-
-
0.475VDD–0.2(2)
BOOT0
-
-
0.3VDD–0.3(2)
All I/Os except BOOT0 pin
-
-
0.3VDD
TC and TTa I/O
0.445VDD+0.398(2)
-
FT and FTf I/O
0.5VDD+0.2(2)
-
+0.95(2)
-
BOOT0
0.2VDD
All I/Os except BOOT0 pin
0.7VDD
-
TC and TTa I/O
-
200(2)
-
FT and FTf I/O
-
100(2)
-
BOOT0
-
300
(2)
-
TC, FT and FTf I/O
TTa in digital mode
VSS  VIN VDD
-
-
01
TTa in digital mode
VDD VIN  VDDA
-
-
1
TTa in analog mode
VSS  VIN  VDDA
-
-
±0.2
FT and FTf I/O (3)
VDD  VIN  5 V
-
-
10
V
mV
µA
RPU
Weak pull-up
equivalent resistor(4)
VIN =VSS
25
40
55
RPD
Weak pull-down
equivalent resistor(4)
VIN =VDD
25
40
55
CIO
I/O pin capacitance
-
5
-
k
pF
1. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected
to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally
connected to VSS). For those pins all VDD supply references in this table are related to their given VDDSDx power supply.
2. Data based on design simulation only. Not tested in production.
3. Leakage could be higher than maximum value, if negative current is injected on adjacent pins.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
82/128
Doc ID 022691 Rev 3
STM32F37x
Note:
Electrical characteristics
I/O pins are powered from VDD voltage except pins which can be used as SDADC inputs:
- PB2, PB10 and PE7 to PE15 I/O pins are powered from VDDSD12.
- PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is
internally connected to VSS.
VDD mentioned in the Table 52 represents power voltage for a given I/O pin (VDD or
VDDSD12 or VDDSD3).
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 17 and Figure 18 for standard I/Os, and
in Figure 19 and Figure 20 for 5 V tolerant I/Os.
Figure 17. TC and TTa I/O input characteristics - CMOS port
VIL/VIH (V)
min
ts VIH
S
CMO
VIHmin 2.0
Tested
en
quirem
= 0.7
VDD
98
ns
+0.3
5V DD imulatio
0.44
s
=
n
V IHmin on desig
d
Base
ons
7
+0.0 ulati
.3V DDsign sim
0
=
e
V ILmaxed on d
Bas
ard re
stand
uction
in prod
1.3
Area not determined
CMOS standard requirements VILmax = 0.3VDD
VILmax 0.7
0.6
duction
in pro
Tested
VDD (V)
2.0
2.7
3.0
3.3
3.6
MS30255V2
Figure 18. TC and TTa I/O input characteristics - TTL port
VIL/VIH (V)
TTL standard requirements VIHmin = 2 V
VIHmin 2.0
98 ons
+0.3
ti
45V DD imula
= 0.4 design s
n
o
d
Base
V IHmin
0.07 ulations
V DD+
im
= 0.3 design s
d on
Base
V ILmax
1.3
Area not determined
0.8
VILmax 0.7
TTL standard requirements VILmax = 0.8 V
VDD (V)
2.0
2.7
3.0
3.3
3.6
-36
Doc ID 022691 Rev 3
83/128
Electrical characteristics
STM32F37x
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
VIL/VIH (V)
in =
ts V IHm
ndard
men
quire
0.7V DD
re
ons
0.2
V DD+ simulati
n
= 0.5
V IHmin on desig
d
Base
-0.2 lations
u
5V DD
0.47 ign sim
x=
s
a
e
m
d
V IL
d on
e
s
a
B
S sta
CMO
2.0
Area not determined
1.0
nts
ard requireme
CMOS stand
VILmax = 0.3VDD
0.5
VDD (V)
2.7
2.0
3.6
-36
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
VIL/VIH (V)
TTL standard requirements VIHmin = 2 V
2.0
Area not determined
1.0
0.8
ons
0.2
V DD+ simulati
n
= 0.5
V IHmin on desig
d
Base
-0.2 lations
u
5V DD
0.47 ign sim
=
x
s
a
e
d
V ILm
d on
e
s
a
B
TTL standard requirements VILmax = 0.8 V
0.5
VDD (V)
2.0
2.7
3.6
-36
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
84/128
●
The sum of the currents sourced by all the I/Os on all VDD_x and VDDSDx, plus the
maximum Run consumption of the MCU sourced on VDD cannot exceed the absolute
maximum rating IVDD( (see Table 20).
●
The sum of the currents sunk by all the I/Os on all VSS_x and VSSSD, plus the
maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute
maximum rating IVSS( (see Table 20).
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
Output voltage levels
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 22. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified).
Table 53.
Output voltage characteristics (1)
Symbol
Parameter
VOL(2)
Output low level voltage for an I/O pin
VOH(4)
Output high level voltage for an I/O pin
VOL(2)
Output low level voltage for an I/O pin
VOH (4)
Output high level voltage for an I/O pin
VOL(2)(5)
Output low level voltage for an I/O pin
VOH(4)(5)
Output high level voltage for an I/O pin
VOL
(2)(5)
Output low level voltage for an I/O pin
VOH(4)(5)
Output high level voltage for an I/O pin
VOLFM+(2)
Output low level voltage for a FTf I/O pins
in FM+ mode
Conditions
Min
(3)
Max Unit
CMOS port
IIO = +8 mA
VDD–0.4
2.7 V < VDD < 3.6 V
0.4
TTL port(3)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
2.4
-
IIO = +20 mA
2.7 V < VDD < 3.6 V VDD–1.3
IIO = +6 mA
2 V < VDD < 2.7 V
-
-
-
0.4
VDD–0.4
-
-
0.4
IIO = +20 mA
2.7 V < VDD < 3.6 V
V
1.3
1. VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O ground pin is
internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15
I/O pins (the I/O ground pin is internally connected to VSS). For those pins all VDD supply references in this
table are related to their given VDDSDx power supply.
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 20
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
4. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 20 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
5. Data based on design simulation.
Note:
I/O pins are powered from VDD voltage except pins which can be used as SDADC inputs:
- PB2, PB10 and PE7 to PE15 I/O pins are powered from VDDSD12.
- PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is
internally connected to VSS.
VDD mentioned in the Table 53 represents power voltage for a given I/O pin (VDD or
VDDSD12 or VDDSD3).
Doc ID 022691 Rev 3
85/128
Electrical characteristics
STM32F37x
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 21 and
Table 54, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 22.
Table 54.
I/O AC characteristics(1)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
fmax(IO)out Maximum frequency(2)
x0
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out Maximum frequency(2)
01
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out Maximum
11
tf(IO)out
tr(IO)out
frequency(2)(3)
Output high to low level
fall time
Output low to high level
rise time
Conditions
Min
CL = 50 pF, VDD = 2 V to 3.6 V
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
(4)
Unit
2
MHz
125(3)
CL = 50 pF, VDD = 2 V to 3.6 V
ns
125(3)
CL = 50 pF, VDD = 2 V to 3.6 V
10
MHz
25(3)
CL = 50 pF, VDD = 2 V to 3.6 V
ns
25(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
50
MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V
30
MHz
CL = 50 pF, VDD = 2 V to 2.7 V
20
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
12(3)
fmax(IO)out Maximum frequency(2)
FM+
configuration
Max
2
ns
MHz
12
CL = 50 pF, VDD = 2 V to 3.6 V
ns
34
10
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0313 reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 21.
3. Guaranteed by design, not tested in production.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F37xx and STM32F38xx reference manual
RM0313 for a description of FM+ I/O mode configuration
86/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
Figure 21. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
EXT ERNAL
OUTPUT
ON 50pF
tr(I O)out
tr(I O)out
T
Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%)
when loaded by 50pF
ai14131
6.3.15
NRST characteristics
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 52).
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 22.
Table 55.
Symbol
NRST pin characteristics
Parameter
Conditions
Min
Typ
Unit
0.3VDD
+0.07(1)
VIL(NRST)(1) NRST Input low level voltage
VIH(NRST)(1)
Max
0.445
VDD+
0.398
NRST Input high level voltage
V
(1)
Vhys(NRST)(1)
RPU
VF(NRST)(1)
NRST Schmitt trigger voltage
hysteresis
Weak pull-up equivalent resistor(2)
200
VIN VSS
25
NRST Input filtered pulse
VNF(NRST)(1) NRST Input not filtered pulse
500
40
mV
55
k
100
ns
ns
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is minimal (~10% order).
Doc ID 022691 Rev 3
87/128
Electrical characteristics
STM32F37x
Figure 22. Recommended NRST pin protection
6$$
%XTERNAL
RESETCIRCUIT
.234
205
)NTERNAL2ESET
&ILTER
—&
-36
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 55. Otherwise the reset will not be taken into account by the device.
88/128
Doc ID 022691 Rev 3
STM32F37x
6.3.16
Electrical characteristics
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 56 are derived from tests
performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions
summarized in Table 22.
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 56. Refer also to Section 6.3.14: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 56.
I2C characteristics(1)
Standard mode
Symbol
Fast mode
Fast mode Plus
Parameter
Unit
Min
Max
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
1.3
0.5
tw(SCLH)
SCL clock high time
4.0
0.6
0.26
tsu(SDA)
SDA setup time
250
th(SDA)
SDA data hold time
0(2)
tr(SDA)
tr(SCL)
SDA and SCL rise time
1000
300
120
tf(SDA)
tf(SCL)
SDA and SCL fall time
300
300
120
th(STA)
Start condition hold time
4.0
0.6
0.26
tsu(STA)
Repeated Start condition
setup time
4.7
0.6
0.26
tsu(STO)
Stop condition setup time
4.0
0.6
0.26
s
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
1.3
0.5
s
Cb
Capacitive load for each bus
line
µs
100
3450(3)
0(2)
50
900(3)
0(4)
450(3)
ns
µs
400
400
550
pF
1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when
I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in
production.
2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region
of the falling edge of SCL.
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.
4. The device must internally provide a hold time of at least 120ns for the SDA signal in order to bridge the undefined region
of the falling edge of SCL.
Doc ID 022691 Rev 3
89/128
Electrical characteristics
Table 57.
STM32F37x
I2C analog filter characteristics(1)
Symbol
tSP
Parameter
Min
Max
Unit
50
260
ns
Pulse width of spikes that are
suppressed by the analog filter
1. Guaranteed by design, not tested in production.
Figure 23. I2C bus AC waveforms and measurement circuit
6$$
6$$
2
2
-#5
Ω
3$!
)#BUS
Ω
3#,
3 4!242%0%!4%$
3 4!24
3 4!24
TSU34!
3$!
TF3$!
TR3$!
TH34!
3#,
TW3#,(
TSU3$!
TW3#,,
TR3#,
TH3$!
TF3#,
3 4/0
TW34/34!
TSU34/
-36
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
90/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 58 for SPI or in Table 59 for I2S
are derived from tests performed under ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 22.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 58.
SPI characteristics
Symbol
fSCK
1/tc(SCK)(1)
Parameter
Conditions
Min
Max
Master mode
18
Slave mode
18
8
ns
70
%
SPI clock frequency
MHz
tr(SCK)
tf(SCK)(1)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)(1)
SPI slave input clock
duty cycle
Slave mode
30
tsu(NSS)(1)
NSS setup time
Slave mode
2Tpclk
th(NSS)(1)
NSS hold time
Slave mode
4Tpclk
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 Tpclk/2
-3
+3
(1)
tw(SCKH)
tw(SCKL)(1)
tsu(MI) (1)
tsu(SI)(1)
th(MI)
Master mode
5.5
Slave mode
6.5
Master mode
5
Slave mode
5
Data input setup time
(1)
th(SI)(1)
Data input hold time
ns
ta(SO)(1)(2)
Data output access time Slave mode, fPCLK = 24 MHz
0
4Tpclk
tdis(SO)(1)(3)
Data output disable time Slave mode
0
24
(1)
Data output valid time
Slave mode (after enable edge)
39
tv(MO)(1)
Data output valid time
Master mode (after enable edge)
3
tv(SO)
th(SO)(1)
th(MO)(1)
Unit
Slave mode (after enable edge)
15
Master mode (after enable edge)
4
Data output hold time
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z.
Doc ID 022691 Rev 3
91/128
Electrical characteristics
STM32F37x
Figure 24. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
tSU(NSS)
SCK Input
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 25. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
tSU(NSS)
SCK Input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
M SB IN
B I T1 IN
LSB IN
ai14135
1. Measurement points are done at 0.5VDD level and with external CL = 30 pF.
92/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
Figure 26. SPI timing diagram - master mode(1)
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TSU-)
-)3/
).0 54
TW3#+(
TW3#+,
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
- 3"/54
TV-/
" ) 4/54
,3"/54
TH-/
AI6
1. Measurement points are done at 0.5VDD level and with external CL = 30 pF.
Doc ID 022691 Rev 3
93/128
Electrical characteristics
STM32F37x
I2S characteristics
Table 59.
Symbol
Parameter
DuCy(SCK)(1)
I2S slave input clock duty
cycle
fCK(1)
1/tc(CK)
I2S clock frequency
Conditions
Slave mode
Master mode (data: 16 bits, Audio
frequency = 48 kHz)
Slave mode
tr(CK)(1)
Min
Max
Unit
30
70
%
1.528
1.539
MHz
0
I2S clock rise and fall time
Capacitive load CL = 30 pF
tv(WS) (1)
WS valid time
Master mode
4
(1)
WS hold time
Master mode
4
WS setup time
Slave mode
2
tf(CK)
th(WS)
tsu(WS) (1)
(1)
WS hold time
Slave mode
tw(CKH)
(1)
I2S clock high time
tw(CKL)
(1)
I2S clock low time
Master fPCLK= 16 MHz, audio
frequency = 48 kHz
th(WS)
tsu(SD_MR) (1)
tsu(SD_SR)
(1)
th(SD_MR)
(1)
th(SD_SR)
(1)
8
306
312
Master receiver
6
Slave receiver
3
Data input setup time
Master receiver
1.5
Slave receiver
1.5
ns
Data input hold time
tv(SD_ST) (1)
Data output valid time
Slave transmitter
(after enable edge)
th(SD_ST) (1)
Data output hold time
Slave transmitter
(after enable edge)
tv(SD_MT) (1)
Data output valid time
Master transmitter
(after enable edge)
th(SD_MT) (1)
Data output hold time
Master transmitter
(after enable edge)
1. Data based on design simulation, not tested in production.
94/128
12.288
Doc ID 022691 Rev 3
16
16
2
0
STM32F37x
Electrical characteristics
Figure 27. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. Measurement points are done at 0.5VDD level and with external CL = 30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 28. I2S master timing diagram (Philips protocol)(1)
tr(CK)
tf(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Measurement points are done at 0.5VDD level and with external CL = 30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Doc ID 022691 Rev 3
95/128
Electrical characteristics
6.3.17
STM32F37x
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 60 are preliminary values derived
from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 22.
Note:
It is recommended to perform a calibration after each power-up.
Table 60.
ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Power supply
2.4
3.6
V
VREF+
Positive reference voltage
2.4
VDDA
V
IVREF
Current on the VREF input
pin
220(1)
µA
fADC
ADC clock frequency
0.6
14
MHz
fS(2)
Sampling rate
0.05
1
MHz
823
kHz
17
1/fADC
VREF+
V
50
k
160(1)
fADC = 14 MHz
fTRIG(2)
External trigger frequency
VAIN
Conversion voltage range
RSRC(2)
Signal source impedance
RADC(2)
Sampling switch resistance
1
k
CADC(2)
Internal sample and hold
capacitor
8
pF
tCAL(2)
Calibration time
0 (VSSA or VREFtied to ground)
See Equation 1 and
Table 61 for details
fADC = 14 MHz
tlat(2)
Injection trigger conversion
latency
fADC = 14 MHz
tlatr(2)
Regular trigger conversion
latency
fADC = 14 MHz
tS(2)
Sampling time
tSTAB(2)
Power-up time
tCONV(2)
Total conversion time
(including sampling time)
µs
83
1/fADC
0.214
µs
2(3)
1/fADC
0.143
µs
(3)
2
fADC = 14 MHz
17.1
µs
1.5
239.5
1/fADC
1
µs
18
µs
0
fADC = 14 MHz
1
0
14 to 252 (tS for sampling +12.5 for
successive approximation)
2. Guaranteed by design, not tested in production.
3. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 60
Doc ID 022691 Rev 3
1/fADC
0.107
1. Based on characterization, not tested in production.
96/128
5.9
1/fADC
STM32F37x
Electrical characteristics
Equation 1: RSRC max formula
TS
R SRC  ------------------------------------------------------------- – R ADC
N+2
f ADC  C ADC  ln  2

The formula above (Equation 1) is used to determine the maximum external signal source
impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 61.
RSRC max for fADC = 14 MHz(1)
Ts (cycles)
tS (µs)
RSRC max (k)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
50
239.5
17.1
50
1. Guaranteed by design, not tested in production.
Table 62.
Symbol
ADC accuracy(1)(2) (3)
Parameter
Test conditions
Typ
Max(4)
±1.3
±3
±1
±2
±0.5
±1.5
±0.7
±1
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
±0.8
±1.5
ET
Total unadjusted error
±3.3
±4
EO
Offset error
±1.9
±2.8
EG
Gain error
±2.8
±3
ED
Differential linearity error
±0.7
±1.3
EL
Integral linearity error
±1.2
±1.7
ET
Total unadjusted error
±3.3
±4
EO
Offset error
±1.9
±2.8
EG
Gain error
±2.8
±3
ED
Differential linearity error
±0.7
±1.3
EL
Integral linearity error
±1.2
±1.7
fADC = 14 MHz, RSRC < 10 k,
VDDA = 3 V to 3.6 V
TA = 25 °C
fADC = 14 MHz, RSRC < 10 k,
VDDA = 2.7 V to 3.6 V
TA = -40 to 105 °C
fADC = 14 MHz, RSRC < 10 k,
VDDA = 2.4 V to 3.6 V
TA = 25 °C
Unit
LSB
LSB
LSB
1. ADC DC accuracy values are measured after internal calibration.
Doc ID 022691 Rev 3
97/128
Electrical characteristics
STM32F37x
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should
be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject
negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14 does not
affect the ADC accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
Figure 29. ADC accuracy characteristics
VDDA
1 LSBIDEAL EG
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
(2)
ET
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
(3)
7
(1)
6
5
EO
4
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
-36
Figure 30. Typical connection diagram using the ADC
VDD
232#
732#
VT
0.6 V
AINx
Cparasitic
VT
0.6 V
IL±1 μA
Sample and hold ADC
converter
RADC(1)
12-bit
converter
CADC(1)
-36
1. Refer to Table 60 for the values of RSRC, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 9. The 10 nF capacitor
should be ceramic (good quality) and it should be placed as close as possible to the chip.
98/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
6.3.18
DAC electrical specifications
Table 63.
DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
VDDA
Analog supply voltage
2.4
-
3.6
V
VREF+
Reference supply voltage
2.4
-
3.6
V
Ground
0
-
0
V
Resistive load with buffer ON
5
-
k
VSSA
RLOAD
(1)
Comments
VREF+ must always be below VDDA
RO(1)
Impedance output with buffer
OFF
-
-
15
When the buffer is OFF, the Minimum
resistive load between DAC_OUT
k
and VSS to have a 1% accuracy is
1.5 M
CLOAD(1)
Capacitive load
-
-
50
Maximum capacitive load at
pF DAC_OUT pin (when the buffer is
ON).
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
with buffer ON
max(1)
-
-
VDDA – 0.2
V
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer OFF
-
0.5
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(1)
-
VREF+ – 1LSB
DAC DC current
IDDVREF+(3) consumption in quiescent
mode (Standby mode)
-
220
With no load, worst code (0xF1C) at
µA VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
380
µA
-
480
With no load, worst code (0xF1C) at
µA VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
±0.5
LSB
Given for the DAC in 10-bit
configuration
-
±2
LSB
Given for the DAC in 12-bit
configuration
IDDA(3)
DNL(3)
INL(3)
DAC DC current
consumption in quiescent
mode(2)
Differential non linearity
Difference between two
consecutive code-1LSB)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V
and (0x155) and (0xEAB) at VREF+ =
2.4 V
mV
It gives the maximum output
excursion of the DAC.
V
With no load, middle code (0x800) on
the inputs
-
-
±1
LSB
Given for the DAC in 10-bit
configuration
-
-
±4
LSB
Given for the DAC in 12-bit
configuration
Doc ID 022691 Rev 3
99/128
Electrical characteristics
Table 63.
Symbol
STM32F37x
DAC characteristics (continued)
Parameter
Min
Typ
Max
Unit
-
-
±10
mV
Comments
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
-
-
±3
LSB
Given for the DAC in 10-bit at VREF+
= 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at VREF+
= 3.6 V
Gain error
-
-
±0.5
%
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
tSETTLING(3)
highest input codes when
DAC_OUT reaches final
value ±1LSB
-
3
4
µs CLOAD  50 pF, RLOAD  5 k
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s CLOAD  50 pF, RLOAD  5 k
Wakeup time from off state
tWAKEUP(3) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
CLOAD  50 pF, RLOAD  5 k
µs input code between lowest and
highest possible ones.
Power supply rejection ratio
PSRR+ (1) (to VDDA) (static DC
measurement
-
-67
-40
dB No RLOAD, CLOAD = 50 pF
Offset(3)
Gain
error(3)
Update
rate(3)
Given for the DAC in 12bit
configuration
1. Guaranteed by design, not tested in production.
2. Quiescent mode refers to the state of the DAC keeping a steady value on the output, so no dynamic consumption is
involved.
3. Guaranteed by characterization, not tested in production.
Figure 31. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
12-bit
digital to
analog
converter
DACx_OUT
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
100/128
Doc ID 022691 Rev 3
STM32F37x
Electrical characteristics
6.3.19
Comparator characteristics
Table 64.
Comparator characteristics
Symbol
VDDA
Parameter
Conditions
Min Typ Max(1)
Unit
Analog supply voltage
2
3.6
VIN
Comparator input voltage
range
0
VDDA
V
VBG
Scaler input voltage
1.2
VSC
Scaler offset voltage
±5
±10
mV
tS_SC
Scaler startup time from
power down
0.1
ms
tSTART
Comparator startup time
60
µs
Startup time to reach propagation delay
specification
Ultra-low power mode
2
4.5
0.7
1.5
0.3
0.6
VDDA  2.7 V
50
100
VDDA  2.7 V
100
240
2
7
Low power mode
0.7
2.1
Medium power mode
0.3
1.2
VDDA  2.7 V
90
180
VDDA  2.7 V
110
300
10
Low power mode
Propagation delay for
200 mV step with 100 mV Medium power mode
overdrive
High speed mode
tD
Ultra-low power mode
Propagation delay for full
range step with 100 mV
overdrive
High speed mode
ns
Comparator offset error
4
dVoffset/dT
Offset error temperature
coefficient
18
IDD(COMP)
COMP current
consumption
µs
ns
Voffset
Ultra-low power mode
µs
mV
µV/°C
1.2
1.5
Low power mode
3
5
Medium power mode
10
15
High speed mode
75
100
µA
Doc ID 022691 Rev 3
101/128
Electrical characteristics
Table 64.
Symbol
STM32F37x
Comparator characteristics (continued)
Parameter
Conditions
Min Typ Max(1)
No hysteresis
(COMPxHYST[1:0]=00)
Low hysteresis
(COMPxHYST[1:0]=01)
Vhys
Comparator hysteresis
Medium hysteresis
(COMPxHYST[1:0]=10)
High hysteresis
(COMPxHYST[1:0]=11)
0
High speed mode
3
All other power
modes
5
High speed mode
7
High speed mode
18
Doc ID 022691 Rev 3
10
26
15
9
All other power
modes
13
8
All other power
modes
1. Guaranteed by design, not tested in production.
102/128
Unit
19
49
31
19
40
mV
STM32F37x
6.3.20
Electrical characteristics
Temperature sensor characteristics
Table 65.
Temperature sensor calibration values
Calibration value name
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3.3 V
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3.3 V
0x1FFF F7C2 - 0x1FFF F7C3
Table 66.
TS characteristics
Symbol
Parameter
Min
Typ
Max
Unit
1
2
°C
TL
VSENSE linearity with temperature
Avg_Slope(1)
Average slope
4.0
4.3
4.6
mV/°C
V25
Voltage at 25 °C
1.34
1.43
1.52
V
tSTART(1)
Startup time
10
µs
TS_temp(2)(1)
ADC sampling time when reading the
temperature
4
17.1
µs
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.21
VBAT monitoring characteristics
Table 67.
VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
K
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
2
-
Error on Q
-1
-
+1
%
ADC sampling time when reading the VBAT
1mV accuracy
5
-
-
µs
Er
(1)
TS_vbat(2)
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.22
Timer characteristics
The parameters given in Table 68 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Doc ID 022691 Rev 3
103/128
Electrical characteristics
Table 68.
TIMx(1) (2)characteristics
Symbol
tres(TIM)
STM32F37x
Parameter
Conditions
ResTIM
tCOUNTER
tMAX_COUNT
Max
fTIMxCLK = 72 MHz
Unit
1
tTIMxCLK
13.9
ns
Timer resolution time
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 72 MHz
fEXT
Min
0
fTIMxCLK/2
MHz
0
24
MHz
TIMx (except TIM2)
16
TIM2
32
Timer resolution
bit
1
65536
tTIMxCLK
0.0139
910
µs
65536 × 65536
tTIMxCLK
59.65
s
16-bit counter clock period
fTIMxCLK = 72 MHz
Maximum possible count
with 32-bit counter
fTIMxCLK = 72 MHz
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, TIM12, TIM13, TIM14,
TIM15, TIM16 , TIM17, TIM18 and TIM19 timers.
2. Data based on characterization results, not tested in production.
Table 69.
IWDG min/max timeout period at 40 kHz (LSI) (1)(2)
Prescaler divider
PR[2:0] bits
Min timeout (ms) RL[11:0]=
0x000
Max timeout (ms) RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
7
6.4
26214.4
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
2. Data based on characterization results, not tested in production.
Table 70.
104/128
WWDG min-max timeout value @72 MHz (PCLK)
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.05687
3.6409
2
1
0.1137
7.2817
4
2
0.2275
14.564
8
3
0.4551
29.127
Doc ID 022691 Rev 3
STM32F37x
6.3.23
Electrical characteristics
USB characteristics
Table 71.
USB startup time
Symbol
tSTARTUP(1)
Parameter
USB transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 72.
USB DC electrical characteristics
Symbol
Parameter
Conditions
Min.(1)
Max.(1)
Unit
3.0(3)
3.6
V
Input levels
VDD
USB operating voltage(2)
VDI(4)
Differential input sensitivity (for
USB compliance)
VCM(4)
Differential common mode range
VSE(4)
Single ended receiver threshold
I(USB_DP, USB_DM)
0.2
Includes VDI range
0.8
2.5
1.3
2.0
V
Output levels
VOL
Static output level low
RL of 1.5 k to 3.6 V(5)
VOH
Static output level high
RL of 15 k to VSS(5)
0.3
V
2.8
3.6
1. All the voltages are measured from the local ground potential.
2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled
up with a 1.5 k resistor to a 3.0-to-3.6 V voltage range.
3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics
which are degraded in the 2.7-to-3.0 V VDD voltage range.
4. Guaranteed by design, not tested in production.
5. RL is the load connected on the USB drivers
Doc ID 022691 Rev 3
105/128
Electrical characteristics
STM32F37x
Figure 32. USB timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
Table 73.
tr
tf
ai14137
USB: Full-speed electrical characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Driver characteristics
tr
Rise time(2)
CL = 50 pF
4
-
20
ns
tf
Fall time(2)
CL = 50 pF
4
-
20
ns
tr/tf
90
-
110
%
1.3
-
2.0
V
28
40
44

trfm
VCRS
Rise/ fall time matching
Output signal crossover voltage
driving high and
low
Output driver
Z
Impedance(3) DRV
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter
7 (version 2.0).
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is
already included in the embedded driver.
6.3.24
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
6.3.25
SDADC characteristics
Table 74.
SDADC characteristics (1)
Symbol
Parameter
VDDSDx
Power
supply
fADC
SDADC
clock
frequency
VREFSD+
Positive ref.
voltage
VREFSD-
Negative
ref. voltage
106/128
Conditions
Min
Typ
Max
Slow mode (fADC = 1.5 MHz)
2.2
VDDA
Fast mode (fADC = 6 MHz)
2.4
VDDA
Slow mode (fADC = 1.5 MHz)
0.5
1.5
1.65
Fast mode (fADC = 6 MHz)
0.5
6
6.3
Unit
V
MHz
1.1
VDDSDx
VSSA
Doc ID 022691 Rev 3
V
V
Note
STM32F37x
Table 74.
Symbol
Electrical characteristics
SDADC characteristics (continued)(1)
Parameter
Conditions
Min
Fast mode (fADC = 6 MHz)
IDDSDx
VAIN
VDIFF
fS
Supply
current
(VDDSDx =
3.3 V)
Common
input
voltage
range
Differential
input
voltage
Sampling
rate
Conversion
time
Rain
Analog
input
impedance
Max
800
1200
Slow mode (fADC = 1.5 MHz)
600
Standby
200
Power down
2.5
SD_ADC off
1
VSSA
VREFSD+
/gain
Single ended offset mode
VSSA
VREFSD+
/gain/2
Differential mode
VSSA
VDDSDx
Single ended mode (zero reference)
-VREF
Differential mode only
Unit
gain/2
Note
µA
V
Voltage on
AINP or
AINN pin
Differential
voltage
between
AINP and
AINN
VREFSD+/
gain/2
SD+/
Slow mode (fADC = 1.5 MHz)
4.166
fADC/360
Slow mode one channel only
(fADC = 1.5 MHz)
12.5
fADC/120
Fast mode multiplexed channel
(fADC = 6 MHz)
16.66
fADC/360
50
fADC/120
Fast mode one channel only
(fADC = 6 MHz)
tCONV
Typ
kHz
1/fs
One channel, gain = 0.5,
fADC = 1.5 MHz
540
One channel, gain = 0.5, fADC = 6 MHz
135
One channel, gain = 8, fADC = 6 MHz
47
tCALIB
Calibration
time
tSTAB
Stabilization
From power down fADC = 6 MHz
time
tSTANDBY
Wakeup
from
standby
time
fADC = 6 MHz, one offset calibration
5120
100
fADC = 6 MHz
50
fADC = 1.5 MHz
50
s
k
see
reference
manual for
detailed
description
µs
30720/fADC
µs
600/fADC,
75/fADC if
SLOWCK
=1
300/fADC
µs
Doc ID 022691 Rev 3
75/fADC if
SLOWCK
=1
107/128
Electrical characteristics
Table 74.
Symbol
STM32F37x
SDADC characteristics (continued)(1)
Parameter
Conditions
EO
Offset error
gain = 1
gain = 8
Differential mode
fADC =
1.5 MHz
fADC =
6 MHz
fADC =
6 MHz
gain = 1
gain = 8
Single ended mode
fADC =
1.5 MHz
Min
Max
VREFSD+ =
3.3
110
VREFSD+ =
1.2
110
VREFSD+ =
3.3
100
VREFSD+ =
1.2
70
VREFSD+ =
3.3
100
VDDSDx
= 3.3
VREFSD+ =
3.3
2100
VREFSD+ =
3.3
2000
VREFSD+ =
1.2
1500
VREFSD+ =
3.3
1800
Offset drift
Differential or single ended mode,
with
gain = 1, VDDSDx = 3.3 V
temperature
EG
Gain error
EGT
Gain drift
gain = 1, differential mode, single ended
with
mode
temperature
All gains, differential mode, single ended
mode
Doc ID 022691 Rev 3
Unit
Note
uV
after offset
calibration
90
VREFSD+ =
1.2
Dvoffsett
emp
108/128
Typ
-2.4
10
15
uV/K
-2.7
-3.1
%
0
ppm/
K
STM32F37x
Conditions
gain = 8
gain = 8
gain = 1
gain = 8
Differential mode
gain = 1
VDDSDx = 3.3
Single ended mode
ED
Differential
linearity
error
gain = 1
VDDSDx = 3.3
Single ended mode
EL
Integral
linearity
error
gain = 1
Parameter
Differential mode
Symbol
SDADC characteristics (continued)(1)
gain = 8
Table 74.
Electrical characteristics
Min
Typ
Max
VREFSD+ =
1.2
16
VREFSD+ =
3.3
14
VREFSD+ =
1.2
26
VREFSD+=
3.3
14
Unit
Note
LSB
VREFSD+ =
1.2
31
VREFSD+=
3.3
23
VREFSD+=
1.2
80
VREFSD+ =
3.3
35
VREFSD+ =
1.2
2.4
VREFSD+ =
3.3
1.8
VREFSD+=
1.2
3.6
VREFSD+ =
3.3
2.9
LSB
VREFSD+ =
1.2
3.2
VREFSD+ =
3.3
2.8
VREFSD+=
1.2
4.1
VREFSD+ =
3.3
3.3
Doc ID 022691 Rev 3
109/128
Electrical characteristics
Table 74.
Symbol
STM32F37x
SDADC characteristics (continued)(1)
Parameter
Conditions
Min
Typ
VREFSD+ =
3.3(2)
84
85
VREFSD+=
1.2(3)
86
88
VREFSD+ =
3.3
88
92
VREFSD+ =
1.2(3)
76
78
VREFSD+ =
3.3
82
86
fADC =
1.5 MHz
VDDSDx VREFSD+=
= 3.3
3.3(2)
76
80
fADC =
1.5MHz
VREFSD+ =
3.3
80
84
VREFSD+ =
1.2(3)
77
81
VREFSD+ =
3.3
85
90
VREFSD+ =
1.2(3)
66
71
VREFSD+ =
3.3
74
78
110/128
gain = 1
gain = 8
gain = 1
Signal to
noise ratio
Single ended mode
SNR(4)
gain = 8
Differential mode
fADC =
1.5 MHz
fADC = 6
MHz
fADC = 6
MHz
fADC =
6 MHz
fADC =
6 MHz
Doc ID 022691 Rev 3
Max
Unit
dB
Note
STM32F37x
Table 74.
Symbol
Electrical characteristics
SDADC characteristics (continued)(1)
Parameter
Conditions
Min
Typ
VREFSD+ =
3.3(2)
76
77
VREFSD+ =
1.2(3)
75
76
VREFSD+ =
3.3
76
77
VREFSD+ =
1.2(3)
70
74
VREFSD+ =
3.3
79
85
fADC =
1.5 MHz
VDDSDx
VREFSD+ =
= 3.3
3.3(2)
75
81
fADC =
1.5MHz
VREFSD+ =
3.3
72
73
VREFSD+ =
1.2(3)
68
71
VREFSD+ =
3.3
72
73
VREFSD+ =
1.2(3)
60
64
VREF = 3.3
67
72
Single ended mode
(4)
gain =1
gain =8
gain =1
SINAD
Signal to
noise and
distortion
ratio
gain =8
Differential mode
fADC =
1.5 MHz
fADC = 6
MHz
fADC = 6
MHz
fADC =
6 MHz
fADC =
6 MHz
gain =1
fADC =
6 MHz
fADC =
6 MHz
gain =1
fADC =
6 MHz
gain =8
fADC =
1.5 MHz
Single ended mode
THD(4)
Total
harmonic
distortion
gain =8
Differential mode
fADC =
1.5 MHz
fADC =
6 MHz
Max
VREFSD+ =
3.3(2)
-77
-76
VREFSD+ =
1.2(3)
-77
-76
VREFSD+ =
3.3
-77
-76
VREFSD+ =
1.2(3)
-85
-70
-93
-80
VREFSD+ =
VDDSDx 3.3
= 3.3
VREFSD+ =
3.3(2)
Unit
Note
dB
ENOB =
SINAD/6.0
2
-0.292
dB
-93
-83
VREFSD+ =
1.2(3)
-72
-68
VREFSD+ =
3.3
-74
-72
VREFSD+ =
1.2(3)
-66
-61
VREFSD+ =
3.3
-75
-70
1. Data based on characterization results, not tested in production.
Doc ID 022691 Rev 3
111/128
Electrical characteristics
STM32F37x
2. For fADC lower than 5 MHz, there will be a performance degradation of around 2 dB due to flicker noise increase.
3. If the reference value is lower than 2.4 V, there will be a performance degradation proportional to the reference supply
drop, according to this formula: 20*log10(VREF/2.4) dB
4. SNR, THD, SINAD parameters are valid for frequency bandwidth 20Hz - 1kHz. Input signal frequency is 300Hz (for
fADC=6MHz) and 100Hz (for fADC=1.5MHz).
Table 75.
Symbol
VREFINT
VREFSD+ pin characteristics(1)
Parameter
Conditions
Min
Typ
Buffered embedded
reference voltage (1.2 V)
1.2
Embedded reference
voltage amplified by
factor 1.5
1.8
Max
Unit
Note
V
See Section 6.3.4:
Embedded
reference voltage on
page 58
Internal reference
voltage
CVREFSD+(2)
Reference voltage
filtering capacitor
RVREFSD+
Reference voltage
input impedance
VREFSD+ = VREFINT
1000
10000
Fast mode
(fADC = 6 MHz)
238
Slow mode
(fADC = 1.5 MHz)
952
nF
k
See RM0313
reference manual for
detailed description
1. Data based on characterization results, not tested in production.
2.
If internal reference voltage is selected then this capacitor is charged through internal resistance - typ. 300 ohm. If internal
reference source is selected through the reference voltage selection bits (REFV<>”00” in SDADC_CR1 register), the
application must first configure REFV bits and then wait for capacitor charging. Recommended waiting time is 3 ms if 1 µF
capacitor is used.
112/128
Doc ID 022691 Rev 3
STM32F37x
Package characteristics
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 022691 Rev 3
113/128
Package characteristics
STM32F37x
Figure 33. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch,
package outline
0.10
Z
D1
D
X
A1 ball
pad corner
FD
Y
A1 ball
pad corner
0.50
1.75
b
1.75
E1
E
e
A1
A
0.10
Side view
Top view
FE
A2
Bottom view
A0C2_ME
1. Drawing is not to scale.
Table 76.
UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.46
0.53
0.6
0.0181
0.0209
0.0236
A1
0.06
0.08
0.1
0.0024
0.0031
0.0039
A2
0.4
0.45
0.5
0.0157
0.0177
0.0197
b
0.2
0.25
0.3
0.0079
0.0098
0.0118
D
7
0.2756
D1
5.5
0.2165
E
7
0.2756
E1
5.5
0.2165
e
0.5
0.0197
FD
0.75
0.0295
FE
0.75
0.0295
1. Values in inches are converted from mm and rounded to 4 decimal digits.
114/128
Doc ID 022691 Rev 3
STM32F37x
Package characteristics
Figure 34. LQFP100 –14 x 14 mm 100-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
,
$
+
!
CCC #
,
$
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
,?-%?6
1. Drawing is not to scale.
Table 77.
LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Min
Typ
1.60
A1
0.05
A2
1.35
b
0.17
c
0.09
D
15.80
D1
13.80
D3
E
Max
0.063
0.15
0.002
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
0.20
0.0035
16.00
16.20
0.622
0.6299
0.6378
14.00
14.20
0.5433
0.5512
0.5591
12.00
15.80
Max
16.00
0.0059
0.0079
0.4724
16.20
Doc ID 022691 Rev 3
0.622
0.6299
0.6378
115/128
Package characteristics
Table 77.
STM32F37x
LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data (continued)
inches(1)
millimeters
Symbol
E1
Min
Typ
Max
Min
Typ
Max
13.80
14.00
14.20
0.5433
0.5512
0.5591
E3
12.00
0.4724
e
0.50
0.0197
L
0.45
0.60
L1
K
0.75
0.0177
0.0236
1.00
0°
0.0394
3.5°
7°
ccc
0°
3.5°
0.08
Figure 35. Recommended footprint
75
51
76
50
0.5
0.3
14.3
100
26
1.2
1
25
12.3
16.7
ai14906b
1. Dimensions are in millimeters.
116/128
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
16.7
0.0295
Doc ID 022691 Rev 3
STM32F37x
Package characteristics
Figure 36. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
!
C
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
!
CCC #
+
,
$
,
$
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
7?-%?6
1. Drawing is not to scale.
Table 78.
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Min
Typ
1.60
A1
0.05
A2
1.350
b
0.17
c
0.09
D
11.80
D1
9.80
D3
Max
Max
0.0630
0.15
0.0020
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
0.20
0.0035
12.00
12.20
0.4646
0.4724
0.4803
10.00
10.20
0.3858
0.3937
0.4016
7.50
0.0059
0.0079
0.2953
Doc ID 022691 Rev 3
117/128
Package characteristics
Table 78.
STM32F37x
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
E
11.80
12.00
12.20
0.4646
0.4724
0.4803
E1
9.80
10.00
10.20
0.3858
0.3937
0.4016
E3
7.50
0.2953
e
0.50
0.0197
L
0.45
L1
K
0.60
0.75
0.0177
0.0236
1.00
0°
0.0394
3.5°
7°
ccc
0°
3.5°
0.08
Figure 37. Recommended footprint
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
AIB
1. Dimensions are in millimeters.
118/128
0.0295
Doc ID 022691 Rev 3
STM32F37x
Package characteristics
Figure 38. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
"?-%?6
1. Drawing is not to scale.
Table 79.
LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.60
A1
0.05
A2
1.35
b
0.17
Max
0.0630
0.15
0.0020
0.0059
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
c
0.09
0.20
0.0035
D
8.80
9.00
9.20
0.3465
0.3543
0.3622
D1
6.80
7.00
7.20
0.2677
0.2756
0.2835
D3
5.50
0.0079
0.2165
E
8.80
9.00
9.20
0.3465
0.3543
0.3622
E1
6.80
7.00
7.20
0.2677
0.2756
0.2835
E3
5.50
0.2165
Doc ID 022691 Rev 3
119/128
Package characteristics
Table 79.
STM32F37x
LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
e
L
Min
Typ
0.50
0.45
0.75
0.0177
0.0236
1.00
0°
7°
ccc
0°
3.5°
0.08
Figure 39. Recommended footprint
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
AID
1. Dimensions are in millimeters.
120/128
0.0295
0.0394
3.5°
Max
0.0197
0.60
L1
K
Max
Doc ID 022691 Rev 3
STM32F37x
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 22: General operating conditions on page 55.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x JA)
Where:
●
TA max is the maximum ambient temperature in °C,
●
JA is the package junction-to-ambient thermal resistance, in C/W,
●
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
●
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 80.
Package thermal characteristics
Symbol
JA
7.2.1
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm
55
Unit
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
BGA100 - 7 x 7 mm
59
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
Doc ID 022691 Rev 3
121/128
Package characteristics
7.2.2
STM32F37x
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Part numbering.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F37x at maximum dissipation, it is useful to
calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW
This gives: PINTmax = 175 mW and PIOmax = 61.6 mW:
PDmax = 175+ 61.6 = 236.6 mW
Thus: PDmax = 236.6 mW
Using the values obtained in Table 80 TJmax is calculated as follows:
–
For LQFP64, 45°C/W
TJmax = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Part numbering).
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW
This gives: PINTmax = 70 mW and PIOmax = 28.8 mW:
PDmax = 70 + 28.8 = 98.8 mW
Thus: PDmax = 98.8 mW
122/128
Doc ID 022691 Rev 3
STM32F37x
Package characteristics
Using the values obtained in Table 80 TJmax is calculated as follows:
–
For LQFP100, 46°C/W
TJmax = 115 °C + (46°C/W × 98.8 mW) = 115 °C + 4.54 °C = 119.5 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Part numbering).
Figure 40. LQFP64 PD max vs. TA
700
PD (mW)
600
500
Suffix 6
400
Suffix 7
300
200
100
0
65
75
85
95
105
115
125
135
TA (°C)
Doc ID 022691 Rev 3
123/128
Part numbering
8
STM32F37x
Part numbering
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 81.
Ordering information scheme
Example:
STM32
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
372 = STM32F372xx
373 = STM32F373xx
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
Code size
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
T = LQFP
H = BGA
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
xxx = programmed parts
TR = tape and real
124/128
Doc ID 022691 Rev 3
F
372
R
8
T
6
x
STM32F37x
9
Revision history
Revision history
Table 82.
Document revision history
Date
Revision
18-Jun-2012
1
Initial release.
2
Added ‘F’ to all ‘Cortex-M4’ occurences
Modified the shapes of Figure 2: STM32F37x LQFP48 pinout
to Figure 4: STM32F37x LQFP100 pinout
Added two rows ‘VREFSD+ - VDDSD3’ and ‘VREF+ - VDDA’
in Table 19: Voltage characteristics
Removed PB0 in footnote of Table 19: Voltage characteristics
and in Section 6.3.14: I/O port characteristics
Added a paragraph after ‘...power up sequence’ in Table 6.2:
Absolute maximum ratings and after ‘...in output mode’ in I/O
system current consumption
Corrected SDAC_VREF+ in Figure 9: Power supply scheme
Modified Table 20: Current characteristics
Added BGA100 in Table 22: General operating conditions
Added values in Table 27: Embedded internal reference
voltage
Filled values in Table 28: Typical and maximum current
consumption from VDD supply at VDD = 3.6 V
Filled values in Table 29: Typical and maximum current
consumption from VDDA supply
Filled values in Table 30: Typical and maximum VDD
consumption in Stop and Standby modes
Removed table: “Typical and maximum VDDA consumption in
Stop modes”
Filled values in Table 31: Typical and maximum VDDA
consumption in Stop and Standby modes
Added VBAT values in Table 32: Typical and maximum current
consumption from VBAT supply
Added typ values in Table 33: Typical current consumption in
Run mode, code with data processing running from Flash and
Table 34: Typical current consumption in Sleep mode, code
running from Flash or RAM
Added max value in Table 41: LSE oscillator characteristics
(fLSE = 32.768 kHz)
Modified min and max values in Table 42: HSI oscillator
characteristics
Added values in Table 37: Low-power mode wakeup timings
Added Class values in Table 47: EMS characteristics
Modified values in Table 48: EMI characteristics
Added values in Table 49: ESD absolute maximum ratings
Added class value in Table 50: Electrical sensitivities
modified values and descriptions in Table 51: I/O current
injection susceptibility
07-Sep-2012
Changes
Doc ID 022691 Rev 3
125/128
Revision history
STM32F37x
Table 82.
Document revision history
Date
07-Sep-2012
126/128
Revision
Changes
2
(cont’d)
Filled values in Table 70: WWDG min-max timeout value @72
MHz (PCLK)
Filled values in Table 58: SPI characteristics
Filled values in Table 59: I2S characteristics
Replaced Table 60: ADC characteristics
Added values in Table 74: SDADC characteristics
Modified footnote in Table 75: VREFSD+ pin characteristics
Replaced ‘AIN’ with ‘SRC’ in Table 61: RSRC max for fADC =
14 MHz and Figure 30: Typical connection diagram using the
ADC
Reordered chapters and Cover page features.
Added subsection to GPIOS in Table 2: Device overview
Aligned SRAM with USB in Figure 1: Block diagram
Added “Do not reconfigure...” sentence in Section 3.9:
General-purpose input/outputs (GPIOs)
Added Table 7: STM32F37x I2C implementation
Added Table 8: STM32F37x USART implementation
Merged SPI and I2S into one section
Reshaped Figure 5: STM32F37x BGA100 pinout and
removed ADC10
Added notes column, modified I/O structure values and pin,
function names, removed TIM1_TX & TIM1_RX in Table 11:
STM32F37x pin definitions
Added the note “do not reconfigure...” after Table 11:
STM32F37x pin definitions
Modified “x_CK” occurences to “I2Sx_CK” in Table 12:
Alternate functions for port PA to Table 17: Alternate
functions for port PF
Added two GP I/Os in Table 9: Power supply scheme
Added Caution after Table 9: Power supply scheme
Added Max values in Table 23: Operating conditions at powerup / power-down
Modified (1) footnote in Table 24: Embedded reset and power
control block characteristics
Added row to Table 27: Embedded internal reference voltage
Added the note “ It is recommended...” under Table 51: I/O
current injection susceptibility
Modified Table 51: I/O current injection susceptibility
Modified temperature and current values in Section 7.2.2:
Selecting the product temperature range
Added crystal EPSON-TOYOCOM bullet under Typical current
consumption
Modified Figure 9: Power supply scheme
Removed Boot 0 section
Modified Table 73: USB: Full-speed electrical characteristics
Doc ID 022691 Rev 3
STM32F37x
Revision history
Table 82.
Document revision history
Date
21-Dec-2012
Revision
Changes
3
Updated Table 2: Device overview, capacitive sensing
channels peripheral added.
Updated Table 3: Capacitive sensing GPIOs available on
STM32F37x devices
Updated Section 3.19: Inter-integrated circuit interface (I2C)
Updated the function names in Table 11: STM32F37x pin
definitions
Updated Table 20: Current characteristics
Updated Table 22: General operating conditions
Updated Table 30: Typical and maximum VDD consumption in
Stop and Standby modes
Updated Table 32: Typical and maximum current consumption
from VBAT supply
Added Figure 11: Typical VBAT current consumption (LSE
and RTC ON/LSEDRV[1:0]='00')
Updated Table 33: Typical current consumption in Run mode,
code with data processing running from Flash
Table 34: Typical current consumption in Sleep mode, code
running from Flash or RAM
Added Table 35: Switching output I/O current consumption
Added Table 36: Peripheral current consumption
Figure 16: HSI oscillator accuracy characterization results
Updated Section 6.3.6: Wakeup time from low-power mode
Updated Table 37: Low-power mode wakeup timings
Updated Table 47: EMS characteristics
Updated Table 51: I/O current injection susceptibility
Updated Table 52: I/O static characteristics
Updated Figure 17: TC and TTa I/O input characteristics CMOS port, Figure 18: TC and TTa I/O input characteristics TTL port, Figure 19: Five volt tolerant (FT and FTf) I/O input
characteristics - CMOS port and Figure 20: Five volt tolerant
(FT and FTf) I/O input characteristics - TTL port
Updated Table 53: Output voltage characteristics
Updated Table 55: NRST pin characteristics
Updated Table 54: I/O AC characteristics
Updated Table 63: DAC characteristics
Updated Table 74: SDADC characteristics
Updated Figure 7: LQFP100 – 14 x 14 mm 100 pin low-profile
quad flat package outline, Figure 9: LQFP64 – 10 x 10 mm 64
pin low-profile quad flat package outline and Figure 11:
LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package
outline
Updated Table 21: LQFP100 – 14 x 14 mm low-profile quad
flat package mechanical data, Table 22: LQFP64 – 10 x 10
mm low-profile quad flat package mechanical data and
Table 23: LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat
package mechanical data
Added Figure 16: HSI oscillator accuracy characterization
results
Doc ID 022691 Rev 3
127/128
STM32F37x
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
128/128
Doc ID 022691 Rev 3