AOSMD AO4624

AO4624
Complementary Enhancement Mode Field Effect Transistor
General Description
Features
The AO4624/L uses advanced trench
technology MOSFETs to provide excellent
RDS(ON) and low gate charge. The
complementary MOSFETs may be used to
form a level shifted high side switch, and for a
host of other applications. AO4624 and
AO4624L are electrically identical.
-RoHS Compliant
-AO4624L is Halogen Free
n-channel
VDS (V) = 30V
ID = 6.9A (VGS=10V)
RDS(ON)
< 28mΩ (VGS=10V)
< 42mΩ (VGS=4.5V)
p-channel
-30V
-6A (VGS=-10V)
RDS(ON)
< 35mΩ (VGS = -10V)
< 58mΩ (VGS = -4.5V)
100% UIS Tested!
100% Rg Tested!
SOIC-8
D1
D2
S2
G2
S1
G1
1
2
3
4
8
7
6
5
D2
D2
D1
D1
G1
G2
SOIC-8
Top View
Bottom View
VGS
Pulsed Drain Current
TA=70°C
B
TA=25°C
Power Dissipation
±20
6.9
-6
ID
5.8
-5
IDM
30
-30
Avalanche Current B
Repetitive avalanche energy 0.1mH
B
Junction and Storage Temperature Range
V
A
2
2
1.44
IAR
15
20
A
EAR
11
20
-55 to 150
-55 to 150
mJ
°C
TJ, TSTG
Thermal Characteristics: n-channel and p-channel
Parameter
t ≤ 10s
Maximum Junction-to-Ambient A
Steady-State
Maximum Junction-to-Ambient A
Steady-State
Maximum Junction-to-Lead C
t ≤ 10s
Maximum Junction-to-Ambient A
A
Steady-State
Maximum Junction-to-Ambient
C
Steady-State
Maximum Junction-to-Lead
Alpha & Omega Semiconductor, Ltd.
Units
V
1.44
PD
TA=70°C
Max p-channel
-30
±20
TA=25°C
Continuous Drain
Current A
p-channel
n-channel
Absolute Maximum Ratings T A=25°C unless otherwise noted
Parameter
Symbol
Max n-channel
Drain-Source Voltage
VDS
30
Gate-Source Voltage
S1
S2
Symbol
RθJA
RθJL
RθJA
RθJL
Device
n-ch
n-ch
n-ch
Typ
48
74
35
p-ch
p-ch
p-ch
48
74
35
W
Max
62.5
110
40
Units
°C/W
°C/W
°C/W
62.5 °C/W
110 °C/W
40 °C/W
AO4624
N-Channel Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Min
Conditions
ID=250µA, VGS=0V
VDS=24V, VGS=0V
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS ID=250µA
1
ID(ON)
On state drain current
VGS=4.5V, VDS=5V
20
TJ=55°C
gFS
Forward Transconductance
VDS=5V, ID=6.9A
VSD
Diode Forward Voltage
IS=1A
IS
Maximum Body-Diode Continuous Current
TJ=125°C
VGS=4.5V, ID=5.0A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
10
nA
1.9
3
V
23
28
31
38
34
42
A
15.4
0.76
mΩ
S
V
3
A
885
pF
115
1.2
mΩ
1
pF
73
VGS=0V, VDS=0V, f=1MHz
µA
100
737
VGS=0V, VDS=15V, f=1MHz
1
5
VGS=10V, ID=6.9A
Static Drain-Source On-Resistance
Units
V
0.002
Zero Gate Voltage Drain Current
RDS(ON)
Max
30
IDSS
Coss
Typ
pF
2
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
13.84
17
nC
Qg(4.5V) Total Gate Charge
6.74
8.1
nC
Qgs
Gate Source Charge
VGS=10V, VDS=15V, ID=6.9A
1.82
nC
Qgd
Gate Drain Charge
3.2
tD(on)
Turn-On DelayTime
4.6
7
ns
tr
Turn-On Rise Time
4.1
6
ns
tD(off)
Turn-Off DelayTime
20.6
30
ns
tf
Turn-Off Fall Time
5.2
8
ns
17.9
21.5
9.8
11.8
ns
nC
trr
Qrr
VGS=10V, VDS=15V, RL=2.2Ω,
RGEN=3Ω
IF=6.9A, dI/dt=100A/µs
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=6.9A, dI/dt=100A/µs
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The
value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance
rating.
B: Repetitive rating, pulse width limited by junction temperature.
C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient. R θJL and RθJC are equivalent terms referring to
thermal resistance from junction to drain lead.
D. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.
E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
Rev 1: Jan. 2009
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AO4624
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
30
20
10V
25
6V
5V
4.5V
VDS=5V
16
4V
ID(A)
ID (A)
20
15
3.5V
12
8
10
125°C
4
VGS=3V
5
25°C
0
0
0
1
2
3
4
0
5
1
1.5
2
2.5
3
3.5
4
4.5
1.7
Normalized On-Resistance
60
50
RDS(ON) (mΩ )
0.5
VGS (Volts)
Figure 2: Transfer Characteristics
VDS (Volts)
Fig 1: On-Region Characteristics
VGS=4.5V
40
30
20
VGS=10V
10
1.6
ID=6.9A
1.5
VGS=10V
1.4
VGS=4.5V
1.3
ID=5A
1.2
1.1
1
0.9
0.8
0
5
10
15
20
0
ID (Amps)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
50
100
150
200
Temperature ( °C)
Figure 4: On-Resistance vs. Junction
Temperature
70
10
ID=6.9A
60
IS Amps
RDS(ON) (mΩ )
1
50
125°C
40
125°
0.1
25°C
30
0.01
25°C
20
0.001
10
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
VSD (Volts)
Figure 6: Body diode characteristics
1.0
AO4624
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL
1000
10
800
Capacitance (pF)
8
VGS (Volts)
900
VDS=15V
ID=6.9A
6
4
2
700
Ciss
600
500
400
300
Coss
200
Crss
100
0
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0
Qg (nC)
Figure 7: Gate-Charge characteristics
5
10
15
100
25
30
40
TJ(Max)=150°C
TA=25°C
10µs
10ms
0.1s
RDS(ON)
limited
1
TJ(Max)=150°C
TA=25°C
30
100µs
1ms
10
Power W
ID (Amps)
20
VDS (Volts)
Figure 8: Capacitance Characteristics
1s
20
10
10s
DC
0
0.1
0.1
1
10
0.001
100
VDS (Volts)
Zθ JA Normalized Transient
Thermal Resistance
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=62.5°C/W
0.1
1
10
100
1000
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note E)
10
0.01
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD
Ton
Single Pulse
T
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance
Alpha & Omega Semiconductor, Ltd.
100
1000
AO4624
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
90%
+ Vdd
VDC
-
Rg
10%
Vgs
Vgs
td(on)
tr
td(off)
ton
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
EAR= 1/2 LIAR
Vds
BVDSS
Vds
Id
Vgs
Vgs
+ Vdd
I AR
VDC
Id
-
Rg
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
L
Vgs
Ig
Alpha & Omega Semiconductor, Ltd.
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
AO4624
P-Channel Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
Drain-Source Breakdown Voltage
BVDSS
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=-250µA, VGS=0V
-30
VDS=-24V, VGS=0V
Typ
Max
-0.003
-1
V
TJ=55°C
-5
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS ID=-250µA
-1.2
ID(ON)
On state drain current
VGS=-10V, VDS=-5V
30
VGS=-10V, ID=-6A
±100
nA
-2.4
V
27
35
37
45
58
mΩ
-1
V
-4.2
A
1100
pF
A
Static Drain-Source On-Resistance
VGS=-4.5V, ID=-5A
45
gFS
Forward Transconductance
VDS=-5V, ID=-6A
13
VSD
Diode Forward Voltage
IS=-1A,VGS=0V
-0.76
IS
Maximum Body-Diode Continuous Current
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
920
VGS=0V, VDS=-15V, f=1MHz
µA
-2
RDS(ON)
TJ=125°C
Units
mΩ
S
190
pF
122
pF
3.6
5.4
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge (10V)
18.5
22.2
nC
Qg(4.5V) Total Gate Charge (4.5V)
9.6
11.6
nC
VGS=0V, VDS=0V, f=1MHz
VGS=-10V, VDS=-15V, ID=-6A
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
4.5
tD(on)
Turn-On DelayTime
7.7
11.5
ns
tr
Turn-On Rise Time
5.7
8.5
ns
20.2
30
ns
9.5
14
ns
20
24
12.3
15
ns
nC
VGS=-10V, VDS=-15V, RL=2.7Ω,
RGEN=3Ω
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
Qrr
Body Diode Reverse Recovery Charge IF=-6A, dI/dt=100A/µs
Body Diode Reverse Recovery Time
IF=-6A, dI/dt=100A/µs
2.7
nC
nC
A: The value of R θJA
is measured with the device mounted on 1in 22 FR-4 board with 2oz. Copper, in a still air environment with T AA =25°C. The
θJA
valuevalue
in any
given
application
depends
on theon
user's
specific
boardboard
design.
The current
rating rating
is based
on theon
t the
≤ 10s
resistance
The
in any
a given
application
depends
the user's
specific
design.
The current
is based
t ≤ thermal
10s thermal
rating.
resistance rating.
B: Repetitive rating, pulse width limited by junction temperature.
C. The R θJA
and lead to ambient. RθJL and RθJC are equivalent terms referring to
θJA is the sum of the thermal impedence from junction to lead R θJL
θJL
thermal
resistance
from junction
to drain
lead.
D. The static
characteristics
in Figures
1 to
6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.
D.
The static
characteristics
Figures
1 to 6,12,14
are on
obtained
usingboard
80 µswith
pulses,
cyclein0.5%
E. These
tests
are performedinwith
the device
mounted
1 in 2 FR-4
2oz.duty
Copper,
a stillmax.
air environment with T A=25°C. The
E. These
tests
are performed
with the
device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
SOA
curve
provides
a single pulse
rating.
curve provides a single pulse rating.
Rev 1: Jan. 2009
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AO4624
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL
30
30
-10V
-5V
25
20
-4V
-ID(A)
-ID (A)
20
15
-3.5V
10
5
VDS=-5V
25
-4.5V
-6V
15
10
125°C
5
VGS=-3V
25°C
0
0
0
1
2
3
4
5
0
0.5
80
Normalized On-Resistance
60
RDS(ON) (mΩ )
1.5
2
2.5
3
3.5
4
4.5
5
1.6
70
VGS=-4.5V
50
40
30
VGS=-10V
20
ID=-6A
1.4
VGS=-10V
1.2
VGS=-4.5V
ID=-5A
1
0.8
10
0
5
10
15
0
20
25
100
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction
Temperature
-ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
1.0E+01
90
ID=-6A
1.0E+00
80
1.0E-01
125°C
70
-IS (A)
RDS(ON) (mΩ )
1
-VGS(Volts)
Figure 2: Transfer Characteristics
-VDS (Volts)
Fig 1: On-Region Characteristics
60
125°C
50
1.0E-02
1.0E-03
1.0E-04
40
25°C
1.0E-05
25°C
30
1.0E-06
20
3
4
5
6
7
8
9
10
-VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
-VSD (Volts)
Figure 6: Body-Diode Characteristics
1.0
AO4624
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL
1500
10
VDS=-15V
ID=-6A
1250
Ciss
Capacitance (pF)
-VGS (Volts)
8
6
4
2
1000
750
500
Coss
Crss
250
0
0
0
4
8
12
16
20
0
-Qg (nC)
Figure 7: Gate-Charge Characteristics
5
10
15
100.0
25
30
40
TJ(Max)=150°C, TA=25°C
TJ(Max)=150°C
TA=25°C
10µs
RDS(ON)
10.0 limited
30
100µs
0.1s
Power (W)
-ID (Amps)
20
-VDS (Volts)
Figure 8: Capacitance Characteristics
1ms
10ms
1.0
20
1s
10
10s
DC
0
0.1
0.1
1
10
100
-VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note E)
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)
Zθ JA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=62.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
Single Pulse
T
0.01
0.00001
0.0001
0.001
0.1 (s)
1
10
Pulse Width
Figure 11: Normalized Maximum Transient Thermal Impedance
Alpha & Omega Semiconductor, Ltd.
0.01
100
1000
AO4624
Gate Charge Test Circuit & Waveform
Vgs
Qg
-10V
-
-
VDC
+
VDC
Qgd
Qgs
Vds
+
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
toff
ton
Vgs
-
DUT
Vgs
VDC
td(on)
td(off)
tr
tf
90%
Vdd
+
Rg
Vgs
10%
Vds
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
2
L
EAR= 1/2 LIAR
Vds
Vds
Id
-
Vgs
Vgs
VDC
+
Rg
BVDSS
Vdd
Id
I AR
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
L
Vgs
Ig
Alpha & Omega Semiconductor, Ltd.
-Isd
+ Vdd
t rr
dI/dt
-I RM
Vdd
VDC
-
-I F
-Vds