AOSMD AOT20N60

AOT20N60/AOTF20N60
600V,20A N-Channel MOSFET
General Description
Product Summary
The AOT20N60 & AOTF20N60 have been fabricated
using an advanced high voltage MOSFET process that is
designed to deliver high levels of performance and
robustness in popular AC-DC applications.By providing
low RDS(on), Ciss and Crss along with guaranteed avalanche
capability these parts can be adopted quickly into new
and existing offline power supply designs.
VDS
ID (at VGS=10V)
[email protected]
20A
RDS(ON) (at VGS=10V)
< 0.37Ω
100% UIS Tested
100% Rg Tested
For Halogen Free add "L" suffix to part number:
AOT20N60L&AOTF20N60L
Top View
D
TO-220F
TO-220
G
G
D
S
AOT20N60
G
D
S
S
AOTF20N60
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
AOT20N60
Drain-Source Voltage
VDS
600
Gate-Source Voltage
±30
Continuous Drain
Current
VGS
TC=25°C
TC=100°C
AOTF20N60
V
20
ID
Units
V
20*
12
12*
A
Pulsed Drain Current C
IDM
Avalanche Current C
IAR
6.5
A
Repetitive avalanche energy C
EAR
630
mJ
Single plused avalanche energy G
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B Derate above 25oC
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A,D
EAS
dv/dt
1260
5
mJ
V/ns
W
80
PD
50
0.4
TJ, TSTG
-55 to 150
W/ oC
°C
300
°C
TL
Symbol
RθJA
RθCS
AOT20N60
65
AOTF20N60
65
Units
°C/W
0.5
0.3
-2.5
°C/W
°C/W
Maximum Case-to-sink A
Maximum Junction-to-Case
RθJC
* Drain current limited by maximum junction temperature.
Rev2: Dec 2011
417
3.3
www.aosmd.com
Page 1 of 6
AOT20N60/AOTF20N60
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
600
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Zero Gate Voltage Drain Current
IDSS
Zero Gate Voltage Drain Current
ID=250µA, VGS=0V, TJ=150°C
700
V
ID=250µA, VGS=0V
0.8
V/ oC
VDS=600V, VGS=0V
1
VDS=480V, TJ=125°C
10
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V, ID=250µA
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=10A
gFS
Forward Transconductance
VDS=40V, ID=10A
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
ISM
3.8
4.5
nΑ
V
0.29
0.37
Ω
1
V
Maximum Body-Diode Continuous Current
20
A
Maximum Body-Diode Pulsed Current
80
A
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Coss
±100
µA
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
Gate Source Charge
Qgd
Gate Drain Charge
S
2448
3061
3680
pF
190
273
360
pF
13
22.8
35
pF
VGS=0V, VDS=0V, f=1MHz
0.7
1.4
2.1
Ω
48
61
74
nC
14
18
22
nC
12
24
36
nC
VGS=10V, VDS=480V, ID=20A
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
Qrr
Body Diode Reverse Recovery Charge IF=20A,dI/dt=100A/µs,VDS=100V
Body Diode Reverse Recovery Time
25
0.69
VGS=0V, VDS=25V, f=1MHz
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
3.2
57
VGS=10V, VDS=300V, ID=20A,
RG=25Ω
ns
125
ns
128
ns
88
IF=20A,dI/dt=100A/µs,VDS=100V
ns
384
480
580
8
10.5
13
ns
µC
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=6.5A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev2: Dec 2011
www.aosmd.com
Page 2 of 6
AOT20N60/AOTF20N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
40
VDS=40V
10V
30
-55°C
6.5V
ID(A)
ID (A)
10
20
6V
125°C
1
10
VGS=5.5V
25°C
0
0.1
0
5
10
15
20
25
30
0
VDS (Volts)
Fig 1: On-Region Characteristics
0.6
4
6
8
VGS(Volts)
Figure 2: Transfer Characteristics
10
Normalized On-Resistance
3
0.5
RDS(ON) (Ω
Ω)
2
VGS=10V
0.4
0.3
0.2
VGS=10V
ID=10A
2.5
2
1.5
1
0.5
0
0.1
0
10
20
30
40
-100
50
-50
0
50
100
150
200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
1.2
1.0E+02
40
1.0E+00
IS (A)
BVDSS (Normalized)
1.0E+01
1.1
1
125°C
1.0E-01
1.0E-02
25°C
0.9
1.0E-03
0.8
1.0E-04
-100
-50
0
50
100
150
200
TJ (°C)
Figure 5:Break Down vs. Junction Temparature
Rev2: Dec 2011
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOT20N60/AOTF20N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
10000
Ciss
VDS=480V
ID=20A
Capacitance (pF)
VGS (Volts)
12
9
6
1000
Coss
Crss
100
3
0
10
0
20
40
60
80
Qg (nC)
Figure 7: Gate-Charge Characteristics
100
0.1
100
100
100
10µs
RDS(ON)
limited
100µs
1ms
10ms
1
DC
10µs
RDS(ON)
limited
10
ID (Amps)
10
ID (Amps)
1
10
VDS (Volts)
Figure 8: Capacitance Characteristics
100µs
1ms
1
DC
0.1
10ms
0.1s
1s
0.1
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.01
0.01
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area for AOT20N60 (Note F)
1
10
100
1000
VDS (Volts)
Figure 10: Maximum Forward Biased Safe
Operating Area for AOTF20N60 (Note F)
Current rating ID(A)
25
20
15
10
5
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 11: Current De-rating (Note B)
Rev2: Dec 2011
www.aosmd.com
Page 4 of 6
AOT20N60/AOTF20N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=0.3°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
T
Single Pulse
0.001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOT20N60 (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=2.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
T
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF20N60 (Note F)
Rev2: Dec 2011
www.aosmd.com
Page 5 of 6
AOT20N60/AOTF20N60
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
DUT
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
+
VDC
90%
Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
AR
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
Vgs
Ig
Rev2: Dec 2011
L
Isd
+
VDC
-
IF
trr
dI/dt
IRM
Vdd
Vdd
Vds
www.aosmd.com
Page 6 of 6