AOSMD AOTF20N40

AOTF20N40
400V,20A N-Channel MOSFET
General Description
Product Summary
The AOTF20N40 is fabricated using an advanced high
voltage MOSFET process that is designed to deliver high
levels of performance and robustness in popular AC-DC
applications.By providing low RDS(on), Ciss and Crss along
with guaranteed avalanche capability this parts can be
adopted quickly into new and existing offline power supply
designs.
VDS
ID (at VGS=10V)
[email protected]
20A
RDS(ON) (at VGS=10V)
< 0.25Ω
100% UIS Tested
100% Rg Tested
For Halogen Free add "L" suffix to part number:
AOTF20N40L
Top View
D
TO-220F
G
G
AOTF20N40
D
S
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
AOTF20N40
AOTF20N40L
Symbol
Drain-Source Voltage
VDS
400
Gate-Source Voltage
Continuous Drain
Current
VGS
TC=25°C
TC=100°C
±30
V
20*
ID
Units
V
20*
13*
13*
A
Pulsed Drain Current C
IDM
Avalanche Current C
IAR
6
A
Repetitive avalanche energy C
EAR
540
mJ
1080
5
mJ
V/ns
W
Single pulsed avalanche energy G
EAS
Peak diode recovery dv/dt
dv/dt
TC=25°C
PD
Power Dissipation B Derate above 25oC
TJ, TSTG
Junction and Storage Temperature Range
Maximum lead temperature for soldering
TL
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Symbol
Maximum Junction-to-Ambient A,D
RθJA
Maximum Junction-to-Case
RθJC
* Drain current limited by maximum junction temperature.
Rev0: May 2012
54
50
40
0.4
0.3
-55 to 150
W/ oC
°C
300
°C
AOTF20N40
65
2.5
www.aosmd.com
AOTF20N40L
65
3.1
Units
°C/W
°C/W
Page 1 of 6
AOTF20N40
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
400
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Zero Gate Voltage Drain Current
IDSS
Zero Gate Voltage Drain Current
ID=250µA, VGS=0V, TJ=150°C
500
V
ID=250µA, VGS=0V
0.4
V/ oC
VDS=400V, VGS=0V
1
VDS=320V, TJ=125°C
10
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V, ID=250µA
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=10A
gFS
Forward Transconductance
VDS=40V, ID=10A
20
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
±100
3.0
µA
3.7
4.3
nΑ
V
0.2
0.25
Ω
1
V
S
IS
Maximum Body-Diode Continuous Current
20
A
ISM
Maximum Body-Diode Pulsed Current
54
A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
1510
1898
2290
pF
VGS=0V, VDS=25V, f=1MHz
145
212
290
pF
9
15
21
pF
VGS=0V, VDS=0V, f=1MHz
1.5
3
4.5
Ω
28
37
45
nC
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
VGS=10V, VDS=320V, ID=20A
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
Qrr
Body Diode Reverse Recovery Charge IF=20A,dI/dt=100A/µs,VDS=100V
Body Diode Reverse Recovery Time
VGS=10V, VDS=200V, ID=20A,
RG=25Ω
12
nC
12
nC
44
ns
87
ns
96
ns
59
IF=20A,dI/dt=100A/µs,VDS=100V
ns
220
285
345
3
3.9
4.8
ns
µC
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=6A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev0: May 2012
www.aosmd.com
Page 2 of 6
AOTF20N40
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
50
-55°C
10V
VDS=40V
40
6.5V
10
ID(A)
ID (A)
30
6V
125°C
20
1
5.5V
10
25°C
VGS=5V
0
0.1
0
5
10
15
20
25
VDS (Volts)
Fig 1: On-Region Characteristics
30
2
6
8
VGS(Volts)
Figure 2: Transfer Characteristics
10
3
0.8
Normalized On-Resistance
1.0
RDS(ON) (Ω
Ω)
4
VGS=10V
0.6
0.4
0.2
VGS=10V
ID=10A
2.5
2
1.5
1
0.5
0.0
0
0
8
16
24
32
40
-100
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
-50
0
50
100
150
200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1E+02
1.2
1E+0040
IS (A)
BVDSS (Normalized)
1E+01
1.1
1
125°C
1E-01
25°C
1E-02
0.9
1E-03
0.8
1E-04
-100
-50
0
50
100
150
200
TJ (°°C)
Figure 5:Break Down vs. Junction Temparature
Rev0: May 2012
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
1.0
Page 3 of 6
AOTF20N40
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
10000
1000
Capacitance (pF)
VGS (Volts)
Ciss
VDS=320V
ID=20A
12
9
6
Coss
100
Crss
10
3
1
0
0
10
20
30
40
50
Qg (nC)
Figure 7: Gate-Charge Characteristics
0.1
60
1
10
VDS (Volts)
Figure 8: Capacitance Characteristics
100
100
10µs
10µs
RDS(ON)
limited
10
1ms
1
10ms
DC
0.1s
1s
0.1
RDS(ON)
limited
10
100µs
ID (Amps)
ID (Amps)
100
100µs
1ms
1
10ms
DC
0.1s
1s
0.1
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.01
0.01
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe Operating
Area for AOTF20N40 (Note F)
1
10
100
1000
VDS (Volts)
Figure 10: Maximum Forward Biased Safe
Operating Area for AOTF20N40L (Note F)
Current rating ID(A)
25
20
15
10
5
0
0
25
50
75
100
125
150
TCASE (°°C)
Figure 11: Current De-rating (Note B)
Rev0: May 2012
www.aosmd.com
Page 4 of 6
AOTF20N40
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=2.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
Single Pulse
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOTF20N40 (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=3.1°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
Single Pulse
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF20N40L (Note F)
Rev0: May 2012
www.aosmd.com
Page 5 of 6
AOTF20N40
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
DUT
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
+
VDC
90%
Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
AR
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
Vgs
Ig
Rev0: May 2012
L
Isd
+
VDC
-
IF
trr
dI/dt
IRM
Vdd
Vdd
Vds
www.aosmd.com
Page 6 of 6