AOSMD AOW10N60

AOW10N60/AOWF10N60
600V,10A N-Channel MOSFET
General Description
Product Summary
The AOW10N60 & AOWF10N60 have been fabricated
using an advanced high voltage MOSFET process that is
designed to deliver high levels of performance and
robustness in popular AC-DC applications.
By providing low RDS(on), Ciss and Crss along with
guaranteed avalanche capability these parts can be
adopted quickly into new and existing offline power supply
designs.
VDS
TO-262
ID (at VGS=10V)
700V@150℃
10A
RDS(ON) (at VGS=10V)
< 0.75Ω
100% UIS Tested
100% Rg Tested
TO-262F
D
Top View
Bottom View
Top View
Bottom View
G
G
D
S
S
D
G
S
G
D
S
D
G
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
AOW10N60
Symbol
AOWF10N60
Drain-Source Voltage
600
VDS
Gate-Source Voltage
Continuous Drain
Current
±30
VGS
TC=25°C
TC=100°C
V
10
ID
Units
V
10*
7.2
7.2*
A
Pulsed Drain Current C
IDM
36
Avalanche Current C
IAR
4.4
A
Repetitive avalanche energy C
EAR
290
mJ
Single plused avalanche energy G
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B Derate above 25oC
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A,D
EAS
dv/dt
580
5
mJ
V/ns
W
PD
28
2
0.22
TJ, TSTG
-55 to 150
W/ oC
°C
300
°C
TL
Symbol
RθJA
RθCS
AOW10N60
65
AOWF10N60
65
Units
°C/W
0.5
0.5
-4.5
°C/W
°C/W
Maximum Case-to-sink A
Maximum Junction-to-Case
RθJC
* Drain current limited by maximum junction temperature.
Rev2: June 2010
250
www.aosmd.com
Page 1 of 6
AOW10N60/AOWF10N60
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
600
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Zero Gate Voltage Drain Current
IDSS
Zero Gate Voltage Drain Current
IGSS
ID=250µA, VGS=0V, TJ=150°C
700
V
ID=250µA, VGS=0V
0.65
V/ oC
VDS=600V, VGS=0V
1
VDS=480V, TJ=125°C
10
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V ID=250µA
±100
3
µA
4
4.5
nΑ
V
0.75
Ω
1
V
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=5A
0.6
gFS
Forward Transconductance
VDS=40V, ID=5A
15
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current
10
A
ISM
Maximum Body-Diode Pulsed Current
36
A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=25V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
Body Diode Reverse Recovery Time
Qrr
VGS=10V, VDS=480V, ID=10A
S
0.73
1100
1320
1600
pF
105
130
170
pF
7.5
9.3
14
pF
3
3.8
6
Ω
31
40
nC
6
10
nC
14.4
22
nC
28
35
ns
66
80
ns
76
95
ns
64
80
ns
IF=10A,dI/dt=100A/µs,VDS=100V
290
350
Body Diode Reverse Recovery Charge IF=10A,dI/dt=100A/µs,VDS=100V
3.9
4.7
ns
µC
VGS=10V, VDS=300V, ID=10A,
RG=25Ω
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ
=25°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g.
G. L=60mH, IAS=4.4A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev2: June 2010
www.aosmd.com
Page 2 of 6
AOW10N60/AOWF10N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
20
100
10V
VDS=40V
6.5V
16
-55°C
10
12
ID(A)
ID (A)
6V
125°C
8
1
4
25°C
VGS=5.5V
0
0.1
0
5
10
15
20
25
30
2
4
6
8
10
VGS(Volts)
Figure 2: Transfer Characteristics
1.4
3
1.2
2.5
Normalized On-Resistance
RDS(ON) (Ω )
VDS (Volts)
Fig 1: On-Region Characteristics
1.0
0.8
VGS=10V
0.6
0.4
VGS=10V
ID=5A
2
1.5
1
0.5
0
0
4
8
12
16
20
24
-100
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
-50
0
50
100
150
200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1.0E+02
1.2
40
1.0E+00
IS (A)
BVDSS (Normalized)
1.0E+01
1.1
1
125°C
1.0E-01
1.0E-02
25°C
1.0E-03
0.9
1.0E-04
1.0E-05
0.8
-100
-50
0
50
100
150
200
TJ (°C)
Figure 5:Break Down vs. Junction Temparature
Rev2: June 2010
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOW10N60/AOWF10N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
10000
VDS=480V
ID=10A
12
Ciss
Capacitance (pF)
VGS (Volts)
1000
9
6
Coss
100
10
3
Crss
0
1
0
10
20
30
40
50
0.1
Qg (nC)
Figure 7: Gate-Charge Characteristics
100
1
10
VDS (Volts)
Figure 8: Capacitance Characteristics
100
100
10µs
RDS(ON)
limited
1ms
1
10ms
DC
TJ(Max)=150°C
TC=25°C
0.1
10
100µs
ID (Amps)
ID (Amps)
10
RDS(ON)
limited
1
1ms
TJ(Max)=150°C
TC=25°C
0.1
0.01
10µs
100µs
DC
10ms
0.1s
1s
0.01
1
10
100
1000
1
10
100
1000
VDS (Volts)
VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area for AOW10N60 (Note F)
Figure 10: Maximum Forward Biased Safe Operating
Area for AOWF10N60 (Note F)
12
Current rating ID(A)
10
8
6
4
2
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 11: Current De-rating (Note B)
Rev2: June 2010
www.aosmd.com
Page 4 of 6
AOW10N60/AOWF10N60
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=0.5°C/W
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
Ton
0.01
T
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOW10N60 (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
1
D=TD=T
on/Ton/T
TJ,PK
T=T
+PCDM
+P.ZDM
.Z.R
.RθJC
J,PKC=T
θJC
θJC
θJC
RθJCR=4.5°
C/W
C/W
θJC=4.5°
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
T
Single Pulse
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF10N60 (Note F)
Rev2: June 2010
www.aosmd.com
Page 5 of 6
AOW10N60/AOWF10N60
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+
VDC
-
VDC
DUT
Qgs
Vds
Qgd
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
+
VDC
90%
Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
AR
BVDSS
Vds
Id
+
Vgs
Vgs
VDC
-
Rg
Vdd
I AR
Id
DUT
Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
Vgs
Ig
Rev2: June 2010
L
Isd
+ Vdd
trr
dI/dt
IRM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6