AGILENT AT-38086-BLK

4.8 V NPN Silicon Bipolar
Common␣ Emitter Transistor
Technical Data
AT-38086
Features
• 4.8 Volt Pulsed
(pulse width = 577 µsec,
duty cycle = 12.5%)/CW
Operation
85 mil Plastic Surface
Mount Package
Outline 86
• +28 dBm Pulsed Pout
@␣ 900␣ MHz, Typ.
• +23.5 dBm CW Pout
@␣ 836.5␣ MHz, Typ.
• 60% Pulsed Collector
Efficiency @ 900 MHz, Typ.
• 11 dB Pulsed Power Gain
@␣ 900 MHz, Typ.
• -35 dBc IMD3 @ Pout of
17␣ dBm per tone, 900 MHz,
Typ.
Pin Configuration
4
EMITTER
1
BASE
3
COLLECTOR
Description
Hewlett Packard’s AT-38086 is a
low cost, NPN silicon bipolar
junction transistor housed in a
surface mount plastic package.
This device is designed for use as
a pre-driver or driver device in
applications for cellular and
wireless communications
markets. At 4.8 volts, the
AT-38086 features +28 dBm pulsed
output power, Class AB operation,
and +23.5␣ dBm CW. Superior
efficiency and gain makes the
AT-38086 an excellent choice for
battery powered systems.
The AT-38086 is fabricated with
Hewlett Packard’s 10 GHz Ft SelfAligned-Transistor (SAT) process.
The die are nitride passivated for
surface protection. Excellent
device uniformity, performance
and reliability are produced by the
use of ion-implantation, selfalignment techniques, and gold
metalization in the fabrication of
these devices.
2
EMITTER
Applications
• Driver Amplifier for GSM
and AMPS/ETACS/ 900 MHz
NMT Cellular Phones
• 900 MHz ISM and Special
Mobile Radio
4-89
5965-5959E
AT-38086 Absolute Maximum Ratings
Symbol
VEBO
VCBO
VCEO
IC
IC
PT
PT
Tj
TSTG
Parameter
Emitter-Base Voltage
Collector-Base Voltage
Collector-Emitter Voltage
Collector Current [2]
Collector Current [3]
Peak Power Dissipation [2, 4]
CW Power Dissipation [3, 5]
Junction Temperature
Storage Temperature
Units
V
V
V
mA
mA
W
mW
°C
°C
Thermal Resistance [6]:
θjc = 140°C/W
Absolute
Maximum[1]
1.4
16.0
9.5
250
160
3.7
460
150
-65 to 150
Notes:
1. Permanent damage may occur if any of these limits are exceeded.
2. Pulsed operation, pulse width = 577␣ µsec, duty cycle␣ =␣ 12.5%.
3. CW operation.
4. Derate at 57.1 mW/°C for TC␣ >␣ 85 °C. TC is defined to be the temperature of the
collector pin 3, where the lead contacts the circuit board.
5. Derate at 7.1 mW/°C for TC␣ >␣ 85 °C. TC is defined to be the temperature of the
collector pin 3, where the lead contacts the circuit board.
6. Using the liquid crystal technique, VCE = 4.5 V, Ic = 50 mA, Tj =150°C, 1-2␣ µm
“hot-spot” resolution.
Electrical Specifications, TC = 25°C
Symbol
Parameters and Test Conditions
Units
Min.
Typ. Max.
Freq. = 900 MHz, VCE = 4.8 V, ICQ = 20 mA, Pulse width = 577 µsec,
duty cycle = 12.5%, unless otherwise specified
Pout
Output Power,
Pulsed Operation[1]
Test Circuit A, Pin = +17 dBm
dBm
+26.5
+28.0
ηC
Collector Efficiency,
Pulsed Operation[1]
Test Circuit A, Pin = +17 dBm
%
50
60
Mismatch Tolerance
No Damage, Pulsed[1]
Test Circuit A, Pout = +28 dBm,
any phase, 2 sec duration
7:1
Pout
Output Power,
CW Operation[2]
F = 836.5 MHz, ICQ = 15 mA
Test Circuit B, Pin = +10 dBm
dBm
IMD3
3rd Order Intermodulation Distortion,
F1 = 899 MHz, F2 = 901 MHz
2-Tone Test, Pout each tone = +17 dBm, CW [2,3] ICQ = 15 mA, Test Circuit B
dBc
+22.0
+23.5
-35
Mismatch Tolerance, No Damage,
CW[2]
F = 836.5 MHz, ICQ = 15 mA
Test Circuit B, Pout = +23.5 dBm
any phase, 2 sec duration
7:1
BVEBO
Emitter-Base Breakdown Voltage
IE = 0.2 mA, open collector
V
1.4
BVCBO
Collector-Base Breakdown Voltage
IC = 1.0 mA, open emitter
V
16.0
BVCEO
Collector-Emitter Breakdown Voltage
IC = 3.0 mA, open base
V
9.5
hFE
Forward Current Transfer Ratio
VCE = 3 V, IC = 160 mA
—
40
ICEO
Collector Leakage Current
VCEO = 5 V
µA
150
Notes:
1. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit A (GSM).
2. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit B (AMPS).
4-90
3. Test circuit B re-tuned at 900␣ MHz.
330
15
AT-38086 Typical Performance, TC = 25°C
Frequency = 900 MHz, VCE = 4.8 V, ICQ = 20 mA, pulsed operation, pulse width␣ =␣ 577␣ µsec, duty cycle␣ =␣ 12.5%,
Test Circuit A (GSM), unless otherwise specified
30
28
80
26
70
Pout
60
50
22
ηc
20
40
18
30
16
20
14
10
12
2
4
6
28
26
24
22
20
18
3.6 V
4.8 V
6.0 V
16
14
12
0
8 10 12 14 16 18 20 22 24
4
6
INPUT POWER (dBm)
29.0
Γ source = 0.75 ∠ -177
Γ load = 0.48 ∠ +161
28.8
28
26
24
TC = +85°C
TC = +25°C
TC = –40°C
22
20
10
12
14
16
18
20
60
50
40
30
20
3.6 V
4.8 V
6.0 V
10
8 10 12 14 16 18 20 22 24
2
22
INPUT POWER (dBm)
Figure 4. Output Power vs. Input
Power Over Temperature.
Pin = +17 dBm
71
Pout
67
28.2
28.0
ηc
63
27.8
27.6
59
27.4
27.2
24
27.0
880
890
900
910
55
920
FREQUENCY (MHz)
Figure 5. Output Power and
Collector Efficiency vs. Frequency.
Note: Tuned at 900 MHz, then Swept
over Frequency.
4-91
6
8 10 12 14 16 18 20 22 24
Figure 3. Collector Efficiency vs.
Input Power Over Bias Voltage.
75
Γ source = 0.75 ∠ -177
Γ load = 0.48 ∠ +161
28.6
28.4
4
INPUT POWER (dBm)
Figure 2. Output Power vs. Input
Power Over Bias Voltage.
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
30
70
INPUT POWER (dBm)
Figure 1. Output Power and Collector
Efficiency vs. Input Power.
32
Γ source = 0.75 ∠ -177
Γ load = 0.48 ∠ +161
80
0
2
0
-2
RETURN LOSS (dB)
24
90
Γ source = 0.75 ∠ -177
Γ load = 0.48 ∠ +161
COLLECTOR EFFICIENCY (%)
32
90
COLLECTOR EFFICIENCY (%)
OUTPUT POWER (dBm)
100
OUTPUT POWER (dBm)
Γ source = 0.75 ∠ -177
Γ load = 0.48 ∠ +161
30
COLLECTOR EFFICIENCY (%)
32
Γ source = 0.75 ∠ -177
Γ load = 0.48 ∠ +161
-4
-6
Output R.L.
-8
-10
-12
Input R.L.
-14
-16
800
850
900
950
1000
FREQUENCY (MHz)
Figure 6. Input and Output Return
Loss vs. Frequency.
AT-38086 Typical Performance, TC = 25°C
Freq. = 836.5 MHz, VCE = 4.8 V, ICQ = 15 mA, CW operation, Test Circuit B (AMPS), unless otherwise specified
70
Pout
22
60
20
50
ηc
40
18
16
30
14
2
4
6
8
10
12
14
27
25
23
21
19
3.6 V
4.8 V
6.0 V
17
20
16 17
2
4
6
8
10
12
14
60
50
40
30
3.6 V
4.8 V
6.0 V
20
16 17
2
4
8
10
12
14
16 17
Figure 9. Collector Efficiency vs.
Input Power Over Bias Voltage.
0
0
Γ source = 0.86 ∠ -180
-2 Γ load = 0.46 ∠ +128
Γ source = 0.86 ∠ -180
Γ load = 0.46 ∠ +128
6
INPUT POWER (dBm)
Figure 8. Output Power vs. Input
Power Over Bias Voltage.
Γ source = 0.87 ∠ -178
Γ load = 0.48 ∠ +126
-5
-10
24
22
20
18
TC = +85°C
TC = +25°C
TC = –40°C
16
14
2
4
6
8
10
12
14
-4
-15
Output R.L.
IMD (dBc)
RETURN LOSS (dB)
OUTPUT POWER (dBm)
70
INPUT POWER (dBm)
Figure 7. Output Power and Collector
Efficiency vs. Input Power.
26
Γ source = 0.86 ∠ -180
Γ load = 0.46 ∠ +128
80
10
15
INPUT POWER (dBm)
28
90
Γ source = 0.86 ∠ -180
Γ load = 0.46 ∠ +128
COLLECTOR EFFICIENCY (%)
24
80
OUTPUT POWER (dBm)
OUTPUT POWER (dBm)
26
29
90
Γ source = 0.86 ∠ -180
Γ load = 0.46 ∠ +128
COLLECTOR EFFICIENCY (%)
28
-6
-8
Input R.L.
INPUT POWER (dBm)
Figure 10. Output Power vs. Input
Power Over Temperature.
-14
750
-25
-30
IMD3
-35
-10
-40
-12
16 17
-20
IMD5
-45
800
836.5
850
900
950
FREQUENCY (MHz)
Figure 11. Input and Output Return
Loss vs. Frequency.
-50
5
7
9
11 13
15 17 19 21 22
OUTPUT POWER/TONE (dBm)
Figure 12. IMD3, IMD5 vs. Output
Power Per Tone.
Note: Test circuit B (AMPS) used and re-tuned at
900 MHz.
4-92
AT-38086 Typical Large Signal Impedances (GSM)
3.5
Freq. = 900 MHz, VCE = 4.8 V, ICQ = 20 mA, Pulsed Operation, Pout␣ =␣ +28.0 dBm
Γ source
Γ load
Freq.
MHz
Mag.
Ang.
Mag.
Ang.
880
0.743
-175.6
0.474
162.0
890
0.741
-176.4
0.476
161.5
900
0.747
-177.3
0.478
161.2
910
0.751
-178.1
0.481
160.0
915
0.752
-178.6
0.482
159.6
920
0.754
-179.1
0.483
158.9
3.3
3.1
Ccb (pF)
2.9
2.7
2.5
2.3
2.1
1.9
1.7
1.5
0
1
2
3
4
5
6
7
8
Vcb (V)
AT-38086 Typical Large Signal Impedances (AMPS)
Figure 13. Collector-Base
Capacitance vs. Collector-Base
Voltage (DC Test).
Freq. = 836.5 MHz, VCE = 4.8 V, ICQ = 15 mA, CW Operation, Pout␣ =␣ +23.5 dBm
Γ source
Γ load
Freq.
MHz
Mag.
Ang.
Mag.
Ang.
824
0.856
-178.9
0.455
129.1
836.5
0.864
-179.9
0.459
128.2
849
0.870
-179.1
0.464
127.3
SPICE Model Parameters
Die Model
Packaged Model
CPad
Cbc
C
CPad
CPad
B
L1
Lb
B
C
B
E1
Die Area = 0.67
CPad = 0.36 pF
Label
BF
IKF
ISE
NE
VAF
NF
TF
XTF
VTF
ITF
PTF
XTB
BR
IKR
ISC
NC
VAR
Value
280
299.9
9.9E-11
2.399
33.16
0.9935
1.6E-11
0.006656
0.02785
0.001
23
0
54.61
81
8.7E-13
1.587
1.511
Cbe
E1
Label
NR
TR
EG
IS
XTI
CJC
VJC
MJC
XCJC
FC
CJE
VJE
MJE
RB
RE
RC
Cce
Le
L2
E
Label
Cbe
Cbc
Cce
L1
L2
L3
Lb
Le
4-93
Value
0.032 pF
0.036 pF
0.122 pF
0.46 nH
0.46 nH
0.46 nH
0.47 nH
0.14 nH
C
E2
E2
Value
0.9886
1E-9
1.11
3.598E-15
3
1.02 pF
0.4276
0.2508
0.001
0.999
0.98 pF
0.811
0.596
5.435
1.30
0.01
L3
9
AT-38086 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω
VCE = 3.6 V, Ic = 50 mA, Tc = 25°C
Freq.
S11
GHz
Mag.
Ang.
dB
0.05
0.10
0.25
0.50
0.75
0.90
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
0.71
0.73
0.75
0.76
0.76
0.77
0.77
0.78
0.78
0.79
0.80
0.80
0.81
0.81
0.82
-85
-124
-160
-176
175
171
169
164
160
156
152
148
145
142
139
31.7
28.2
21.3
15.5
12.0
10.4
9.5
7.6
6.0
4.7
3.5
2.5
1.5
0.7
-0.1
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
Mag.
S22
Ang.
38.52
25.72
11.66
5.95
3.98
3.32
2.99
2.39
1.99
1.71
1.49
1.33
1.19
1.08
0.99
138
118
84
76
72
69
63
57
51
46
41
37
32
28
25
-31.7
-29.1
-27.3
-25.5
-23.6
-22.6
-22.0
-20.5
-19.3
-18.3
-17.3
-16.4
-15.7
-15.0
-14.4
0.026
0.035
0.043
0.053
0.066
0.074
0.079
0.094
0.108
0.122
0.137
0.151
0.164
0.178
0.191
54
39
35
43
50
52
54
56
57
57
57
57
56
55
54
0.75
0.56
0.39
0.36
0.36
0.36
0.37
0.38
0.40
0.41
0.43
0.45
0.47
0.49
0.51
-57
-90
-133
-155
-165
-168
-170
-174
-176
-179
179
176
174
172
169
39.02
26.32
12.00
6.14
4.10
3.42
3.08
2.46
2.05
1.76
1.54
1.37
1.23
1.12
1.02
139
119
97
85
76
72
69
63
57
51
46
41
37
32
28
-31.7
-29.1
-27.3
-25.5
-23.7
-22.7
-22.0
-20.6
-19.4
-18.3
-17.4
-16.5
-15.8
-15.0
-14.4
0.026
0.035
0.043
0.053
0.065
0.073
0.079
0.093
0.107
0.121
0.135
0.150
0.163
0.177
0.190
54
40
35
43
49
52
53
56
57
58
57
57
56
55
55
0.76
0.56
0.38
0.35
0.35
0.35
0.36
0.37
0.38
0.40
0.42
0.44
0.46
0.48
0.50
-55
-87
-130
-154
-163
-167
-169
-172
-175
-178
180
177
175
173
170
39.07
26.60
12.21
6.25
4.18
3.48
3.13
2.51
2.09
1.79
1.56
1.39
1.25
1.13
1.03
140
120
98
85
76
72
69
63
57
51
46
41
37
32
28
-32.0
-29.1
-27.3
-25.5
-23.7
-22.7
-22.2
-20.7
-19.5
-18.4
-17.5
-16.6
-15.8
-15.1
-14.5
0.025
0.035
0.043
0.053
0.065
0.073
0.078
0.092
0.106
0.120
0.134
0.148
0.162
0.175
0.188
55
40
35
42
49
52
53
56
57
57
58
57
56
56
55
0.76
0.56
0.38
0.34
0.34
0.34
0.34
0.36
0.37
0.39
0.41
0.43
0.45
0.47
0.49
-54
-85
-128
-152
-162
-166
-167
-171
-174
-177
-179
178
176
174
171
VCE = 4.8 V, Ic = 50 mA, Tc = 25°C
0.05
0.10
0.25
0.50
0.75
0.90
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
0.72
0.73
0.75
0.75
0.76
0.76
0.76
0.77
0.78
0.78
0.79
0.80
0.80
0.81
0.82
-82
-121
-158
-176
176
172
169
164
160
156
152
149
145
142
139
31.8
28.4
21.6
15.8
12.3
10.7
9.8
7.8
6.2
4.9
3.8
2.7
1.8
1.0
0.2
VCE = 6.0 V, Ic = 50 mA, Tc = 25°C
0.05
0.10
0.25
0.50
0.75
0.90
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
0.73
0.74
0.74
0.75
0.75
0.76
0.76
0.77
0.77
0.78
0.79
0.79
0.80
0.81
0.81
-79
-119
-157
-175
176
172
170
165
160
156
152
149
146
142
139
31.8
28.5
21.7
15.9
12.4
10.8
9.9
8.0
6.4
5.1
3.9
2.9
1.9
1.1
0.3
4-94
Typical Performance
35
35
20
MAG
GAIN (dB)
GAIN (dB)
25
15
10
35
MSG
MSG
|S21|2
30
30
25
25
0
-5
0.05 0.25 0.75 1.00 1.50 2.00 2.50 3.00
MAG
20
15
10
5
GAIN (dB)
30
Part Number
0
0.05 0.25 0.75 1.00 1.50 2.00 2.50 3.00
0
0.05 0.25 0.75 1.00 1.50 2.00 2.50 3.00
FREQUENCY (GHz)
Figure 15. Insertion Power Gain,
Maximum Available Gain, and Maximum
Stable Gain vs. Frequency. VCE = 4.8V,
Ic = 50 mA.
No. of Devices
1000
100
Container
7" Reel
Antistatic Bag
Package Dimensions
Outline 86
0.51 ± 0.13
(0.020 ± 0.005)
4
45°
C
L
3
2.34 ± 0.38
(0.092 ± 0.015)
1
2
1.52 ± 0.25
(0.060 ± 0.010)
2.67 ± 0.38
(0.105 ± 0.15)
5° TYP.
0.66 ± 0.013
(0.026 ± 0.005)
|S21|2
5
Part Number Ordering Information
AT-38086-TR1
AT-38086-BLK
MAG
15
5
FREQUENCY (GHz)
Figure 14. Insertion Power Gain,
Maximum Available Gain, and Maximum
Stable Gain vs. Frequency. VCE = 3.6V,
Ic = 50 mA.
20
10
|S21|2
MSG
0.203 ± 0.051
(0.006 ± 0.002)
8° MAX
0° MIN
2.16 ± 0.13
(0.085 ± 0.005)
0.30 MIN
(0.012 MIN)
DIMENSIONS ARE IN MILLIMETERS (INCHES)
4-95
FREQUENCY (GHz)
Figure 16. Insertion Power Gain,
Maximum Available Gain, and Maximum
Stable Gain vs. Frequency. VCE = 6.0V,
Ic = 50 mA.
Test Circuit A: Test Circuit Board Layout @ 900 MHz for Pulsed Operation (GSM)
VBB
VBB
VCC
C3
R2
L1
R3
R1
C2
T1
VCC
C5
C8 C9
L2
R5
9/96
C6
38.1 (1.5)
R4
C1
C4
INPUT
C10
C7
PA1 DEMO
OUTPUT
B–MFG0139
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
R1
R2
R3
R4
R5
T1
L1
L2
100.0 pF
100.0 pF
100.0 nF
8.2 pF
100.0 nF
100.0 pF
3.6 pF
1.5 µF
10.0 µF
100.0 pF
10.0 Ω
619.0 Ω
10.0 Ω
40.0 Ω
10.0 Ω
MBT 2222A
18.0 µH
18.0 µH
76.2 (3.0)
Pulse Test
VCE = 4.8 V
ICQ = 20 mA
Freq. = 900 MHz
Test Circuit:
FR-4 Microstrip, glass epoxy board
Dielectric Constant = 4.5
Thickness = 0.79 (.031)
NOTE:
Dimensions are shown in millimeters (inches).
Test Circuit A: Test Circuit Schematic Diagram @ 900 MHz for Pulsed Operation (GSM)
VBB
10 Ω
619 Ω
B DC
C E Transistor
100 nF
10 Ω
18 µH
10 Ω
100 pF
100 pF
80 Ω
λ/4 @ 900 MHz
100 pF
VCC
Pulse Test
VCE = 4.8 V
ICQ = 20 mA
Freq. = 900 MHz
50 Ω
40 Ω
80 Ω
18 µH
8.2 pF
1.5 µF
10 µF
λ/4 @ 900 MHz
100 pF
50 Ω
RF OUT
= 19.00 (.748)
RF IN
100 nF
= 6.53 (.257)
4-96
3.6 pF
Test Circuit B: Test Circuit Board Layout @ 836.5 MHz for CW Operation (AMPS)
VBB
VBB
VCC
C2
R2
L1
C7 C8
L2
R3
R1
VCC
C6
R5
T1
C4
9/96
C5
38.1 (1.5)
R4
C3
C1
INPUT
C9
PA1 DEMO
C10
OUTPUT
B–MFG0139
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
R1
R2
R3
R4
R5
T1
L1
L2
100.0 pF
100.0 nF
11.0 pF
100.0 pF
100.0 pF
100.0 nF
1.5 µF
10.0 µF
4.7 pF
100.0 pF
10.0 Ω
619.0 Ω
10.0 Ω
40.0 Ω
10.0 Ω
MBT 2222A
18.0 µH
18.0 µH
76.2 (3.0)
CW Test
VCE = 4.8 V
ICQ = 15 mA
Freq. = 836.5 MHz
Test Circuit:
FR-4 Microstrip, glass epoxy board
Dielectric Constant = 4.5
Thickness = 0.79 (.031)
NOTE:
Dimensions are shown in millimeters (inches).
Test Circuit B: Test Circuit Schematic Diagram @ 836.5 MHz for CW Operation (AMPS)
VBB
10 Ω
619 Ω
B DC
C E Transistor
100 nF
10 Ω
18 µH
10 Ω
100 pF
100 pF
80 Ω
λ/4 @ 836.5 MHz
100 pF
VCC
CW Test
VCE = 4.8 V
ICQ = 15 mA
Freq. = 836.5 MHz
50 Ω
40 Ω
80 Ω
18 µH
11.0 pF
1.5 µF
10 µF
λ/4 @ 836.5 MHz
100 pF
50 Ω
RF OUT
= 32.66 (1.286)
RF IN
100 nF
= 9.02 (.355)
4-97
4.7 pF
Tape Dimensions and Product Orientation for Outline 86
REEL
1
12 mm
CARRIER
TAPE
NOTE: 1 INDICATES PIN 1 ORIENTATION
USER
FEED
DIRECTION
COVER TAPE
P0
P2
D0
t
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE ±0.2 MM
COVER
TAPE
E
A
K C
F
B
T
P1
DESCRIPTION
SYMBOL
W
USER FEED
DIRECTION
D1
SIZE (mm)
SIZE (INCHES)
0.227 ± 0.004
0.240 ± 0.004
0.067 ± 0.004
0.314 ± 0.004
0.059 min.
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A
B
K
P1
D1
5.77 ± 0.10
6.10 ± 0.10
1.70 ± 0.10
8.00 ± 0.10
1.50 min.
PERFORATION
DIAMETER
PITCH
POSITION
D0
P0
E
1.50 + 0.10/-0.05 0.059 + 0.004/-0.002
0.157 ± 0.004
4.00 ± 0.10
0.069 ± 0.004
1.75 ± 0.10
CARRIER TAPE WIDTH
THICKNESS
W
t
12.00 ± 0.20
0.30 ± 0.05
0.472 ± 0.008
0.012 ± 0.002
COVER TAPE
WIDTH
TAPE THICKNESS
C
T
9.30 ± 0.10
0.065 ± 0.010
0.366 ± 0.004
0.0026 ± 0.0004
DISTANCE
BETWEEN
CENTERLINE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
5.50 ± 0.05
0.217 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
4-98