ETC P12152EJ3V0AN00

Application Note
USAGE AND APPLICATION OF SILICON MEDIUMPOWER HIGH-FREQUENCY AMPLIFIER MMIC
µPC1678G/1678GV/1679G
µPC2708T to 2710T
µPC2762T/2763T
µPC2771T/2776T
Document No. P12152EJ3V0AN00 (3rd edition)
Date Published May 2000 N CP(K)
©
Printed in Japan
1997, 2000
[MEMO]
2
Application Note P12152EJ3V0AN00
The information in this document will be updated without notice.
This document introduces general applications of the products in this series. The application circuits and
circuit constants in this document are examples and not intended for use in actual mass production design. In
addition, please take note that restrictions of the application circuit or standardization of the application circuit
characteristics are not intended.
Especially, characteristics of high-frequency ICs change depending on the external components and
mounting pattern. Therefore, the external circuit constants should be determined based on the required
characteristics on your planned system referring to this document and characteristics should be checked
before using these ICs.
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8
The mark
shows major revised points.
Application Note P12152EJ3V0AN00
3
[MEMO]
4
Application Note P12152EJ3V0AN00
CONTENTS
ìï
,1752'8&7,21 ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
æ
ëï
352'8&7 /,1(ð83ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
2.1 Characteristics .......................................................................................................................................
2.2 Test Circuit .............................................................................................................................................
æ
7
9
êï
7+(25(7,&$/ '(6&5,37,21 ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
3.1 Description of Internal Circuit .................................................................................................................
3.2 External Circuit Description ....................................................................................................................
3.3 Temperature Condition...........................................................................................................................
ìë
12
13
14
éï
6$03/( $33/,&$7,21 &+$5$&7(5,67,&6ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
4.1 P PC1678G, P PC1679G.........................................................................................................................
4.2 P PC2709T..............................................................................................................................................
4.3 P PC2776T..............................................................................................................................................
4.4 P PC2762T, P PC2763T..........................................................................................................................
4.5 P PC2771T..............................................................................................................................................
ìè
17
18
20
21
23
èï
$33/,&$7,216 ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
ëé
çï
6800$5< ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
ëé
æï
$)7(5:25'ïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
ëé
òëèqq&ôïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïï
ëè
$33(1',;ï 6 3$5$0(7(5 5()(5(1&( õ7$
Precautions for design-ins
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to the VCC pin.
(4) The inductor must be attached between VCC pin and output pin.
The inductance value should be determined in accordance with desired frequency.
(5) The DC cut capacitor must be each attached to the input and output pins.
(6) You should apply voltage to VCC pin and output pin. You must not apply voltage to input pin nor regulate input pin
voltage (e.g. direct DC pull-down).
(7) External components cannot modify the IC’s internal circuit feedback.
Application Note P12152EJ3V0AN00
5
[MEMO]
6
Application Note P12152EJ3V0AN00
1. INTRODUCTION
The application for high-frequency devices has recently grown to include not only TV/VCR tuners and cable TV
converters but also DBS, cellular phones, pagers, and GPSs.
In response to these diverse needs, NEC has
developed an abundant line-up of high-frequency amplifier ICs.
This application note is intended to assist user in selecting the product that best suits their applications among
NEC’s line-up of silicon medium-power high-frequency amplifier ICs and as a reference for designing external circuits
that unleash the products’ characteristic.
See the data sheet of each product for the product ratings and specifications.
2. PRODUCT LINE-UP
2.1 Characteristics
The part numbers of NEC’s silicon medium-power high-frequency amplifier ICs are PPC1678/1679, PPC2708 to
2710, PPC2762/2763, and PPC2771/2776. Table 2-1 lists the characteristics of these products as measured with an
NEC test circuit.
Table 2-1. Characteristics List of Silicon Medium-Power High-Frequency IC Data Sheet
(TA = +25qqC, VCC = Vout, ZS = ZL = 50 :)
VCC
(V)
fu
(GHz)
PO(sat)
(dBm)
GP
(dB)
NF
(dB)
ICC
(mA)
4.5 to 5.5
2.0
+17.5
23
6
49
Part number
õGLVFUHWH SDUW QXPEHUô
PPC1678G
PPC1678GV
3DFNDJH
8-pin plastic SOP
(5.72 mm (225))
0DUNLQJ
1678
8-pin plastic SSOP
(4.45 mm (175))
PPC1679G
4.5 to 5.5
1.8
+15.5
21.5
6
40
8-pin plastic SOP
(5.72 mm (225))
1679
PPC2708T
4.5 to 5.5
2.9
+10.0
15
6.5
26
6-pin minimold
C1D
PPC2709T
4.5 to 5.5
2.6
+11.5
23
5
25
6-pin minimold
C1E
PPC2710T
4.5 to 5.5
1.2
+13.5
33
3.5
22
6-pin minimold
C1F
PPC2762T
2.7 to 3.3
2.9
+9.0
13
6.5
26.5
6-pin minimold
C1Z
PPC2763T
2.7 to 3.3
2.4
+11.0
20
5.5
27
6-pin minimold
C2A
PPC2771T
2.7 to 3.3
2.1
+12.5
21
6
36
6-pin minimold
C2H
PPC2776T
4.5 to 5.5
2.7
+8.5
23
6
25
6-pin minimold
C2L
Remark The above values are typical values for major characteristics.
Refer to the data sheet of each product for rating conditions.
The line-up features two power supply voltage ranges, 5 V and 3 V, and includes various power gains and output
levels. 8-pin SOP, SSOP, and size 2915-size 6-pin minimold are available for packages. Figure 2-1 shows the
package dimensions.
The part number is used for the marking in 8-pin packages but a three-character abbreviation is used for the
marking in the 6-pin minimold package due to limited printing space. Each abbreviation corresponds to a product.
Due to space limitation, the pin 1 mark is printed on the rear side in the minimold package. Figure 2-2 shows a
marking example of the 6-pin minimold package.
Application Note P12152EJ3V0AN00
7
The alphabetical characters suffixed to the part number (discrete part number) are the code that indicates the
package. GV corresponds to 4.45 mm (175) SSOP, G to the conventional SOP, and T to the minimold. If two
package codes exist for the same part number, such as the P PC1678, this means that the same product is available
in two different packages. Since the marking is the same on both package types, the products should be
distinguished by their package size.
Taping is available as the supply medium for all products except DIP packages. Two taping codes are used
according to the IC insertion orientation, ‘E1’ for SOP and SSOP and ‘E3’ for minimold. The order code should be
“Discrete part number - taping code” (for example, P PC2776T-E3). For details, refer to the data sheet of each
discrete part.
Figure 2-1. Package Drawings of Silicon Medium-Power High-Frequency Amplifier ICs
8-pin plastic SOP (5.72 mm (225))
8
8-pin plastic SSOP (4.45 mm (175))
8
5
5
detail of lead end
detail of lead end
+7˚
+7˚
3˚–3˚
3˚–3˚
4
1
4
1
5.2 ± 0.2
3.00 MAX
4.94 ± 0.2
6.5 ± 0.3
1.57 ± 0.2
4.4 ± 0.15
1.1 ± 0.2
1.49
0.85 MAX.
1.27
+0.08
0.42 –0.07
1.8 MAX
3.2 ± 0.1
1.5 ± 0.1
0.575 MAX.
0.6 ± 0.2
0.10
+0.08
0.17 –0.07
0.65
+0.10
0.3 –0.05
0.12 M
0.1 ± 0.1
0.1 ± 0.1
6-pin minimold
0 to 0.1
0.95 0.95
1.9
2.9±0.2
8
0.13±0.1
1.5+0.2
−0.1
2.8+0.2
−0.3
0.3+0.1
−0.05
0.8
1.1+0.2
−0.1
Application Note P12152EJ3V0AN00
0.5 ± 0.2
+0.10
0.15 –0.05
0.10 M
0.87 ± 0.2
0.15
Figure 2-2. Marking Example
3
2
1
C1D
(Top View)
(Bottom View)
4
4
3
5
5
2
6
6
1
Remark The marking example in the above figure is that of the P PC2708T.
2.2 Test Circuit
The test circuit is shown in Figure 2-3. Note that the characteristics listed in the data sheets were obtained while
the products were set to wide band and that different practical characteristics and conditions apply in the narrow
band.
Measurement Method
Common conditions
Use feedthrough capacitor for the bypass capacitor
A network analyzer is used for the following parameters. (Voltage is applied to an output pin via Bias-T)
Power gain
S21 of IC after compensating for effect of input/output lines of jig
Isolation
S12 of IC after compensating for effect of input/output lines of jig
Input Return Loss
S11 of IC after compensating for effect of input/output lines of jig
Output Return Loss
S22 of IC after compensating for effect of input/output lines of jig
An NF meter is used for the following parameters.
Noise figure
NF including jig NF (Cable loss is compensated.)
A signal generator and spectrum analyzer are used for the following items.
Input/Output power characteristics
These characteristics include jig-related effects, and frequency
conditions that minimize jig influence should be set. The frequency
conditions shall be set to obtain a wide band power gain. (Cable loss is
compensated.)
A power supply and ampere meter are used for the following items.
Circuit current
The output inductor is measured mainly via Bias-T and the inductor DC
resistance is compensated.
Application Note P12152EJ3V0AN00
9
Figure 2-3. Test Circuit
Power
supply
µ PC1678G, 1679G: A manually wound coil and capacitor
µ PC2708T to 2776T: Bias-tee
µ PC1678GV: An inductor Note with lead and capacitor
DC cable
1000 pF
(Feedthrough capacitor)
Measuring instrument High VCC line
frequency
cable
Input
DC cut
L
VCC
Output
DUT
GND
Measuring instrument
High
frequency
cable
DC cut
Zs = 50 Ω
ZL = 50 Ω
Note Refer to Table 4-1
Test Board for P PC1678G and 1679G
1
µ PC1678G/79G
IN
Vcc
OUT
Test Board for P PC1678GV
1
µ PC1678GV
IN
10
Vcc
OUT
Application Note P12152EJ3V0AN00
Test Board Common to 6-Pin Minimold (AMP1)
Part numbers
µPC2708T to 2710T
µPC2762T/2763T/2771T/2776T
IN
OUT
65
4
1D
C
12
3
Top View (Marking surface)
IC orientation
Sample marking of µ PC2708T
VCC
Notes on printed boards
•
Board material..... The following board materials are used to minimize board-related losses when measuring
the intrinsic characteristics of ICs.
µ PC1678G, µ PC1679G, µ PC1678GV, AMP1: Polyimide double-sided copper-clad board
•
Back side ............ Whole surface is GND. Through holes keep the GND characteristics of the IC mounting
side.
•
Specifications...... µ PC1678G, µ PC1679G, µ PC1678GV board dimensions:
50 × 50 × 0.4 mm, 35 µm thick copper patterning on both sides
AMP1 board dimensions:
30 × 30 × 0.4 mm, 35 µm thick copper patterning on both sides
Application Note P12152EJ3V0AN00
11
3. THEORETICAL DESCRIPTION
3.1 Description of Internal Circuit
The products in this series incorporate 50 : matching circuits formed by resistors on the input side. A multiple
negative feedback circuit is provided to offset the variations between hFE and resistance. To obtain desired RF
characteristics, a two-stage configuration is employed. Products in this series use the Darlington collector output
type for the internal output stage. This output stage collector is ended as an output pin that enables current supply
from this pin so that a medium output can be obtained.
For the test environment, Bias-T is mainly used to verify the characteristics in the wide band because the
frequency characteristics are not affected. On the other hand, by using an inductor with the minimum required value,
the gain in the high-frequency range increases by the amount that the gain in the low-frequency decreases and the
band shifts to high-frequency. The gain change varies depending on the effect of the two-stage peaking capacitance
that is connected to the internal equivalent circuit output port. The circuit constant differs depending on the product.
However, the products can be classified into five types, P PC1678/1679, P PC2708 to 2710, P PC2762/2763/2771,
and P PC2776, based on the internal circuit type. An internal equivalent circuit is shown in Figure 3-1.
Figure 3-1. Silicon Medium-Power Amplifier IC Internal Equivalent Circuit
PPC1678/1679
PPC2708 to 2710
<8> VCC
<6> VCC
<4> OUT
<5> OUT
IN <1>
IN <1>
<6> <7>
<2> <3> <4>
GND
GND
2, 3, 4, 6, and 7 are shorted by a lead frame
<3>
GND
PPC2762/2763
<2> <5>
GND
PPC2771
<6>VCC
<6>VCC
<4> OUT
<4> OUT
IN<1>
IN<1>
<3>
GND
<2> <5>
GND
µPC2762 does not have this capacitance
12
Application Note P12152EJ3V0AN00
<3>
GND
<2> <5>
GND
PPC2776
VCC <6>
<4> OUT
IN <1>
<2> <5>
GND
<3>
GND
3.2 External Circuit Description
The ICs in this series are designed to supply large current for an internal output stage transistor to obtain higher
output. Therefore, RF characteristics are guaranteed by connecting an external element that offers no resistance to
DC current and has high impedance in the high-frequency range. Bias-tee type test circuits are most commonly used
to simplify testing and obtain reproducibility.
In actual use, you should externally connect an inductor between the output pin and VCC pin. By using the
external inductor, output port can keep the applied voltage and the impedance at used frequency without dropping
both parameters. In addition, by using a wire-wound inductor with a self-resonance frequency close to the used
frequency, the return loss on the output side may be improved.
For the electrical characteristics test circuit, a bias-tee of approximately 1000nH is used so that high impedance is
maintained even in low frequency. If the impedance in the used frequency or above is kept high, the required gain
can be obtained even if the inductance value is small. Therefore, the used frequency is allowed to be higher than the
self-resonance frequency.
The following shows a calculation example for the used frequency f and inductance value L.
Zinductor = 2 S fL
1
ZL =
1
Znext
+
1
1
Zinductor
=
1
Znext
+
1
2 S fL
Here, the gain is rapidly decreased at the frequency where the Zinductor is smaller than the next stage impedance
Znext (50 : for example), and a large gain is obtained at the frequency where the Zinductor is larger than the next stage
impedance. Accordingly, the relation between the used frequency and the minimum required inductor is as follows.
2 S fL > 50 (when Znext = 50 :)
For example, the calculation of L such that L > 8 nH produces f > 1 GHz. Therefore, to obtain a flat gain for 1 GHz
or higher, the inductance value must be larger than 8 nH.
Because band is limited by the input/output DC cut capacitor value, determine the capacitance value C based on
the following calculation.
Application Note P12152EJ3V0AN00
13
C =
1
2 S x Z x fC
When using the IC in the low frequency band, C should be large value, and when using the IC in the high
frequency band, C should be small value to secure the gain.
3.3 Temperature Condition
The maximum ratings of storage and operating temperatures of ICs are regulated in terms of ambient
temperature. The package material is plastic so the thermal conductivity is lower than metal leads, and for this
reason, the thermal resistance is defined by junction to ambient (Rth(j-A)), rather than case to ambient, which is
meaningless in this case. Because the highly heat conductive metal leads (thermal resistance value between the
junction and the lead is 30qC/W or smaller) are the determining factor with regard to thermal conductivity, the
maximum junction temperature TjMAX becomes equal to the maximum rating of the storage ambient temperature TSTG
and the maximum ambient temperature TAMAX becomes equal to the maximum value of the operating ambient
temperature TA (The storage temperature in this section means the non-biased temperature where the case
temperature and ambient temperature are equal.). The relation between the power dissipation P D and thermal
resistance is as follows.
Rth (j-A) =
TjMAX ð TAMAX (qC)
PD@TAMAX (W)
The thermal resistance can be calculated since the maximum operating ambient temperature, maximum junction
temperature, and power dissipation (at maximum operating ambient temperature) are defined based on the junctionto-ambient thermal resistance listed in the individual data sheet of each product.
The PPC1678G/GV have a large circuit current so that they experience temperature rise (heat production) due to
IC current loss. This condition can be applied to the above expression. Taking the P PC1678G/GV as an example,
the thermal resistance value becomes Rth
(j-A)
= 180qC/W (when mounting IC on 50 u 50 u 1.6 mm double-sided
epoxy glass copper-clad board). Because the circuit current is 60 mA MAX. when the small signal input at VCC = 5.0
V:
Tj = TA + PD u Rth (j-A)
= TA + 5.0 (V) u 0.060 (A) u 180 (qC/W)
= TA + 54 (qC)
Since to Tj d 150 (qC),
TA + 54 (qC) d 150 (qC)
? TA d 96 qC
Therefore, the operating ambient temperature, TA = +85qC represents a margin of +11qC taking into account IC
heating under these conditions.
14
Application Note P12152EJ3V0AN00
Figure 3-2. PPC1678G/GV Power Dissipation vs. Ambient Temperature
µPC1678G/GV
(Rth (j-A) = 180°C/W)
Power Dissipation PD (mW)
360
Recommended operation range
0
−45
0
+85
+25
+150
Operating Ambient Temperature TA (°C)
4. SAMPLE APPLICATION CHARACTERISTICS
Table 4-1 lists sample specifications and characteristics of inductors used for evaluation of application circuits. In
this evaluation, evaluation boards with the same dimensions were used to test all the inductors within a product
group (Table 4-2). The AMP1 board enables easy calibration using a network analyzer and S parameter
measurement that is not affected by the jig input/output line because the input/output line is straight.
Table 4-1. Specifications of Inductors Used for Application Evaluation
3URGXFW
,QGXFWDQFH
4
'& UHVLVWDQFH
Self-resonance
frequency
Permissible
current
0XUDWD 0IJï
&Rïñ /WGï
/41ëì$ìí1-
ìí Q+
çí 7<3ï
íïëè : RU OHVV
ìíí 0+]
ææí P$
72.2 ,1&ï
)6/8ëèëíð
5ìí
ìíí Q+
èí SHDN
íïëì :
æêí 0+]
èéí P$
$[LDO OHDG
LQGXFWRU
7DL\R 8GHQ
&Rïñ /WGï
/$éíë W\SH
éæí Q+
êè WR éí 0,1ï
íïé WR ëí :
0$;ï
ð
êè WR
éíí P$ 0$;ï
0DQXDOO\
ZRXQG FRLO
õ(QDPHOHG
ZLUHô
6HOI PDGH
6HOI PDGH
èí Q+ WR
ìëíí Q+
ð
ð
ð
ð
7\SH
:LUHðZRXQG
FKLS LQGXFWRU
0DQXIDFWXUHU
Application Note P12152EJ3V0AN00
15
Table 4-2. Evaluation Boards Used for Application Evaluation
Evaluated part number
Evaluation board’s name and figure
PPC1678G, PPC1679G
PPC1678G/79G evaluation board (Figure 4-1)
PPC2709T, PPC2776T, PPC2762/2763T, PPC2771T
6-pin minimold amplifier series common board AMP1 (Figure 4-2)
Figure 4-1. P PC1678G/79G Evaluation
Figure 4-2. Application Evaluation Circuit Board
Board Mounting Example
1
µ PC1678G/79G
(AMP1) Mounting Example
VCC
L
OUT
IC orientation
(Marking example:
µ PC2762T)
T
U
C
D
C
C
4
C
IN
65
IN
C
1Z
12
3
Top view (marking side)
L
C
OUT
VCC
L: LQN21A10NJ or FSLV2520-R10
L: Manually wound coil
Cautions 1. The listed inductors were used to evaluate the relation between inductor parameter and IC
application characteristics, and are not recommended by NEC for actual use. For actual use,
we recommended that you contact the inductor supplier referring to the specifications listed
in Table 4-1 and evaluate your inductor before use.
2. Since NEC calibrates the evaluation board pattern, NEC’s evaluation characteristics do not
reflect the effect of the pattern. Therefore, you should take into account the effect of the
pattern in your actual application design.
16
Application Note P12152EJ3V0AN00
4.1 P PC1678G, P PC1679G
The gain vs. frequency characteristics of the P PC1678/1679 with various inductance values are measured using a
manually wound coil. Figure 4-3 shows the measured characteristics. In the case of these ICs, the gain at low
frequencies and high frequencies increases and wide band is achieved when the inductance value is increased, and
the frequency band near the resonance frequency becomes narrow when the inductance value is decreased.
Figure 4-3. Power Gain vs. Frequency Characteristics of P PC1678G, P PC1679G
for Various Inductance Values (Conditions : TA = +25qqC, VCC = Vout = 5.0 V, ZS = ZL = 50 : )
(a) P PC1678G Power Gain vs. Frequency
2:22.978 dB
40
500.000 000 MHz
2
10 nH
1200 nH
820 nH
560 nH
20
200 to 330 nH
Power gain GP (dB)
30
10
120 nH
50 nH
10 nH
10
30
100
1000
300
0
3000
Frequency f (MHz)
(b) P PC1679G Power Gain vs. Frequency
2:21.645 dB
500.000 000 MHz
40
2
10 nH
20
1200 nH
820 nH
560 nH
Power gain GP (dB)
30
200 to 330 nH
10
10 nH
120 nH
50 nH
10
30
100
300
1000
0
3000
Frequency f (MHz)
Application Note P12152EJ3V0AN00
17
4.2 PPC2709T
To judge the characteristics of the P PC2709T, it was compared with the P PC2776T, which has similar electric
characteristics, using a 10 nH wire-wound type chip inductor (1 GHz self-resonance frequency). The results of the
P PC2709T and P PC2776T are shown in Figures 4-4 and 4-5, respectively. The P PC2709T shows flat gain
characteristics in the range from 1 GHz to 2.5 GHz. The P PC2776T shows a gain decline at 2.0 GHz and higher.
This is because in the P PC2709T the peaking capacitances of the input/output stages are connected to the output
pin and the peaking frequency tends to shift to high frequency due to the value of the inductor externally connected
to the output pin whereas in the P PC2776T, the gain at high frequency is little affected because only the peaking
capacitance is connected only to the output stage. Expressed a different way, the P PC2776T has smaller variations.
Figure 4-4. Frequency Characteristics of P PC2709T Using 10 nH Inductor
(Conditions: TA = +25qqC, VCC = Vout = 5.0 V, ZS = ZL = 50 : )
(b) Isolation vs. Frequency
(a) Power Gain vs. Frequency
0
24
1 :100 MHz
3
2 :1.0 GHz
2
3 :2.0 GHz
4
20
4 :2.5 GHz
5 :3.0 GHz
18
10
Isolation ISL (dB)
Power gain GP (dB)
22
50 1
0.1
3.0
5
3.0
Frequency f (GHz)
Frequency f (GHz)
(c) Input Return Loss vs. Frequency
(d) Output Return Loss vs. Frequency
0
1
3
2
4
20
1
30
5
40
50
0.1
3.0
Output Return Loss RLout (dB)
0
10
2
3
20
4
5
30
40
50
0.1
Frequency f (GHz)
18
4
2
5
14
0.1
Input Return Loss RLin (dB)
3
30
40
16
10
20
3.0
Frequency f (GHz)
Application Note P12152EJ3V0AN00
Figure 4-5. Frequency Characteristics of P PC2776T Using 10 nH Inductor
(Conditions: TA = +25qqC, VCC = Vout = 5.0 V, ZS = ZL = 50 : )
(b) Isolation vs. Frequency
(a) Power Gain vs. Frequency
2 :1.0 GHz
2
3 :2.0 GHz
4
4 :2.5 GHz
20
5 :3.0 GHz
18
5
10
20
30
3
2
16
40
14
0.1
1
50
0.1
3.0
10
4
5
3.0
Frequency f (GHz)
Frequency f (GHz)
(c) Input Return Loss vs. Frequency
(d) Output Return Loss vs. Frequency
0
Input Return Loss RLin (dB)
1 :100 MHz
0
1
3
2
4
5
201
30
40
50
0.1
3.0
Output Return Loss RLout (dB)
Power gain GP (dB)
22
0
3
Isolation ISL (dB)
24
3
4
10
5
2
20
30
40
50
0.1
Frequency f (GHz)
3.0
Frequency f (GHz)
Application Note P12152EJ3V0AN00
19
4.3 P PC2776T
Based on the fact that the P PC2776T, high-frequency gain is not affected by an inductor, the P PC2776T was
evaluated to obtain wide band characteristics from the VHF range to 2 GHz. A wire-wound chip inductor with the
resonance frequency of 730 MHz and the inductance value of 100 nH was used to obtain a gain at 100 MHz or
higher. The flat characteristics that were obtained are shown in Figure 4-6.
Figure 4-6. Frequency Characteristics of P PC2776T Using 100 nH Inductor
(Conditions: TA = +25qqC, VCC = Vout = 5.0 V, ZS = ZL = 50 : )
(b) Isolation vs. Frequency
(a) Power Gain vs. Frequency
0
26
1 :100 MHz
2 :1.0 GHz
3 :2.0 GHz
2
22
4 :2.5 GHz
5 :3.0 GHz
20 1
4
18
16
0.1
30
1
2
5
4
3.0
Frequency f (GHz)
Frequency f (GHz)
(c) Input Return Loss vs. Frequency
(d) Output Return Loss vs. Frequency
0
4
10
2
5
20
30
40
50
0.1
3.0
10
3
4
5
1
20
2
30
40
50
0.1
Frequency f (GHz)
20
3
50
0.1
3
1
20
40
3.0
0
Input Return Loss RLin (dB)
10
Isolation ISL (dB)
3
Output Return Loss RLout (dB)
Power gain GP (dB)
24
3.0
Frequency f (GHz)
Application Note P12152EJ3V0AN00
4.4 P PC2762T, P PC2763T
Given the fact that the P PC2762T/2763T have a wide 3 dB bandwidth, evaluation tests were tried to obtain the
gain at 2 GHz or higher. A 10 nH wire-wound chip inductor (1 GHz self-resonance frequency) was used.
Figure 4-7. Frequency Characteristics of P PC2762T Using 10 nH Inductor
(Conditions: TA = +25qqC, VCC = Vout = 3.0 V, ZS = ZL = 50 :)
(a) Power Gain vs. Frequency
(b) Isolation vs. Frequency
20
0
4
10
1 :100 MHz
2 :900 MHz
16
3 :1.9 GHz
4 :2.5 GHz
14
3
5 :3.0 GHz
Isolation ISL (dB)
Power gain GP (dB)
18
5
12
20
2
30
1
50
3.0
0.1
0.1
3.0
Frequency f (GHz)
Frequency f (GHz)
(c) Input Return Loss vs. Frequency
(d) Output Return Loss vs. Frequency
0
0
5
1
20
30
40
50
3.0
0.1
Output return loss RLout (dB)
Input return loss RLin (dB)
3
2
4
1
4
10
5
3
40
2
10
4
10
20
2
3
5
30
40
50
0.1
Frequency f (GHz)
3.0
Frequency f (GHz)
(e) Output Power vs. Input Power
+15
f = 1.5 GHz f = 1.9 GHz
Output Power Pout (dBm)
+10
+5
f = 2.5 GHz
f = 2.5 GHz
0
−5
f = 1.9 GHz
f = 1.5 GHz
−10
−15
−20
−25
−35 −30 −25 −20 −15 −10
−5
0
+5 +10
Input power Pin (dBm)
Application Note P12152EJ3V0AN00
21
Figure 4-8. Frequency Characteristics of P PC2763T Using 10 nH Inductor
(Conditions: TA = +25qqC, VCC = Vout = 3.0 V, ZS = ZL = 50 : )
(a) Power Gain vs. Frequency
(b) Isolation vs. Frequency
24
0
1 :100 MHz
2 :900 MHz
4
20
3 :1.9 GHz
3
4 :2.5 GHz
2
18
5 :3.0 GHz
5
10
Isolation ISL (dB)
Power gain GP (dB)
22
16
20
5
30
3
2
4
40
1
1
14
50
3.0
0.1
3.0
0.1
Frequency f (GHz)
Frequency f (GHz)
(c) Input Return Loss vs. Frequency
(d) Output Return Loss vs. Frequency
0
0
10
2
3
5
4
20
30
1
40
50
Output return loss RLout (dB)
Input return loss RLin (dB)
1
10
2
20
40
Frequency f (GHz)
f = 1.5 GHz
Output Power Pout (dBm)
+10
+5
f = 1.9 GHz
f = 1.9 GHz
f = 1.5 GHz
−10
−15
−20
−25
−35 −30 −25 −20 −15 −10 −5
3.0
0.1
(e) Output Power vs. Input Power
+15
0
+5 +10
Input power Pin (dBm)
22
5
30
Frequency f (GHz)
0
4
50
3.0
0.1
−5
3
Application Note P12152EJ3V0AN00
4.5 P PC2771T
The P PC2771T has been evaluated to obtain characteristics in the range between 1.4 and 1.9 GHz. A 10 nH wirewound chip inductor (1 GHz self-resonance frequency) was used. Under these test conditions, obtaining a gain in the
range between 1.4 GHz and 1.9 GHz, the 1 dB gain compression point is raised by 1 dB.
Figure 4-9. Frequency Characteristics of P PC2771T Using 10 nH Inductor
(Conditions: TA = +25qqC, VCC = Vout = 3.0 V, ZS = ZL = 50 :)
(a) Power Gain vs. Frequency
(b) Isolation vs. Frequency
0
24
VCC = 3.0 V
VCC = 3.0 V
22
–10
Isolation ISL (dB)
Power gain GP (dB)
VCC = 3.3 V
20
VCC = 2.7 V
18
16
–20
–30
–40
–50
14
0.1
0.3
1.0
3.0
0.1
0.3
Frequency f (GHz)
1.0
3.0
Frequency f (GHz)
(c) Input Return Loss, Output Return Loss
vs. Frequency
0
Input return loss RLin (dB)
Output return loss RLout (dB)
VCC = 3.0 V
−10
RLin
−20
RLout
−30
−40
0.1
0.3
1.0
3.0
Frequency f (GHz)
(d) Output Power vs. Input Power
(e) Output Power vs. Input Power
15
L = 10 nH
f = 1.5 GHz
f = 1.9 GHz
Output Power Pout (dBm)
Output Power Pout (dBm)
15
10
L = 300 to 1000 nH
5
0
−5
−25
−20
−15
−10
−5
5
L = 300 to 1000 nH
0
−5
−10
0
L = 10 nH
10
−25
Input power Pin (dBm)
−20
−15
−10
−5
0
Input power Pin (dBm)
Application Note P12152EJ3V0AN00
23
5. APPLICATIONS
Table 5-1 shows possible applications for NEC’s silicon medium-power high-frequency amplifier ICs based on
their characteristics.
Table 5-1. Medium-Power Amplifier IC Applications
Applications
Required Characteristics
Part Number
Transmission stage of transceivers or
cellular-phone base stations
5 V, up to 1.0 GHz or 1.5 GHz
PPC1678G, PPC1678GV, PPC1679G,
PPC2710T, PPC2776T
Transmission stage of cellular phones or
portable transceivers
3 V, 0.8 GHz to 2 GHz
PPC2762T, PPC2763T, PPC2771T
Receiver stage of BS converters or BS tuner
5 V, 1 GHz to 2.215 GHz
PPC2708T, PPC2709T
Wireless LAN
3 V, 2.5 GHz bandwidth
PPC2762T, PPC2763T
6. SUMMARY
As explained in this application note, NEC’s silicon medium-power high-frequency amplifier ICs can be useful
characteristics by selecting adequate external circuit constants for the type of internal circuit and high-frequency
characteristics of each IC.
7. AFTERWORD
NEC plans to develop products with higher output power and higher efficiency ASSP products.
REFERENCES
Silicon High-Frequency Wideband Amplifier MMIC Application Note (P11976E)
Data Sheets of each NEC silicon medium-power high-frequency amplifier IC
24
Application Note P12152EJ3V0AN00
APPENDIX. S PARAMETER REFERENCE (TA = +25qqC)
PPC1678G
VCC = Vout = 5.0 V, ICC = 49 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.078
0.106
0.140
0.176
0.212
0.246
0.275
0.304
0.323
0.403
0.408
0.421
0.436
0.449
0.463
0.474
0.472
0.468
0.457
0.447
0.447
0.434
0.429
0.427
0.422
0.419
0.416
0.400
0.402
0.406
0.397
ð173.8
ð179.1
166.3
150.2
132.9
115.5
99.2
83.2
68.2
53.3
37.1
22.2
6.4
ð8.4
ð25.0
ð41.5
ð58.3
ð76.1
ð92.5
ð109.6
ð126.4
ð142.6
ð158.5
ð173.0
172.5
158.3
145.6
136.1
126.2
118.1
109.8
12.298
12.891
13.625
14.453
15.257
15.663
16.156
16.291
16.289
17.096
16.669
16.591
16.370
16.056
15.852
15.332
14.865
14.169
13.229
12.144
10.947
9.853
8.796
7.894
7.048
6.363
5.881
5.387
5.223
5.030
4.675
ð4.0
ð8.6
ð14.8
ð22.6
ð31.5
ð40.8
ð51.3
ð60.7
ð71.0
ð80.2
ð90.7
ð100.7
ð111.2
ð121.8
ð131.6
ð142.8
ð154.2
ð164.9
ð176.8
172.6
162.7
153.4
146.3
139.7
133.3
128.8
125.1
121.3
116.2
113.5
107.3
0.023
0.020
0.016
0.014
0.014
0.017
0.020
0.024
0.027
0.030
0.036
0.036
0.041
0.042
0.045
0.049
0.048
0.049
0.048
0.048
0.049
0.047
0.044
0.040
0.036
0.027
0.023
0.018
0.018
0.020
0.022
ð6.4
ð7.3
ð4.7
6.4
23.1
35.1
41.0
42.4
41.8
47.1
43.0
41.3
36.5
33.9
28.3
25.9
22.1
15.7
13.7
8.1
4.0
ð2.0
ð6.7
ð9.9
ð12.5
ð17.6
ð17.2
4.5
11.0
28.2
35.3
0.555
0.593
0.630
0.657
0.673
0.676
0.669
0.654
0.627
0.660
0.646
0.639
0.660
0.670
0.690
0.717
0.734
0.763
0.783
0.806
0.830
0.843
0.842
0.843
0.825
0.785
0.744
0.701
0.681
0.645
0.616
ð3.2
ð8.7
ð16.4
ð25.3
ð35.4
ð45.1
ð55.0
ð64.0
ð72.4
ð76.7
ð85.4
ð93.7
ð101.7
ð109.8
ð118.7
ð127.0
ð136.6
ð146.9
ð156.8
ð167.8
ð178.6
170.2
159.4
148.2
137.4
125.7
117.2
109.7
103.0
96.5
90.7
Application Note P12152EJ3V0AN00
S22
K
1.40
1.43
1.59
1.53
1.38
1.05
0.86
0.71
0.65
0.45
0.44
0.44
0.41
0.40
0.40
0.41
0.45
0.48
0.54
0.58
0.64
0.69
0.77
0.86
0.99
1.34
1.71
2.34
2.53
2.45
2.47
25
PPC1678GV
VCC = Vout = 5.0 V ICC = 44 mA
FREQUENCY
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.085
0.118
0.158
0.184
0.214
0.243
0.266
0.293
0.312
0.379
0.381
0.401
0.422
0.446
0.455
0.465
0.444
0.431
0.397
0.378
0.357
0.343
0.339
0.335
0.338
0.358
0.359
0.368
0.372
0.375
0.372
ð163.8
ð163.3
ð170.9
176.0
164.8
152.4
138.9
125.2
113.7
95.6
82.2
66.5
51.1
34.0
16.6
ð0.5
ð16.7
ð33.5
ð47.2
ð59.2
ð70.5
ð80.7
ð89.4
ð98.9
ð107.2
ð115.5
ð125.3
ð133.9
ð143.4
ð152.7
ð161.4
12.206
12.842
13.766
14.731
15.815
16.598
17.541
18.057
18.475
20.083
20.090
20.620
20.669
20.473
19.765
18.759
17.137
15.512
13.846
12.398
11.060
9.918
8.927
8.107
7.388
6.772
6.267
5.807
5.450
5.018
4.684
ð2.6
ð6.0
ð10.9
ð17.7
ð25.1
ð33.9
ð43.2
ð52.3
ð62.2
ð71.9
ð82.8
ð94.0
ð106.8
ð119.6
ð132.5
ð145.7
ð157.7
ð168.9
ð178.7
172.4
164.9
157.8
151.7
146.2
140.6
135.4
131.0
125.4
121.3
116.0
110.5
0.024
0.020
0.015
0.016
0.014
0.015
0.019
0.024
0.027
0.031
0.035
0.038
0.042
0.046
0.048
0.050
0.049
0.050
0.048
0.048
0.048
0.048
0.049
0.051
0.050
0.055
0.051
0.054
0.051
0.050
0.053
ð5.0
ð8.1
ð2.4
11.1
26.3
44.5
51.4
56.5
58.1
61.7
58.6
56.0
55.1
52.6
48.4
47.0
44.9
42.9
43.5
45.8
45.3
47.4
47.4
46.1
46.2
46.8
48.1
49.4
49.6
53.6
57.5
0.558
0.594
0.637
0.667
0.692
0.703
0.701
0.689
0.670
0.686
0.685
0.688
0.702
0.713
0.717
0.711
0.684
0.659
0.616
0.574
0.540
0.510
0.489
0.483
0.475
0.475
0.463
0.482
0.489
0.475
0.453
ð2.3
ð6.6
ð13.6
ð21.3
ð30.8
ð40.2
ð49.0
ð57.0
ð65.7
ð68.6
ð77.5
ð84.9
ð92.8
ð100.5
ð110.4
ð119.0
ð128.7
ð137.4
ð145.1
ð151.4
ð157.0
ð161.5
ð164.8
ð167.6
ð171.7
ð173.8
ð178.1
179.5
173.4
166.3
161.4
26
S11
S21
S12
Application Note P12152EJ3V0AN00
S22
K
1.36
1.43
1.61
1.39
1.34
1.13
0.85
0.69
0.62
0.47
0.45
0.42
0.38
0.36
0.35
0.36
0.42
0.48
0.59
0.70
0.81
0.91
1.00
1.06
1.15
1.16
1.32
1.33
1.45
1.62
1.66
PPC1679G
VCC = Vout = 5.0 V, ICC = 40 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.133
0.154
0.184
0.217
0.247
0.279
0.307
0.333
0.342
0.412
0.419
0.434
0.450
0.461
0.481
0.486
0.487
0.486
0.479
0.469
0.467
0.454
0.450
0.449
0.443
0.441
0.430
0.426
0.429
0.432
0.419
177.2
171.2
159.6
147.3
132.4
117.7
102.8
88.3
76.4
60.4
46.1
31.7
18.1
3.2
ð12.2
ð27.2
ð43.7
ð61.2
ð78.4
ð95.6
ð113.5
ð130.9
ð148.4
ð165.0
179.3
163.8
149.9
139.0
128.2
118.6
110.7
11.167
11.585
12.121
12.690
13.210
13.509
13.902
13.966
13.895
14.401
14.244
14.249
14.096
13.945
13.888
13.645
13.460
13.043
12.509
11.678
10.720
9.763
8.754
7.849
7.022
6.289
5.800
5.277
5.108
4.894
4.541
ð4.7
ð9.8
ð16.1
ð23.9
ð32.2
ð40.9
ð51.0
ð59.8
ð69.5
ð78.5
ð87.9
ð97.3
ð106.9
ð116.9
ð125.9
ð136.5
ð147.3
ð157.9
ð170.0
179.0
168.4
158.2
150.0
142.4
135.4
130.2
126.1
121.8
116.7
114.0
107.4
0.024
0.022
0.018
0.015
0.015
0.017
0.021
0.026
0.027
0.033
0.037
0.041
0.043
0.047
0.051
0.053
0.053
0.056
0.058
0.057
0.057
0.056
0.054
0.050
0.045
0.037
0.029
0.027
0.027
0.025
0.028
ð4.9
ð10.3
ð3.0
4.9
20.0
35.5
42.6
44.8
42.5
52.0
46.1
42.5
41.8
35.8
34.1
30.5
27.3
21.6
17.7
13.6
9.9
3.5
ð1.4
ð6.4
ð9.9
ð13.3
ð11.1
ð1.1
6.1
15.9
31.2
0.589
0.620
0.648
0.669
0.681
0.680
0.674
0.659
0.628
0.646
0.636
0.635
0.640
0.655
0.664
0.691
0.707
0.742
0.771
0.794
0.819
0.840
0.846
0.852
0.829
0.790
0.733
0.697
0.672
0.635
0.598
ð3.9
ð9.7
ð17.3
ð25.9
ð35.1
ð44.3
ð53.6
ð62.0
ð70.6
ð75.4
ð83.6
ð90.1
ð97.8
ð105.0
ð112.7
ð120.6
ð129.2
ð138.5
ð147.7
ð158.3
ð169.0
179.9
168.7
157.1
145.9
133.6
124.7
117.2
110.0
103.2
98.0
Application Note P12152EJ3V0AN00
S22
K
1.40
1.41
1.51
1.63
1.42
1.15
0.88
0.71
0.72
0.48
0.46
0.43
0.41
0.39
0.39
0.39
0.42
0.44
0.48
0.53
0.59
0.63
0.71
0.78
0.90
1.11
1.49
1.75
1.84
2.02
2.05
27
PPC2708T
VCC = Vout = 5.0 V, ICC = 24 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
S22
ANG.
K
100.0000
200.0000
400.0000
600.0000
800.0000
1000.0000
1200.0000
1400.0000
1600.0000
1800.0000
2000.0000
2200.0000
2400.0000
2600.0000
2800.0000
3000.0000
0.040
0.063
0.112
0.162
0.211
0.265
0.319
0.363
0.404
0.435
0.460
0.456
0.442
0.422
0.396
0.365
ð3.6
30.7
47.5
49.6
45.7
40.0
32.0
23.8
15.3
6.9
ð3.4
ð12.6
ð19.9
ð26.5
ð31.5
ð35.3
5.149
5.185
5.195
5.205
5.215
5.225
5.233
5.206
5.149
4.974
4.696
4.454
4.102
3.702
3.307
2.907
ð3.2
ð11.6
ð25.4
ð38.4
ð52.3
ð64.4
ð79.1
ð94.2
ð109.5
ð125.6
ð141.1
ð156.6
ð172.5
172.7
158.9
146.5
0.073
0.072
0.070
0.068
0.066
0.064
0.063
0.061
0.060
0.060
0.060
0.060
0.060
0.060
0.059
0.059
0.2
ð1.3
ð4.2
ð5.9
ð6.6
ð5.3
ð5.3
ð5.5
ð4.9
ð3.7
ð0.4
ð0.4
ð1.8
0.2
0.1
2.0
0.132
0.138
0.140
0.144
0.150
0.157
0.165
0.171
0.176
0.168
0.156
0.141
0.123
0.100
0.077
0.051
ð11.5
ð12.1
ð17.1
ð21.3
ð26.1
ð31.0
ð36.1
ð43.7
ð50.2
ð57.3
ð62.5
ð60.3
ð61.6
ð61.5
ð61.6
ð56.7
1.49
1.49
1.51
1.52
1.52
1.52
1.48
1.48
1.45
1.46
1.49
1.58
1.74
1.95
2.26
2.62
PPC2709T
VCC = Vout = 5.0 V, ICC = 30 mA
FREQUENCY
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
200.0000
400.0000
600.0000
800.0000
1000.0000
1200.0000
1400.0000
1600.0000
1800.0000
2000.0000
2200.0000
2400.0000
2500.0000
0.258
0.261
0.271
0.275
0.278
0.279
0.276
0.263
0.246
0.237
0.222
0.194
0.176
0.173
ð4.1
ð2.9
ð4.6
ð8.1
ð12.7
ð15.2
ð20.7
ð25.6
ð28.6
ð31.7
ð33.6
ð33.1
ð26.8
ð23.2
12.706
12.793
13.023
13.305
13.595
13.816
13.992
13.750
13.195
12.254
10.976
9.664
8.392
7.771
ð3.7
ð12.2
ð27.0
ð41.3
ð57.4
ð72.3
ð90.3
ð109.3
ð128.3
ð147.5
ð166.1
177.5
162.0
154.8
0.022
0.024
0.025
0.026
0.026
0.027
0.027
0.027
0.028
0.030
0.031
0.033
0.034
0.035
7.5
3.1
6.5
10.5
11.0
15.6
17.7
19.2
20.6
27.9
33.2
35.8
38.5
39.2
0.234
0.240
0.260
0.288
0.312
0.324
0.332
0.326
0.302
0.254
0.198
0.143
0.089
0.065
ð4.6
ð6.9
ð13.5
ð22.1
ð33.5
ð43.4
ð59.0
ð75.1
ð90.6
ð106.8
ð120.8
ð132.5
ð144.4
ð150.6
28
S11
S21
S12
Application Note P12152EJ3V0AN00
S22
K
1.66
1.52
1.32
1.29
1.27
1.20
1.19
1.22
1.27
1.33
1.47
1.61
1.81
1.90
PPC2710T
VCC = Vout = 5.0 V, ICC = 21 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
0.322
0.346
0.383
0.429
0.465
0.486
0.487
0.468
0.423
0.392
0.349
0.301
0.257
0.217
0.184
ð0.3
3.3
2.1
ð1.7
ð9.4
ð17.8
ð27.2
ð36.5
ð44.5
ð50.3
ð56.6
ð61.0
ð63.2
ð63.5
ð59.9
37.668
38.808
40.192
41.567
42.130
42.282
41.075
39.129
35.399
32.933
30.025
26.823
23.836
21.128
18.841
ð5.9
ð17.0
ð28.0
ð40.4
ð54.1
ð68.3
ð83.2
ð97.9
ð111.7
ð123.4
ð135.5
ð146.8
ð156.8
ð165.9
ð174.2
0.013
0.012
0.009
0.009
0.012
0.013
0.013
0.013
0.013
0.014
0.014
0.015
0.016
0.016
0.017
17.1
19.8
22.5
25.1
27.8
30.5
33.1
35.8
38.5
41.2
43.9
46.6
49.2
51.6
54.5
0.200
0.208
0.231
0.258
0.273
0.305
0.319
0.320
0.297
0.260
0.240
0.216
0.192
0.173
0.155
ð11.7
ð15.4
ð23.5
ð34.2
ð47.2
ð60.9
ð77.8
ð96.2
ð115.4
ð128.2
ð142.2
ð156.3
ð169.7
176.0
162.3
Application Note P12152EJ3V0AN00
S22
K
1.06
1.07
1.21
1.10
0.86
0.79
0.82
0.89
1.04
1.10
1.22
1.31
1.40
1.56
1.65
29
PPC2762T
VCC = Vout = 3.0 V, ICC = 29 mA
FREQUENCY
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.365
0.367
0.371
0.361
0.359
0.351
0.350
0.357
0.371
0.405
0.421
0.454
0.462
0.467
0.457
0.461
0.459
0.468
0.485
0.487
0.488
0.480
0.484
0.473
0.477
0.470
0.471
0.469
0.468
0.457
0.425
ð3.1
ð5.3
ð8.1
ð9.9
ð11.9
ð14.0
ð17.5
ð20.0
ð24.0
ð24.5
ð24.5
ð23.0
ð23.0
ð24.7
ð24.3
ð25.0
ð25.2
ð25.7
ð25.6
ð26.8
ð25.9
ð26.7
ð29.5
ð32.9
ð37.4
ð40.7
ð43.1
ð44.2
ð45.5
ð45.8
ð45.8
4.352
4.333
4.359
4.327
4.343
4.445
4.498
4.630
4.726
4.790
4.925
5.120
5.293
5.350
5.431
5.529
5.632
5.646
5.803
5.921
5.993
6.027
5.967
5.915
5.766
5.480
5.177
4.909
4.682
4.465
4.253
ð14.3
ð29.8
ð44.2
ð59.4
ð73.1
ð87.8
ð102.1
ð116.6
ð131.8
ð147.5
ð161.9
ð177.7
165.7
148.3
132.6
116.2
99.0
82.5
65.6
48.0
29.9
11.0
ð7.6
ð26.4
ð45.5
ð64.5
ð81.9
ð98.6
ð115.3
ð131.9
ð148.2
0.039
0.038
0.038
0.038
0.040
0.039
0.041
0.042
0.042
0.043
0.045
0.047
0.049
0.048
0.049
0.049
0.051
0.050
0.051
0.054
0.055
0.057
0.057
0.056
0.057
0.059
0.061
0.060
0.061
0.061
0.065
ð8.0
ð18.5
ð24.5
ð32.7
ð39.6
ð50.4
ð58.3
ð67.5
ð76.1
ð84.4
ð94.0
ð103.3
ð113.6
ð126.1
ð133.5
ð145.2
ð153.6
ð164.1
ð172.7
177.1
167.8
157.1
145.6
137.3
123.5
115.2
104.9
94.5
87.8
74.7
64.2
0.347
0.345
0.343
0.334
0.334
0.359
0.377
0.369
0.348
0.328
0.351
0.385
0.397
0.369
0.342
0.343
0.341
0.320
0.286
0.265
0.238
0.206
0.166
0.109
0.062
0.031
0.037
0.079
0.105
0.120
0.107
ð6.8
ð11.9
ð15.9
ð22.6
ð29.0
ð34.6
ð37.0
ð39.8
ð43.6
ð48.6
ð52.5
ð55.7
ð57.9
ð63.8
ð66.4
ð72.7
ð80.1
ð86.2
ð91.3
ð97.7
ð106.3
ð111.3
ð118.0
ð130.8
ð164.2
127.3
43.5
7.1
ð3.0
ð6.4
ð8.9
30
S11
S21
S12
Application Note P12152EJ3V0AN00
S22
K
2.20
2.27
2.29
2.35
2.29
2.28
2.19
2.11
2.10
2.05
1.90
1.70
1.54
1.51
1.45
1.36
1.26
1.26
1.20
1.14
1.16
1.19
1.25
1.32
1.33
1.36
1.37
1.43
1.46
1.52
1.57
PPC2763T
VCC = Vout = 3.0 V, ICC = 26 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
0.209
0.210
0.216
0.220
0.226
0.232
0.239
0.248
0.255
0.262
0.266
0.273
0.276
0.280
0.280
0.280
0.276
0.269
0.260
0.251
0.238
0.224
0.210
0.196
0.182
0.167
0.152
0.140
0.134
0.120
ð0.0
ð0.8
ð1.8
ð3.2
ð5.1
ð6.9
ð9.6
ð12.3
ð15.9
ð19.8
ð24.0
ð28.2
ð33.7
ð38.8
ð44.8
ð51.2
ð57.7
ð64.7
ð71.3
ð78.4
ð85.6
ð92.5
ð99.7
ð107.4
ð114.5
ð121.4
ð127.4
ð131.9
ð140.3
ð148.7
10.116
10.149
10.186
10.292
10.366
10.467
10.635
10.717
10.900
11.004
11.168
11.173
11.318
11.221
11.134
10.878
10.512
10.207
9.747
9.378
8.962
8.551
8.135
7.739
7.349
6.980
6.678
6.309
5.918
5.675
ð6.0
ð11.7
ð17.7
ð23.6
ð29.5
ð35.7
ð42.2
ð48.8
ð55.7
ð63.2
ð70.1
ð77.7
ð86.3
ð94.0
ð103.0
ð111.4
ð119.5
ð127.4
ð135.2
ð142.6
ð149.6
ð157.0
ð163.5
ð170.2
ð176.3
177.4
171.2
165.3
159.2
153.9
0.023
0.023
0.023
0.024
0.025
0.026
0.027
0.029
0.028
0.030
0.032
0.033
0.033
0.034
0.034
0.034
0.035
0.035
0.035
0.035
0.036
0.035
0.036
0.035
0.037
0.038
0.039
0.039
0.039
0.041
2.4
6.4
9.6
13.1
17.1
20.9
23.0
25.9
27.3
27.7
28.5
29.7
27.8
29.2
28.9
29.7
30.4
32.1
32.7
33.4
35.1
35.9
38.2
40.2
41.5
44.0
45.4
46.7
47.6
48.8
0.391
0.389
0.388
0.386
0.388
0.389
0.396
0.402
0.404
0.408
0.412
0.416
0.421
0.423
0.425
0.420
0.418
0.415
0.413
0.408
0.400
0.391
0.382
0.373
0.357
0.343
0.322
0.298
0.284
0.271
ð6.2
ð12.3
ð18.2
ð24.1
ð30.0
ð36.3
ð42.3
ð48.5
ð55.4
ð62.5
ð70.0
ð77.3
ð85.3
ð93.1
ð101.7
ð110.2
ð118.5
ð126.7
ð135.6
ð144.1
ð153.1
ð162.0
ð171.1
ð179.6
171.8
163.1
154.9
148.1
142.4
137.1
Application Note P12152EJ3V0AN00
S22
K
1.76
1.74
1.75
1.70
1.60
1.56
1.46
1.35
1.36
1.28
1.20
1.17
1.15
1.14
1.14
1.18
1.21
1.27
1.33
1.39
1.45
1.56
1.60
1.72
1.76
1.81
1.85
1.97
2.08
2.10
31
PPC2771T
VCC = Vout = 3.0 V, ICC = 36 mA
FREQUENCY
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
0.148
0.098
0.082
0.083
0.088
0.095
0.114
0.129
0.163
0.178
0.192
0.207
0.211
0.217
0.203
0.196
0.189
0.170
0.144
0.137
0.109
0.088
0.079
0.062
0.047
0.030
0.018
0.015
0.022
0.037
109.2
110.8
107.6
86.8
68.9
53.0
38.9
33.4
23.1
16.2
11.3
5.5
1.9
ð5.4
ð11.0
ð18.5
ð24.0
ð31.2
ð38.4
ð47.5
ð56.6
ð65.7
ð70.9
ð77.9
ð94.9
ð102.0
ð114.9
162.0
111.1
87.9
10.732
10.644
10.739
10.898
11.011
11.119
11.246
11.330
11.526
11.500
11.537
11.403
11.176
10.936
10.587
10.162
9.784
9.339
8.836
8.418
7.877
7.604
7.214
6.743
6.420
6.044
5.654
5.315
4.959
4.669
ð11.3
ð15.4
ð22.0
ð28.9
ð35.7
ð43.5
ð51.5
ð59.1
ð67.4
ð76.8
ð85.9
ð94.3
ð104.0
ð113.4
ð122.7
ð132.0
ð140.5
ð148.9
ð156.9
ð164.5
ð172.7
ð179.8
172.4
164.6
157.7
151.1
144.2
137.4
130.9
124.4
0.031
0.025
0.025
0.025
0.025
0.022
0.030
0.034
0.033
0.030
0.031
0.040
0.033
0.031
0.037
0.033
0.041
0.039
0.035
0.036
0.034
0.038
0.045
0.039
0.041
0.046
0.043
0.046
0.043
0.048
3.7
2.2
8.7
0.7
22.9
17.1
22.9
10.3
29.2
17.6
24.7
8.8
12.9
21.2
23.0
16.6
14.9
10.2
15.0
20.7
30.0
21.3
33.4
19.6
23.9
28.6
40.0
25.1
34.1
35.2
0.334
0.320
0.317
0.323
0.326
0.337
0.352
0.355
0.360
0.367
0.376
0.386
0.394
0.395
0.403
0.407
0.410
0.404
0.401
0.392
0.384
0.384
0.377
0.359
0.351
0.331
0.318
0.302
0.295
0.262
ð6.9
ð11.9
ð17.0
ð23.2
ð31.2
ð38.8
ð46.0
ð53.4
ð64.2
ð71.1
ð79.8
ð89.0
ð97.8
ð107.2
ð115.9
ð125.1
ð132.4
ð139.3
ð147.0
ð156.0
ð162.9
ð172.5
ð179.5
170.2
162.3
153.5
144.4
138.0
131.1
125.2
32
S11
S21
S12
Application Note P12152EJ3V0AN00
S22
PPC2776T
VCC = Vout = 5.0 V, ICC = 28 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
ANG.
100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000
1000.000
1100.000
1200.000
1300.000
1400.000
1500.000
1600.000
1700.000
1800.000
1900.000
2000.000
2100.000
2200.000
2300.000
2400.000
2500.000
2600.000
2700.000
2800.000
2900.000
3000.000
3100.000
0.218
0.223
0.241
0.245
0.259
0.270
0.291
0.322
0.350
0.408
0.451
0.521
0.557
0.571
0.573
0.587
0.588
0.604
0.609
0.599
0.584
0.561
0.544
0.519
0.519
0.509
0.504
0.472
0.434
0.381
0.330
ð1.2
1.7
ð0.5
1.9
2.0
2.5
ð3.1
ð7.8
ð14.3
ð18.0
ð19.0
ð20.7
ð24.3
ð29.2
ð32.7
ð37.7
ð42.2
ð46.9
ð50.8
ð55.3
ð58.6
ð64.2
ð71.1
ð78.3
ð84.6
ð90.3
ð97.0
ð102.5
ð107.5
ð112.1
ð117.8
14.389
14.257
14.347
14.369
14.491
14.879
14.948
15.268
15.461
15.585
15.913
16.312
16.461
16.163
16.013
15.734
15.347
14.647
14.289
14.000
13.601
13.010
12.289
11.716
11.183
10.551
10.005
9.513
9.070
8.605
8.196
ð16.1
ð33.9
ð50.2
ð67.4
ð83.4
ð101.0
ð117.9
ð135.5
ð153.1
ð171.7
170.9
151.8
132.3
112.5
93.7
74.7
55.4
36.7
19.0
1.0
ð18.1
ð37.6
ð55.5
ð73.3
ð91.2
ð108.9
ð126.1
ð142.9
ð160.4
ð177.3
165.9
0.030
0.029
0.029
0.029
0.029
0.030
0.030
0.029
0.029
0.029
0.028
0.029
0.031
0.027
0.027
0.025
0.023
0.021
0.019
0.019
0.016
0.015
0.011
0.009
0.008
0.008
0.012
0.016
0.019
0.020
0.021
ð10.4
ð24.1
ð29.3
ð40.4
ð49.3
ð58.0
ð69.5
ð78.6
ð91.9
ð103.2
ð112.4
ð121.3
ð135.5
ð144.7
ð155.5
ð166.4
179.0
171.7
162.9
151.6
142.7
135.6
127.9
130.4
130.4
145.6
163.5
153.3
141.0
129.3
122.9
0.048
0.045
0.046
0.069
0.094
0.119
0.125
0.131
0.139
0.139
0.141
0.145
0.146
0.158
0.183
0.197
0.196
0.198
0.232
0.255
0.280
0.289
0.304
0.348
0.387
0.418
0.430
0.448
0.459
0.474
0.478
ð157.8
ð148.4
ð134.9
ð131.1
ð125.0
ð116.5
ð113.1
ð127.6
ð144.5
ð153.9
ð144.1
ð137.8
ð147.0
ð165.7
176.6
167.1
158.8
149.6
140.7
133.2
125.8
115.4
109.6
105.6
102.5
98.5
94.2
87.7
83.6
82.2
82.1
Application Note P12152EJ3V0AN00
S22
K
1.33
1.34
1.33
1.32
1.29
1.23
1.22
1.19
1.18
1.14
1.14
1.07
1.00
1.05
1.06
1.07
1.11
1.17
1.21
1.24
1.41
1.62
2.21
2.90
3.27
3.64
2.44
1.92
1.79
1.80
1.96
33
[MEMO]
34
Application Note P12152EJ3V0AN00
Facsimile Message
From:
Name
Company
Tel.
Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.
FAX
Address
Thank you for your kind support.
North America
Hong Kong, Philippines, Oceania
NEC Electronics Inc.
NEC Electronics Hong Kong Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130
Korea
Europe
NEC Electronics Hong Kong Ltd.
NEC Electronics (Europe) GmbH
Seoul Branch
Technical Documentation Dept.
Fax: 02-528-4411
Fax: +49-211-6503-274
South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829
Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583
Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900
Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951
I would like to report the following error/make the following suggestion:
Document title:
Document number:
Page number:
If possible, please fax the referenced page or drawing.
Document Rating
Excellent
Good
Acceptable
Poor
Clarity
Technical Accuracy
Organization
CS 99.1