ETC APT35GP120B

APT35GP120B
1200V
®
POWER MOS 7 IGBT
TO-247
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 800V, 12A
• Low Gate Charge
• 50 kHz operation @ 800V, 20A
• Ultrafast Tail Current shutoff
• RBSOA rated
MAXIMUM RATINGS
Symbol
G
C
E
C
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT35GP120B
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
96
I C2
Continuous Collector Current @ TC = 110°C
46
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
140
@ TC = 25°C
140A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
Watts
540
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
MIN
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C)
2.9
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C)
2.8
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
1200
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
nA
Rev B 7-2002
BVCES
UNIT
050-7406
Symbol
APT35GP120B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
3423
VGE = 0V, VCE = 25V
252
Reverse Transfer Capacitance
f = 1 MHz
30
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7
150
VCE = 600V
21
I C = 35A
62
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
RBSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
140
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 35A
77
4
Turn-on Switching Energy (Diode) 5
Eon1
99
25
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
14
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 800V
1000
TJ = +25°C
2262
6
14
VGE = 15V
155
Current Fall Time
I C = 35A
128
Turn-on Switching Energy
R G = 5Ω
Current Rise Time
Turn-off Delay Time
Turn-off Switching Energy
µJ
1185
Inductive Switching (125°C)
VCC = 800V
4
Turn-on Switching Energy (Diode)
ns
5
25
ns
1000
TJ = +125°C
4027
6
µJ
3016
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.23
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy. (See Figures 21, 23.)
050-7406
Rev B 7-2002
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT35GP120B
50
50
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
45
IC, COLLECTOR CURRENT (A)
35
30
25
TC=25°C
20
TC=125°C
15
10
25
15
0
1
2
3
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
60
TJ = 25°C
40
TJ = 125°C
20
TJ = -55°C
0
IC= 70A
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
IC= 35A
3
IC=17.5A
2.5
2
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
8
4
2
0
0
4.5
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.90
40 60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC=70A
3.5
3
IC= 35A
2.5
2
IC= 17.5A
1.5
1
0.5
0
-50
-25
0
25
50
75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
0.95
20
5
1.15
1.0
VCE= 960V
6
140
1.05
VCE= 600V
10
1.2
1.1
VCE= 240V
12
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.5
IC = 35A
TJ = 25°C
14
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
80
TC=125°C
10
0
100
TC=25°C
20
5
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC, COLLECTOR CURRENT (A)
50
0
FIGURE 1, Output Characteristics(VGE = 15V)
120
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
35
5
0
1
2
3
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
40
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev B 7-2002
40
050-7406
IC, COLLECTOR CURRENT (A)
45
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT35GP120B
180
25
VGE= 10V
20
VGE= 15V
15
10
VCE = 800V
5 TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
VCE = 800V
160 RG = 5Ω
L = 100 µH
140
VGE =10V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
VGE =10V,TJ=25°C
60
40
20
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
70
180
TJ = 25 or125°C,VGE = 10V
60
VGE =15V,TJ=125°C
TJ = 125°C, VGE = 10V or 15V
160
tf, FALL TIME (ns)
tr, RISE TIME (ns)
140
50
40
30
20
TJ = 25 or 125°C,VGE =10V
8000
TJ=125°C,VGE=15V
7000
TJ=125°C,VGE=10V
6000
5000
4000
3000
TJ= 25°C,VGE=15V
2000
TJ= 25°C,VGE=10V
1000
EOFF, TURN OFF ENERGY LOSS (µJ)
7000
VCE = 800V
VGE = +15V
RG = 5 Ω
RG = 5Ω, L = 100µH, VCE = 800V
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
6000
VCE = 800V
VGE = +15V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
5000
4000
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
12000
9000
VCE = 800V
VGE = +15V
RG = 5 Ω
10000
Eon2 70A
8000
Eoff 70A
6000
Eon2 35A
4000
Eoff 35A
Eon2 17.5A
2000
Eoff 17.5A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
TJ = 25°C, VGE = 10V or 15V
60
0
9000
SWITCHING ENERGY LOSSES (µJ)
80
20
RG = 5Ω, L = 100µH, VCE = 800V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev B 7-2002
100
40
10
050-7406
120
8000
VCE = 800V
VGE = +15V
RG = 5 Ω
Eon2 70A
7000
6000
5000
4000 Eoff70A
Eon2 35A
3000
2000
1000
Eoff 35A
0
-25
Eon2 17.5A
Eoff 17.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT35GP120B
160
10,000
140
Cies
1,000
500
Coes
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
120
P
C, CAPACITANCE ( F)
5,000
100
80
60
40
20
0
0
200
400
600
800
1000 1200
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Reverse Bias Safe Operating Area
D=0.5
0.1
0.05
0.2
0.1
0.05
0.01
PDM
Note:
0.02
0.005
t1
0.01
t2
SINGLE PULSE
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
0.001
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
140
50
Fmax = min(f max1 , f max 2 )
10
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
5
Pdiss =
TJ − TC
R θJC
10
20
30
40
50
60
70
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Rev B 7-2002
1
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
050-7406
10-5
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT35GP120B
APT 35GP120B2D2
Gate Voltage
10%
18V
TJ = 125 C
t d(on)
V CE
IC
V CC
tr
A
Collector Current
90%
D.U.T.
10%
5%
5%
Collector Voltage
Figure 21, Inductive Switching Test Circuit
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
T J = 125 C
t d(off)
*DRIVER SAME TYPE AS D.U.T.
Collector Voltage
90%
A
V CE
tf
IC
100uH
V CLAMP
10%
A
Collector Current
Switching
Energy
D.U.T.
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
Collector
6.15 (.242) BSC
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
2.87 (.113)
3.12 (.123)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
Rev B 7-2002
1.01 (.040)
1.40 (.055)
050-7406
B
0
2.21 (.087)
2.59 (.102)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT's devices are covered by one or more of the following U.S.patents:
4,895,810
5,256,583
5,045,903
4,748,103
5,089,434
5,283,202
5,182,234
5,231,474
5,019,522
5,434,095
5,262,336
5,528,058