ETC BSP752-R

BSP 752 R
Smart Power High-Side-Switch
Features
Product Summary
62
V
·
Overload protection
Overvoltage protection
Vbb(AZ)
·
Current limitation
Operating voltage
Vbb(on)
·
Short circuit protection
On-state resistance
RON
200
mW
·
Thermal shutdown with restart
Nominal load current
I L(nom)
1.3
A
·
Overvoltage protection (including load dump)
·
Fast demagnetization of inductive loads
·
Reverse battery protection with external resistor
·
Open drain diagnostic output for overtemperature
6...52 V
and short circuit
·
Open load detection in OFF - State
with external resistor
·
CMOS compatible input
Loss of GND and loss of Vbb protection
· ESD - Protection
·
·
Very low standby current
Application
• All types of resistive, inductive and capacitive loads
• µC compatible power switch for 12 V, 24 V and 42 V DC applications
• Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input
and diagnostic feedback, monolithically integrated in Smart SIPMOS â technology.
Fully protected by embedded protection functions.
Page 1
2000-03-07
BSP 752 R
Block Diagram
+ V bb
Voltage
Overvoltage
Current
Gate
source
protection
limit
protection
V Logic
OUT
Limit for
unclamped
ind. loads
Charge pump
Level shifter
Temperature
sensor
Rectifier
IN
ESD
Load
Logic
ST
miniPROFET
GND

Load GND
Signal GND
Pin
Symbol
Function
1
GND
Logic ground
2
IN
3
OUT
Output to the load
4
ST
Diagnostic feedback
5
Vbb
Positive power supply voltage
6
Vbb
Positive power supply voltage
7
Vbb
Positive power supply voltage
8
Vbb
Positive power supply voltage
Input, activates the power switch in case of logic high signal
Page 2
2000-03-07
BSP 752 R
Maximum Ratings at Tj = 25°C, unless otherwise specified
Parameter
Symbol
Value
Supply voltage
Vbb
52
Supply voltage for full short circuit protection
Vbb(SC)
50
Continuous input voltage
VIN
-10 ... +16
Load current (Short - circuit current, see page 5)
IL
self limited
Current through input pin (DC)
IIN
Operating temperature
Tj
-40 ...+150
Storage temperature
Tstg
-55 ... +150
Power dissipation 1)
Ptot
1.5
W
Inductive load switch-off energy dissipation 1)2)
EAS
125
mJ
±
Unit
V
A
mA
5
°C
single pulse, (see page 9 )
Tj =150 °C, I L = 1 A
Load dump protection 2) VLoadDump3)= VA + V S
V
V/RDGGXPS
RI=2W, t d=400ms, VIN= low or high, VA=13,5V
RL = 13.5 W
73.5
RL = 27 W
83.5
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
kV
ESD STM5.1 - 1998
Input pin
±
1
all other pins
±
5
Thermal Characteristics
Thermal resistance @ min. footprint
Rth(JA)
-
95
-
Thermal resistance @ 6 cm 2 cooling area 1)
Rth(JA)
-
70
83
K/W
1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 17)
2not tested, specified by design
3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a
150W resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2000-03-07
BSP 752 R
Electrical Characteristics
Parameter and Conditions
Symbol
DW7M ƒ&9EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
min.
typ.
Unit
max.
Load Switching Capabilities and Characteristics
On-state resistance
RON
mW
Tj = 25 °C, IL = 1 A, Vbb = 9...52 V
-
150
200
Tj = 150 °C
-
270
380
1.3
1.7
-
A
µs
Nominal load current; Device on PCB 1)
TC = 85 °C, Tj
£
IL(nom)
150 °C
Turn-on time
to 90% VOUT
ton
-
80
180
to 10% VOUT
toff
-
80
200
dV/dton
-
0.7
2
-dV/dtoff
-
0.9
2
Operating voltage
Vbb(on)
6
-
52
Undervoltage shutdown of charge pump
Vbb(under)
Tj = -40...+85 °C
-
-
4
Tj = 150 °C
-
-
5.5
-
4
5.5
RL = 47 W
Turn-off time
RL = 47 W
Slew rate on
10 to 30% VOUT ,
V/µs
RL = 47 W, Vbb = 13.5 V
Slew rate off
70 to 40% VOUT ,
RL = 47 W, Vbb = 13.5 V
Operating Parameters
Undervoltage restart of charge pump
Vbb(u cp)
Standby current
I bb(off)
µA
Tj = -40...+85 °C, V IN = low
-
-
15
Tj = +150 °C2), V IN = low
-
-
18
I L(off)
-
-
5
I GND
-
0.8
2
Leakage output current (included in Ibb(off))
V
VIN = low
Operating current
mA
VIN = high
1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 17)
2higher current due temperature sensor
Page 4
2000-03-07
BSP 752 R
Electrical Characteristics
Parameter and Conditions
Symbol
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
min.
typ.
Unit
max.
Protection Functions
Initial peak short circuit current limit (pin 5 to 3)
A
IL(SCp)
T j = -40 °C, Vbb = 20 V, tm = 150 µs
-
-
9
T j = 25 °C
-
6.5
-
T j = 150 °C
4
-
-
T j = -40...+150 °C, V bb > 40 V , ( see page 12 )
-
5 1)
-
Vbb < 40 V
-
6
-
Vbb > 40 V
-
4.5
-
VON(CL)
59
63
-
Vbb(AZ)
62
-
-
Thermal overload trip temperature
Tjt
150
-
-
°C
Thermal hysteresis
D
Tjt
-
10
-
K
Reverse battery 3)
-Vbb
-
-
52
V
Drain-source diode voltage (VOUT > Vbb)
-VON
-
600
-
Repetitive short circuit current limit
IL(SCr)
T j = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
V
at V OUT = V bb - V ON(CL),
I bb = 4 mA
Overvoltage protection 2)
I bb = 4 mA
Reverse Battery
mV
T j = 150 °C
1not tested, specified by design
2 see also VON(CL) in circuit diagram on page 8
3Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
Page 5
2000-03-07
BSP 752 R
Electrical Characteristics
Parameter
Symbol
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
Unit
min.
typ.
max.
Input and Status feedback
Input turn-on threshold voltage
VIN(T+)
-
-
2.2
Input turn-off threshold voltage
VIN(T-)
0.8
-
-
Input threshold hysteresis
D
-
0.4
-
Off state input current
IIN(off)
1
-
25
IIN(on)
3
-
25
5.4
6.1
-
T j = -40...+25 °C, IST = 1.6 mA
-
-
0.4
T j = 150 °C, I ST = 1.6 mA
-
-
0.6
td(ST+)
-
120
160
Status invalid after negative input slope 1)
td(ST-)
-
250
400
Input resistance (see page 8)
RI
2
3.5
5
kW
Short circuit detection voltage
VOUT(SC)
-
2.8
-
V
Open load detection voltage 2)
VOUT(OL)
-
3
4
Internal output pull down3)
RO
-
200
-
VIN(T)
V
µA
VIN = 0.7 V
On state input current
VIN = 5 V
Status output (open drain), Zener limit voltage
VST(high)
V
I ST = 1.6 mA
Status output (open drain), ST low voltage
VST(low)
Status invalid after positive input slope 1)
µs
Vbb = 20 V
Diagnostic Characteristics
kW
( see page 9 and 14 )
VOUT(OL) = 4 V
1no delay time after overtemperature switch off and short circuit in on-state
2External pull up resistor required for open load detection in off state.
3not tested, specified by design
Page 6
2000-03-07
BSP 752 R
Input
Output
level
level
Normal
L
L
H
operation
H
H
H
Short circuit
L
L
H
to GND
H
L*
L
Short circuit to
L
H
L
Vbb (in off-state)
H
H
H
Overload
L
L
H
H
H **
H
L
L
H
H
L
L
Open Load in
L
Z
H (L 1))
off-state
H
H
H
Overtemperature
Status
*) Out ="L": VOUT < 2.8V typ.
**) Out ="H": VOUT > 2.8V typ.
Z = high impedance, potential depends on external circuit
1with external resistor between V and OUT
bb
Page 7
2000-03-07
BSP 752 R
Terms
Inductive and overvoltage output clamp
Ibb
+ V bb
V
I IN
IN
V
IL
PROFET
I ST
V
IN
ON
VON
OUT
OUT
ST
V
Z
Vbb
GND
GND
V ST
I
GND
bb
R
GND
V OUT
VON clamped to 59V min.
Overvoltage protection of logic part
Input circuit (ESD protection)
R
IN
I
ESD- ZD I
I
I
GND
7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS
DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG
VZ1 =6.1V typ., VZ2=Vbb(AZ)=62V min.,
RI=3.5 kW typ., RGND=150W
Reverse battery protection
Status output
± 5V
R
- V bb
Logic
ST
R
IN
+5V
I
ST
RST(ON)
OUT
Power
Inverse
Diode
ST
GND
R
GND
Signal GND
RL
Power GND
GND
RGND=150W, RI=3.5kW typ.,
Temperature protection is not active during inverse
current
Page 8
ESDZD
2000-03-07
BSP 752 R
Open-load detection
Vbb disconnect with charged inductive
load
OFF-state diagnostic condition:
V OUT > 3V typ.; IN=low
R
EXT
high
IN
Vbb
OFF
PROFET
V
OUT
OUT
ST
GND
Open load
detection
Logic
unit
R
O
V
Signal GN D
bb
GND disconnect
IN
Inductive Load switch-off energy
dissipation
Vbb
E bb
OUT
PROFET
E AS
ST
E Load
GND
V
bb
V
IN
V
IN
V
GND
ST
Vbb
PROFET
=
OUT
L
ST
GND
ZL
GND disconnect with GND pull up
^
R
IN
Vbb
PROFET
OUT
ST
GND
V
bb
V V
IN ST
V
GND
EL
ER
L
Energy stored in load inductance: EL = ½ * L * IL2
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt,
with an approximate solution for RL > 0W:
E AS =
Page 9
IL * R L
IL * L
)
* ( V b b + | V O U T ( C L )| ) * ln (1 +
| V O U T ( C L )|
2 * RL
2000-03-07
BSP 752 R
Typ. transient thermal impedance
Typ. transient thermal impedance
Z thJA=f(tp) @ 6cm 2 heatsink area
ZthJA=f(tp) @ min. footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
10 2
D=0.5
K/W
D=0.5
K/W
D=0.2
D=0.2
10 1
D=0.1
10 1
D=0.05
ZthJA
ZthJA
D=0.05
D=0.02
10 0
D=0.1
D=0.02
10 0
D=0.01
D=0.01
10 -1
D=0
10 -1
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
s
10
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
4
tp
10
V
Vbb
50
tp
Typ. on-state resistance
Typ. on-state resistance
RON = f(Tj) ; Vbb = 13,5V ; V in = high
RON = f(Vbb ); IL = 1 A ; Vin = high
300
400
mW
mW
150°C
300
200
RON
RON
s
150
250
200
25°C
150
100
-40°C
100
50
50
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
0
160
Page 10
5
10
15
20
25
30
35
40
2000-03-07
4
BSP 752 R
Typ. turn off time
Typ. turn on time
toff = f(Tj); RL = 47W
ton = f(Tj ); R L = 47W
160
160
µs
µs
9V
120
13.5V
100
t off
ton
120
100
9...42V
80
80
42V
60
60
40
40
20
20
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
-40 -20
160
Typ. slew rate on
0
20
40
60
80 100 120
°C
Tj
160
Typ. slew rate off
dV/dton = f(Tj ) ; RL = 47 W
dV/dtoff = f(Tj); RL = 47 W
2.0
3.5
V/µs
V/µs
-dV
dtoff
dV
dton
1.6
1.4
1.2
2.5
2.0
1.0
42V
1.5
0.8
42V
0.6
1.0
13.5V
0.4
9V
0.5
160
0.0
-40 -20
13.5V
9V
0.2
0.0
-40 -20
0
20
40
60
80 100 120
°C
Tj
Page 11
0
20
40
60
80 100 120
°C
Tj
160
2000-03-07
BSP 752 R
Typ. standby current
Typ. leakage current
Ibb(off) = f(Tj ) ; Vbb = 42V ; VIN = low
IL(off) = f(Tj) ; Vbb = 42V ; VIN = low
10
2.5
µA
IL(off)
Ibb(off)
µA
6
1.5
4
1.0
2
0.5
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0.0
-40 -20
160
0
20
40
60
80 100 120
°C
Tj
160
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Vbb)
toff(SC) = f(Tj,start ) ; Vbb = 20V
4.0
10
ms
A
3.0
toff(SC)
IL(SCp)
-40°C
25°C
150°C
6
2.5
2.0
4
1.5
1.0
2
0.5
0
0
10
20
30
40
0.0
-40 -20
60
V
Vbb
Page 12
0
20
40
60
80 100 120
°C
Tj
160
2000-03-07
BSP 752 R
Typ. input current
Typ. input current
IIN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high
IIN = f(VIN); Vbb = 13.5V
VINlow £ 0,7V; VINhigh = 5V
50
12
µA
µA
-40...25°C
150°C
I IN
I IN
8
30
on
6
20
off
4
10
2
0
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
0
160
1
2
3
4
5
Typ. input threshold voltage
Typ. input threshold voltage
VIN(th) = f(Tj ) ; Vbb = 13,5V
VIN(th) = f(Vbb) ; Tj = 25°C
2.0
8
V
on
on
1.6
1.6
off
1.4
1.2
VIN(th)
VIN(th)
V
VIN
2.0
V
1.4
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
20
40
60
80 100 120
°C
Tj
0.0
0
160
off
1.2
1.0
0.0
-40 -20
6
10
20
30
50
V
Vbb
Page 13
2000-03-07
BSP 752 R
Maximum allowable load inductance
Typ. status delay time
for a single switch off
td(ST) = f(Vbb); Tj = 25°C
L = f(I L); T jstart=150°C, RL=0W
2000
300
µs
mH
td(ST+/-)
1400
L
td(ST-)
250
1600
1200
225
200
175
1000
150
800
125
td(ST+)
100
600
75
42V
400
13,5V
50
200
0
0.0
25
0.2
0.5
0.8
1.0
0
0
1.5
A
10
20
30
50
V
IL
Vbb
Maximum allowable inductive switch-off
Typ. internal output pull down
energy, single pulse
RO = f(Vbb)
EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V
1800
800
kW
mJ
600
1200
RO
EAS
1400
150°C
500
1000
400
800
300
25°C
600
200
400
-40°C
100
200
0
0.0
0.2
0.5
0.8
1.0
0
0
1.5
A
IL
10
20
30
50
V
Vbb
Page 14
2000-03-07
BSP 752 R
Timing diagrams
Figure 2b: Switching a lamp,
Figure 1a: Vbb turn on:
IN
IN
Vbb
ST
I
V
L
OUT
IL
ST
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
IN
V
IN
OUT
ST
90%
t on
dV/ dton
dV/ dtoff
t
VOUT
off
10%
IL
t
IL
ST
Page 15
2000-03-07
BSP 752 R
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Figure 3b: Short circuit in on-state
shut down by overtemperature, restart by cooling
IN
IN
V
OUT
V OUT
Output
IL
I
short
L( SCp )
to GND
I
n o rm a l
o p e r a tio n
I
L( SCr )
O u tp u t s h o r t to G N D
L
I
L (S C r)
tm
ST
ST
t
t
t
d(ST+)
+HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ
RQH[WHUQDOFRQGLWLRQV
Figure 5: Undervoltage restart of charge pump
Figure 4: Overtemperature:
Reset if Tj < T jt
Von
IN
ST
Vbb( ucp)
IL
Vbb( under )
Vbb
TJ
t
Page 16
2000-03-07
BSP 752 R
Package and ordering code
all dimensions in mm
Ordering code:
Q67060-S7306
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm 2 active heatsink area ) as
a reference for max. power dissipation Ptot
nominal load current IL(nom) and thermal
resistance R thja
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 17
2000-03-07