ETC BTS410-F2

PROFET® BTS 410 F2
Smart Highside Power Switch
Features
Product Summary
Overvoltage protection
Operating voltage
On-state resistance
Load current (ISO)
Current limitation
• Overload protection
• Current limitation
• Short circuit protection
• Thermal shutdown
• Overvoltage protection (including load dump)
• Fast demagnetization of inductive loads
• Reverse battery protection1)
• Undervoltage and overvoltage shutdown with
auto-restart and hysteresis
• Open drain diagnostic output
• Open load detection in ON-state
• CMOS compatible input
• Loss of ground and loss of Vbb protection
• Electrostatic discharge (ESD) protection
Vbb(AZ)
Vbb(on)
RON
IL(ISO)
IL(SCr)
65
V
4.7 ... 42 V
220 mΩ
1.8
A
2.7
A
TO-220AB/5
5
5
5
1
Straight leads
Standard
1
SMD
Application
• µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
• Most suitable for inductive loads
• Replaces electromechanical relays, fuses and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic
feedback, monolithically integrated in Smart SIPMOS technology. Fully protected by embedded protection
functions.
+ V bb
Voltage
Overvoltage
Current
Gate
source
protection
limit
protection
3
V Logic
2
Voltage
Charge pump
sensor
Level shifter
Limit for
unclamped
ind. loads
Rectifier
IN
OUT
5
Temperature
sensor
Open load
ESD
4
Logic
Load
detection
ST
Short circuit
detection
GND

PROFET
1
Signal GND
1)
Load GND
With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistors in series with IN and ST
connections, reverse load current limited by connected load.
Semiconductor Group
1
03.97
BTS 410 F2
Pin
Symbol
Function
1
GND
-
Logic ground
2
IN
I
Input, activates the power switch in case of logical high signal
3
Vbb
+
Positive power supply voltage,
the tab is shorted to this pin
4
ST
S
Diagnostic feedback, low on failure
5
OUT
(Load, L)
O
Output to the load
Maximum Ratings at Tj = 25 °C unless otherwise specified
Parameter
Supply voltage (overvoltage protection see page 3)
Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V
RI3)= 2 Ω, RL= 6.6 Ω, td= 400 ms, IN= low or high
Load current (Short circuit current, see page 4)
Operating temperature range
Storage temperature range
Power dissipation (DC), TC ≤ 25 °C
Inductive load switch-off energy dissipation, single pulse
Vbb = 12V, Tj,start = 150°C, TC = 150°C const.
IL = 1.8 A, ZL = 2.3 H, 0 Ω:
Electrostatic discharge capability (ESD)
IN:
(Human Body Model)
all other pins:
Symbol
Vbb
VLoad dump4)
IL
Tj
Tstg
Ptot
EAS
VESD
Values
65
100
Unit
V
V
self-limited
-40 ...+150
-55 ...+150
50
A
°C
4.5
1
2
J
kV
-0.5 ... +6
±5.0
±5.0
V
mA
Values
typ
max
-2.5
-75
35
--
Unit
W
acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993
VIN
IIN
IST
Input voltage (DC)
Current through input pin (DC)
Current through status pin (DC)
see internal circuit diagrams page 6
Thermal Characteristics
Parameter and Conditions
Thermal resistance
2)
3)
4)
5)
Symbol
chip - case: RthJC
junction - ambient (free air): RthJA
SMD version, device on PCB5):
min
----
K/W
Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a
150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the
protection of the input is integrated.
RI = internal resistance of the load dump test pulse generator
VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb
connection. PCB is vertical without blown air.
Semiconductor Group
2
BTS 410 F2
Electrical Characteristics
Parameter and Conditions
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Values
min
typ
max
Unit
Load Switching Capabilities and Characteristics
On-state resistance (pin 3 to 5)
IL = 1.6 A
Tj=25 °C:
Tj=150 °C:
Nominal load current, ISO Norm (pin 3 to 5)
VON = 0.5 V, TC = 85 °C
Output current (pin 5) while GND disconnected or
GND pulled up, Vbb=30 V, VIN= 0, see diagram
page 7, Tj =-40...+150°C
Turn-on time
IN
to 90% VOUT:
to 10% VOUT:
Turn-off time
IN
RL = 12 Ω, Tj =-40...+150°C
Slew rate on
10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C
Slew rate off
70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C
Operating Parameters
Operating voltage 6)
Undervoltage shutdown
Tj =-40...+150°C:
Tj =25°C:
Tj =-40...+150°C:
Tj =-40...+150°C:
Undervoltage restart
Undervoltage restart of charge pump
see diagram page 12
Undervoltage hysteresis
∆Vbb(under) = Vbb(u rst) - Vbb(under)
Tj =-40...+150°C:
Overvoltage shutdown
Tj =-40...+150°C:
Overvoltage restart
Tj =-40...+150°C:
Overvoltage hysteresis
Tj =-40...+150°C:
Overvoltage protection7)
Ibb=4 mA
Tj=-40...+25°C:
Standby current (pin 3)
VIN=0
Tj= 150°C:
Leakage output current (included in Ibb(off))
VIN=0
Operating current (Pin 1)8), VIN=5 V,
Tj =-40...+150°C
6)
7)
RON
--
190
220
390
440
IL(ISO)
IL(GNDhigh)
1.6
--
1.8
--
-1
A
mA
ton
toff
12
5
---
125
85
µs
dV /dton
--
--
3
V/µs
-dV/dtoff
--
--
6
V/µs
Vbb(on)
Vbb(under)
4.7
2.9
2.7
---
----5.6
42
4.5
4.7
4.9
6.0
V
V
∆Vbb(under)
--
0.1
--
V
Vbb(over)
Vbb(o rst)
∆Vbb(over)
Vbb(AZ)
42
40
-65
--0.1
70
52
----
V
V
V
V
10
18
--
15
25
20
µA
IL(off)
----
IGND
--
1
2.1
mA
Vbb(u rst)
Vbb(ucp)
Ibb(off)
At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V
Meassured without load. See also VON(CL) in table of protection functions and circuit diagram page 6.
Semiconductor Group
3
mΩ
V
V
µA
BTS 410 F2
Protection Functions
Initial peak short circuit current limit (pin 3 to 5)9),
IL(SCp)
( max 450 µs if VON > VON(SC) )
Tj =-40°C:
Tj =25°C:
=+150°C:
Tj
Overload shutdown current limit
IL(SCr)
VON= 8 V, Tj = Tjt (see timing diagrams, page 10)
Short circuit shutdown delay after input pos. slope
VON > VON(SC),
Tj =-40..+150°C: td(SC)
4.0
3.5
2.0
-5.5
3.5
11
10
7.5
A
--
2.7
--
A
--
--
450
µs
VON(CL)
61
--
68
--
73
75
V
VON(SC)
Tjt
∆Tjt
-Vbb
-150
---
8.5
-10
--
---32
V
°C
K
V
2
--
150
VIN(T+)
VIN(T-)
∆ VIN(T)
IIN(off)
IIN(on)
td(ST SC)
1.5
1.0
-1
10
--
--0.5
-25
--
2.4
--30
70
450
V
V
V
µA
µA
µs
td(ST)
300
--
1400
µs
VST(high)
VST(low)
5.0
--
6
--
-0.4
V
min value valid only, if input "low" time exceeds 60 µs
Output clamp (inductive load switch off)
at VOUT = Vbb - VON(CL) IL= 40 mA, Tj =-40..+150°C:
IL= 1 A, Tj =-40..+150°C:
Short circuit shutdown detection voltage
(pin 3 to 5)
Thermal overload trip temperature
Thermal hysteresis
Reverse battery (pin 3 to 1) 10)
Diagnostic Characteristics
Open load detection current
(on-condition)
Tj=-40 ..150°C:
Input and Status Feedback11)
Input turn-on threshold voltage
Tj =-40..+150°C:
Tj =-40..+150°C:
Input turn-off threshold voltage
Input threshold hysteresis
Off state input current (pin 2), VIN = 0.4 V
On state input current (pin 2), VIN = 5 V
Status invalid after positive input slope
Tj=-40 ... +150°C:
(short circuit)
Status invalid after positive input slope
Tj=-40 ... +150°C:
(open load)
Status output (open drain)
Zener limit voltage Tj =-40...+150°C, IST = +50 uA:
ST low voltage Tj =-40...+150°C, IST = +1.6 mA:
8)
IL (OL)
mA
Add IST, if IST > 0, add IIN, if VIN>5.5 V
Short circuit current limit for max. duration of td(SC) max=450 µs, prior to shutdown
10) Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source
diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal
operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature
protection is not active during reverse current operation! Input and Status currents have to be limited (see
max. ratings page 2 and circuit page 6).
11) If a ground resistor R
GND is used, add the voltage drop across this resistor.
9)
Semiconductor Group
4
BTS 410 F2
Truth Table
Normal
operation
Open load
Short circuit
to GND
Short circuit
to Vbb
Overtemperature
Undervoltage
Overvoltage
L = "Low" Level
H = "High" Level
Input-
Output
level
level
412
B2
410
D2
410
E2/F2
410
G2
410
H2
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
H
H
L
H
H
L
L
H
L
L
L14)
L14)
L
L
H
H
H
L
H
L
H
H (L13))
L
L
L14)
L14)
L
L
H
H
H
L
H
L
H
H (L13))
L
L
H
H
H
H
H
H
H
L
H
H
H
H (L13))
L
L
H
H
H
H
H
H
L
H
H
L
L
H
L
L
H
H
H
H
12)
H
L
L
H
H
L
L
L
L
L
L
Status
X = don't care
Z = high impedance, potential depends on external circuit
Status signal after the time delay shown in the diagrams (see fig 5. page 11...12)
12)
Power Transistor off, high impedance, versions BTS 410H, BTS 412B: internal pull up current source for
open load detection.
13) Low resistance short V to output may be detected in ON-state by the no-load-detection
bb
14) No current sink capability during undervoltage shutdown
Semiconductor Group
5
BTS 410 F2
Terms
Short circuit detection
Fault Condition: VON > 8.5 V typ.; IN high
Ibb
3
I IN
2
IL
V
VST
IN
OUT
PROFET
I ST
V
+ V bb
Vbb
IN
4
VON
V
ON
5
ST
GND
1
bb
R
OUT
I
GND
VOUT
Short circuit
detection
Logic
unit
GND
Inductive and overvoltage output clamp
Input circuit (ESD protection)
+ V bb
R
IN
V
I
ESDZDI1 ZDI2
Z
VON
I
I
OUT
GND
GND
PROFET
ZDI1 6 V typ., ESD zener diodes are not to be used as
voltage clamp at DC conditions. Operation in this mode V clamped to 68 V typ.
ON
may result in a drift of the zener voltage (increase of up
to 1 V).
Overvolt. and reverse batt. protection
+ V bb
Status output
V
+5V
R ST(ON)
R IN
Logic
ST
R ST
ST
V
GND
Z2
IN
PROFET
Z1
ESDZD
GND
R GND
Signal GND
ESD-Zener diode: 6 V typ., max 5 mA;
RST(ON) < 250 Ω at 1.6 mA, ESD zener diodes are not VZ1 = 6.2 V typ., VZ2 = 70 V typ., RGND= 150 Ω, RIN,
to be used as voltage clamp at DC conditions.
RST= 15 kΩ
Operation in this mode may result in a drift of the zener
voltage (increase of up to 1 V).
Semiconductor Group
6
BTS 410 F2
Open-load detection
Vbb disconnect with energized inductive
load
ON-state diagnostic condition: VON < RON * IL(OL); IN
high
3
+ V bb
high
Vbb
IN
2
OUT
PROFET
VON
ON
5
ST
4
GND
1
OUT
Open load
detection
Logic
unit
V
bb
Normal load current can be handled by the PROFET
itself.
Vbb disconnect with charged external
inductive load
GND disconnect
S
3
IN
Vbb
3
high
2
Vbb
IN
2
PROFET
4
V
V
bb
IN
V
OUT
PROFET
OUT
5
4
1
GND
1
D
GND
ST
ST
5
ST
V
GND
V
bb
If other external inductive loads L are connected to the PROFET,
additional elements like D are necessary.
Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) .
Due to VGND >0, no VST = low signal available.
Inductive Load switch-off energy
dissipation
GND disconnect with GND pull up
E bb
3
2
E AS
Vbb
IN
PROFET
4
OUT
IN
5
ST
PROFET
GND
=
1
ELoad
V bb
OUT
ST
EL
GND
V
V
bb
V
IN ST
V
ZL
GND
{
L
RL
ER
Any kind of load. If VGND > VIN - VIN(T+) device stays off
Due to VGND >0, no VST = low signal available.
Energy stored in load inductance:
2
EL = 1/2·L·I L
While demagnetizing load inductance, the energy
dissipated in PROFET is
EAS= Ebb + EL - ER= ∫ VON(CL)·iL(t) dt,
Semiconductor Group
7
BTS 410 F2
with an approximate solution for RL > 0 Ω:
EAS=
IL· L
IL·RL
·(V + |VOUT(CL)|)· ln (1+
)
|VOUT(CL)|
2·RL bb
Maximum allowable load inductance for
a single switch off
Typ. transient thermal impedance chip case
ZthJC = f(tp, D), D=tp/T
L = f (IL ); Tj,start = 150°C,TC = 150°C const.,
Vbb = 12 V, RL = 0 Ω
ZthJC [K/W]
10
L [mH]
10000
1
1000
D=
0.5
0.2
0.1
0.05
0.02
0.01
0
0.1
0.01
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
tp [s]
100
1.5
1.75
2
2.25
2.5
2.75
3
IL [A]
Semiconductor Group
8
BTS 410 F2
Options Overview
all versions: High-side switch, Input protection, ESD protection, load dump and
reverse battery protection with 150 Ω in GND connection, protection against loss of
ground
Type
Logic version
BTS 412 B2 410D2 410E2 410F2 410G2 410H2
Overtemperature protection with hysteresis
Tj >150 °C, latch function15)16)
Tj >150 °C, with auto-restart on cooling
Short circuit to GND protection
B
D
X
X
E
F
G
X
X
X
X
X
X
X
X
X
308
H
X
switches off when VON>3.5 V typ. and Vbb> 7 V
typ15) (when first turned on after approx. 150 µs)
switches off when VON>8.5 V typ.15)
(when first turned on after approx. 150 µs)
307
X
X
X
Achieved through overtemperature protection
X
Open load detection
in OFF-state with sensing current 30 µA typ.
in ON-state with sensing voltage drop across
power transistor
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
overtemperature
X
X
X
X
X
X
X
X
short circuit to GND
X
X
X
X
-
X
X
X
short to Vbb
X
-18)
-18)
-18)
-18)
X
X
X
open load
X
X
X
X
X
X
X
X
undervoltage
X
X
-
-
-
-
X
-
overvoltage
X
X
-
-
-
-
-
-
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Undervoltage shutdown with auto restart
Overvoltage shutdown with auto
restart17)
Status feedback for
Status output type
CMOS
Open drain
Output negative voltage transient limit
(fast inductive load switch off)
to Vbb - VON(CL)
X
X
X
X
X
X
Load current limit
high level (can handle loads with high inrush currents)
low level (better protection of application)
Protection against loss of GND
X
15)
X
X
Latch except when Vbb -VOUT < VON(SC) after shutdown. In most cases VOUT = 0 V after shutdown (VOUT ≠
0 V only if forced externally). So the device remains latched unless Vbb < VON(SC) (see page 4). No latch
between turn on and td(SC).
16) With latch function. Reseted by a) Input low, b) Undervoltage
17) No auto restart after overvoltage in case of short circuit
18) Low resistance short V to output may be detected in ON-state by the no-load-detection
bb
Semiconductor Group
9
BTS 410 F2
Timing diagrams
Figure 3a: Turn on into short circuit,
Figure 1a: Vbb turn on:
IN
IN
t d(bb IN)
V
bb
ST
V
VOUT
OUT
td(SC)
A
I
ST open drain
L
t
t
A
in case of too early VIN=high the device may not turn on (curve A)
td(bb IN) approx. 150 µs
td(SC) approx. -- µs if Vbb - VOUT > 8.5 V typ.
Figure 3b: Turn on into overload,
Figure 2a: Switching an inductive load
IN
IN
t
ST
IL
d(ST)
I L(SCp)
*)
I L(SCr)
V
OUT
ST
IL
I L(OL)
t
t
Heating up may require several seconds,
Vbb - VOUT < 8.5 V typ.
*) if the time constant of load is too large, open-load-status may
occur
Semiconductor Group
10
BTS 410 F2
Figure 3c: Short circuit while on:
Figure 5a: Open load: detection in ON-state, turn
on/off to open load
IN
IN
ST
ST
V OUT
IL
V
I
**)
t
d(ST)
OUT
L
open
t
t
**) current peak approx. 20 µs
Figure 4a: Overtemperature,
Figure 5b: Open load: detection in ON-state, open
load occurs in on-state
Reset if (IN=low) and (Tj<Tjt)
IN
IN
t
d(ST OL1)
t
ST
d(ST OL2)
ST
V
V
OUT
OUT
I
T
normal
open
normal
L
J
t
t
td(ST OL1) = tbd µs typ., td(ST OL2) = tbd µs typ
*) ST goes high , when VIN=low and Tj<Tjt
Semiconductor Group
11
BTS 410 F2
Figure 6a: Undervoltage:
Figure 7a: Overvoltage:
IN
IN
V
Vbb
bb
V ON(CL)
Vbb(over)
V bb(o rst)
Vbb(u cp)
Vbb(u rst)
V
bb(under)
V
OUT
V OUT
ST
ST open drain
t
t
Figure 6b: Undervoltage restart of charge pump
Figure 9a: Overvoltage at short circuit shutdown:
VON(CL)
V on
IN
V
V
V
bb(u rst)
V
bb(over)
off-state
on-state
off-state
Vbb
V bb(o rst)
Output short to GND
V OUT
short circuit shutdown
I
bb(o rst)
L
bb(u cp)
V bb(under)
ST
V bb
t
charge pump starts at Vbb(ucp) =5.6 V typ.
Semiconductor Group
Overvoltage due to power line inductance. No overvoltage autorestart of PROFET after short circuit shutdown.
12
BTS 410 F2
SMD TO-220AB/5, Opt. E3062 Ordering code
Package and Ordering Code
BTS410F2 E3062A T&R:
All dimensions in mm
Standard TO-220AB/5
BTS 410 F2
Ordering code
Q67060-S6103-A2
Changed since 04.96
Date Change
Mar.
EAS maximum rating and diagram
1997 and ZthJC diagram added
ESD capability (except Input)
specified to 2kV, RthJA SMD
specified
IL(GND high) max reduced from 10 to
1 mA
Option Overview table columns for
BTS307/308 added
Fig. 1a: Vout-spike at Vbb-turn-on
added
TO-220AB/5, Option E3043 Ordering code
BTS 410 F2 E3043
Semiconductor Group
Q67060-S6103-A4
Q67060-S6103-A3
13