ETC GS3021

DynamEQ® I
Dynamic Equalizer - Class D
GS3021 - DATA SHEET
FEATURES
DESCRIPTION
•
•
•
•
designed to drive class D integrated receivers
handles high input levels (up to 100 mVRMS) cleanly
low THD and IMD distortion
unique twin average detectors
•
•
•
•
•
dual channel signal processing
adjustable AGC threshold levels
MPO range externally adjustable
highpass filter with adjustable corner frequency
2:1 compression of high frequencies
The DynamEQ® I hybrid is a dynamically adaptive loudness
growth equalizer. Its gain and frequency response is
dependent on the user's environment, and is designed
for level dependant frequency response providing treble
increase at low levels (TILL). The unique twin averaging
detector circuit dramatically reduces pumping effects
and is optimized for mild to moderate hearing loss.
DynamEQ ® I has two signal paths for dual channel
processing incorporating 4 amplifying stages (A , B,
C, D) and the AGC processing circuit.
• no external capacitors or resistors required
• 30% smaller by volume than DynamEQ® I (GS3011)
Stage A is a highpass channel with 2:1 compression,
Stage B is a wideband unity gain buffer. The sum of the
two paths gives a high frequency boost to low level
signals, which gradually compresses to a flat response at
high input levels. Stage C is used for volume control
adjustment, while stage D is a fixed gain stage with MPO
control designed to drive class D integrated receivers.
STANDARD PACKAGING
• Hybrid Typical Dimensions
0.250 in x 0.115 in x 0.115 in
(6.35 mm x 2.92 mm x 2.92 mm)
VB
5
C7
C6
2µ2
0µ1
100k
VREG 10
REGULATOR
C1
2µ2
SLOW
AVERAGE
DETECTOR
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
RTH 1
100k
R1
68k
RECTIFIER
VB
CHP 11
C2
48k
12k
-A
IN 9
-C
3n9
C3
0µ1
R2
D
3 OUT
48k
-B
50k
50k
50k
MGND 8
2 MPO
50k
C5
GND 4
C4
0µ1
GS3021
0µ1
7
All resistors in ohms, all capacitors in farads unless otherwise stated.
Patent Pending.
CIN
6
COUT
FUNCTIONAL BLOCK DIAGRAM
Revision Date: May 1998
Document No. 521 - 06 - 03
GENNUM CORPORATION P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 tel. +1 (905) 632-2996
Web Site: www.gennum.com E-mail: [email protected]
PAD CONNECTION
ABSOLUTE MAXIMUM RATINGS
PARAMETER
VALUE / UNITS
Supply Voltage
3 VDC
Power Dissipation
25 mW
Operating Temperature Range
-10° C to 40° C
Storage Temperature Range
-20° C to 70° C
RTH
1
MPO
2
OUT
3
4
GND
5
6
7
8
11
CHP
10
VREG
9
VB COUT CIN MGND IN
CAUTION
CLASS 1 ESD SENSITIVITY
ELECTRICAL CHARACTERISTICS
Conditions: Input Level VIN = -97dBV, Frequency = 5 kHz, Temperature = 25°C, Supply Voltage VB = 1.3 V
PARAMETER
SYMBOL
CONDITIONS
Hybrid Current
I AMP
Minimum Voltage
VB
Total Harmonic Distortion
THD
RVC= 15kΩ; VIN= -40dBV at1kHz
Input Referred Noise
IRN
NFB 0.2 to 10kHz at 12dB/oct
Total System Gain
AV
VIN = 0VRMS , R MPO = 50kΩ
MIN
TYP
MAX
UNITS
120
230
380
µA
1.1
-
-
V
-
0.1
1
%
µVRMS
-
2.5
-
45
48
51
1.74:1
1.95:1
2.11:1
Ratio
dB
AGC
Compression Ratio
COMP
VIN= -60dBV and -80dBV
Compression Gain Range
ARANGE
RVC= 10kΩ; Note 1
High Pass Corner Frequency
ƒ HPC
CHP - Not Connected
System Gain in Compression
A80
VIN= -80dBV
Maximum Output Level
MPO
MPO Range
∆MPO
Threshold
-
-94
-
dBV
26
28
-
dB
-
3.4
-
kHz
38
40
42
dB
VIN = -20dBV, RMPO = 0Ω
-14.3
-12.3
-10.3
dBV
VIN = -20dBV, RMPO = 0 to 50kΩ
13.8
15.8
17.8
dB
0.89
0.94
0.99
V
OUTPUT STAGE
REGULATOR
Regulator Voltage
VREG
All parameters and switches remain as shown in the Test Circuit unless otherwise stated in CONDITIONS column
V PX actual voltage measured on the pin at given condition (X is pin number)
Notes:
521 - 06 - 03
1. ARANGE = V P3 [VIN = -97dBV] - V P3 [VIN = -20 dBV] + 77dBV
2
1.3V
5
C7
C6
2µ2
0µ1
100k
10
REGULATOR
C1
2µ2
R1
68k
CHP=0µ1
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
1
100k
SLOW
AVERAGE
DETECTOR
RECTIFIER
VB
11
48k
12k
C2
-A
9
-C
3n9
0µ1
D
3
3k9
VIN
C3
R2
0µ1
50k
48k
50k
-B
50k
50k
8
2
50k
C5
4
RMPO=0
0µ1
C4
GS3021
0µ1
7
6
RVC
All resistors in ohms, all capacitors in farads unless otherwise stated.
100k
Fig.1 Production Test Circuit
1.3V
5
C7
C6
2µ2
0µ1
100k
10
REGULATOR
C1
2µ2
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
1
100k
SLOW
AVERAGE
DETECTOR
R1
68k
RECTIFIER
VB
1.3V
11
EK3024
or
MODEL 39
48k
C2
12k
-A
9
-C
3n9
C3
R2
0µ1
50k
0µ1
D
EP3074
3
2µ2
48k
-B
50k
50k
8
2
50k
C5
4
C4
0µ1
GS3021
0µ1
6
7
All resistors in ohms, all capacitors in farads unless otherwise stated.
RVC
Microphones and receivers shown above are for illustrative purposes only.
100k
Manufacturers can design with other appropriate transducers.
Fig. 2 Example of Hearing Instrument Application
3
521 - 06 - 03
VOLUME
CONTROL
BATTERY
+
-
MIC+
+
2µ2
EK3024
or
MODEL 39
REC
EP3074
10
9
8
7
6
5
4
3
0µ1
2
11
1
RMPO
Microphones and receivers shown above are for illustrative purposes only.
Manufacturers can design with other appropriate transducers.
Fig. 3 Example of Assembly Diagram
1.3V
5
C7
C6
2µ2
0µ1
100k
10
REGULATOR
C1
2µ2
∞
R1
68k
RTH=
CHP
(Normally not
connected)
FAST
AVERAGE
DETECTOR
2:1
COMPRESSION
CONTROL
CURRENT
REFERENCE
1
100k
SLOW
AVERAGE
DETECTOR
RECTIFIER
VB
11
C2
48k
12k
-A
9
0µ1
-C
3n9
D
3
3k9
VIN
C3
R2
0µ1
50k
-B
50k
50k
8
2
50k
C5
4
C4
0µ1
GS3021
0µ1
7
All resistors in ohms, all capacitors in farads unless otherwise stated.
6
RVC
15k
Fig. 4 Characterization Circuit (used to generate typical curves)
521 - 06 - 03
50k
48k
4
-10
35
VIN=-96dBV
30
OUTPUT LEVEL (dBV)
VIN=-80dBV
20
GAIN (dB)
-20
VIN =-88dBV
25
VIN=-70dBV
15
V IN=-60dBV
10
5
V IN=-40dBV
0
VIN=-20dBV
-5
1kHz
-40
2kHz
-50
RTH = ∞
5kHz
-60
1kHz
-70
2kHz
-80
-10
20
100
1k
10k
20k
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
FREQUENCY (Hz)
INPUT LEVEL (dBV)
Fig. 5 Frequency Response for Different Input Levels
Fig. 6 I/O Transfer Function for Different Test
Frequencies. Shown for Min/Max RTH Resistors Values
30
35
RVC=100kΩ
25
VIN = -50dBV
VIN=-96dBV
30
RVC=47kΩ
25
20
RVC=22kΩ
15
CHP=100nF
20
CHP=68nF
15
GAIN (dB)
10
RVC=15kΩ
5
0
CHP=33nF
10
CHP=10nF
5
CHP=No Capacitor
0
VIN =-20dBV
-5
-5
-10
-10
-15
-15
20
100
1k
10k
20k
20
100
1k
10k
20k
FREQUENCY (Hz)
FREQUENCY (Hz)
Fig. 7 Frequency Response for Different RVC Values
Fig. 8 Corner Frequency vs C HP Capacitor Value
-10
35
-20
30
ƒ = 5kHz
25
-30
-40
GAIN (dB)
OUTPUT LEVEL (dBV)
5kHz
RTH = 0
-90
-100
-15
GAIN (dB)
-30
-50
RTH = 0Ω
-60
22kΩ
47kΩ
100kΩ
RTH = ∞
-70
-80
-90
-100
RTH = ∞
= 100kΩ
= 47kΩ
20
= 22kΩ
15
=0
10
5
0
-5
-10
VIN=-96dBV
-15
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
20
100
1k
10k
20k
INPUT LEVEL (dBV)
FREQUENCY (Hz)
Fig. 9 I/O Transfer Function for Different RTH Resistors
Fig. 10 Frequency Characteristics for Different
RTH Values
5
521 - 06 - 03
-12
10
-14
RMPO=0Ω
ƒ = 5kHz
-20
ƒ=1kHz
RMPO=10kΩ
THD & NOISE (%)
OUTPUT (dBV)
-16
-18
-22
-24
RMPO=22kΩ
-26
-28
RMPO=33kΩ
-30
RMPO=50kΩ
-32
No Capacitor
1
-34
CHP =0.1µF
-36
-38
0.1
-80
-40
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
-70
-60
INPUT LEVEL (dBV)
-50
-40
-30
-20
INPUT LEVEL (dBV)
Fig. 11 I/O for Various RMPO Settings
Fig. 12 THD & Noise vs Input Level
1
10
VIN=-40dBV
ƒ =4kHz
IMD (%)
THD & NOISE (%)
∆ ƒ=200Hz
CHP =0.1µF
1
No Capacitor
No Capacitor
CHP =0.1µF
0.1
100
1k
10k
0.1
FREQUENCY (Hz)
IMD (%)
No Capacitor
CHP =0.1µF
VIN=-40dBV
∆ ƒ=200Hz
0.1
100k
FREQUENCY (Hz)
Fig. 15 Intermodulation Distortion (CCIF)
vs Frequency
521 - 06 - 03
-60
-50
-40
-30
Fig. 14 Intermodulation Distortion (CCIF)
vs Level
1
10k
-70
INPUT LEVEL (dBV
Fig. 13 THD & Noise vs Frequency
3k
-80
6
-20
0.250
(6.35)
GS3021
0.115
(2.92)
XXXXXX
0.125 MAX
(3.18)
1
11
C1
C7
2
3
4
5
6
7
8
9
10
Dimension units are in inches.
Dimensions in parenthesis are in millimetres converted
from inches and include minor rounding errors.
1.0000 inches = 25.400 mm.
Dimension ±0.005 (+0.13) unless otherwise stated.
Pad numbers for illustration purposes only.
Smallest pad 0.020 x 0.027 (0.51 x 0.69)
Largest pad 0.025 x 0.041 (0.64 x 1.04)
XXXXXX - work order number.
This hybrid is designed for point to point manual soldering.
Fig. 16 Hybrid Layout & Dimensions
DOCUMENT IDENTIFICATION: DATA SHEET
The product is in production. Gennum reserves the right to make
changes at any time to improve reliability, function or design, in
order to provide the best product possible.
REVISION NOTES:
Updated to Data Sheet
Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.
© Copyright December 1993 Gennum Corporation.
All rights reserved.
7
Printed in Canada.
521 - 06 - 03