ETC TS3V904IN

TS3V904
3V RAIL TO RAIL CMOS QUAD
OPERATIONAL AMPLIFIER (WITH STANDBY POSITION)
.
.
.
.
.
..
.
.
DEDICATED TO 3.3V OR BATTERY SUPPLY
(specified at 3V and 5V)
RAIL TO RAIL INPUT AND OUTPUT
VOLTAGE RANGES
2 SEPARATE STANDBY : REDUCED
CONSUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
EXTREMELY LOW INPUT BIAS CURRENT :
1pA TYP
LOW INPUT OFFSET VOLTAGE : 5mV max.
SPECIFIED FOR 600Ω AND 150Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
N
DIP16
(Plastic Package)
D
SO16
(Plastic Micropackage)
ORDER CODES
SPICE MACROMODEL INCLUDED IN THIS
SPECIFICATION
DESCRIPTION
The TS3V904 is a RAIL TO RAIL quad CMOS
operational amplifier designed to operate with a
single 3V supply voltage.
The input voltage range Vicm includes the two supply rails VCC+ and VCC-.
The output reaches :
VCC+ -50mV with RL = 10kΩ
• VCC- +50mV
• VCC +350mV VCC+ -350mV with RL = 600Ω
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of
only 200µA/amp. (VCC = 3V)
Source and sink output current capability istypically
40mA (at VCC = 3V), fixed by an internal limitation
circuit.
The TS3V904 offers two separate STANDBY pins
• STANDBY 1 acting on the n°2 and
n°3 operators
• STANDBY 2 acting on the n°1 and
n°4 operators
They reduce the consumption of the corresponding
operators and put the outputs in a high impedance
state.
These two STANDBY pins should never stay not
connected.
SGS-THOMSON is offering a quad op-amp with
the same features : TS3V902.
October 1997
Part Number
Package
Temperature Range
o
-40, +125 C
TS3V904I/AI
N
D
•
•
PIN CONNECTIONS (top view)
16
Output 4
-
15
Inverting Input 4
+
14
Non-inverting input 4
13
VCC -
5
12
Non-inverting input 3
Inve rting Input 2
6
11
Inve rting input 3
Output 2
7
10
Output 3
S tandby 1
8
9
Output 1
1
Inverting Input 1
2
-
Non-inve rting input 1
3
+
V CC +
4
Non-inve rting Input 2
S tandby 2
1/11
TS3V904
SCHEMATIC DIAGRAM (1/4 TS3V904)
VCC
S ta ndby
S ta ndby
Inte rna l
Vref
Non-inverting
Input
Inve rting
Input
Output
S ta ndby
S ta ndby
VCC
STANDBY POSITION
VCC
HIGH IMPE DANCE OUTP UT IN STANDBY MODE
1/4
TS 3V904
VCC
8/9
S TBY OFF
S TBY ON
Vsby
VCC
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vid
Parameter
Supply Voltage - (note 1)
Differential Input Voltage - (note 2)
Vi
Iin
Input Voltage - (note 3)
Cunnent on Inputs
Io
Current on Outputs
Operating Free Air Temperature Range
Toper
Notes :
TS3V904I/AI
Value
18
±18
Unit
V
V
-0.3 to 18
±50
V
mA
± 130
-40 to +125
mA
o
C
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol
VCC
Vicm
2/11
Parameter
Supply Voltage
Common Mode Input Voltage Range
Value
2.7 to 16
+
VCC -0.2 to VCC +0.2
Unit
V
V
TS3V904
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, pin 8 and pin 9 connected to VCC+, Tamb = 25oC
(unless otherwise specified)
Symbol
Parameter
Vio
Input Offset Voltage (Vic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
GBP
100
200
pA
1
150
300
300
400
pA
Low Level Output Voltage (Vid = -1V)
RL = 10kΩ
RL = 600Ω
RL = 100Ω
2.9
2.3
2.96
2.6
2
RL = 10kΩ
RL = 600Ω
2.8
2.1
Output Short Circuit Current (Vid = ±1V)
RL = 10kΩ
RL = 600Ω
RL = 100Ω
RL = 10kΩ
RL = 600Ω
Source (Vo = VCC−)
+
Sink
(Vo = VCC )
µA
dB
70
70
10
Large Signal Voltage Gain (RL = 10kΩ, VO = 1.2V to 1.8V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
200
40
40
3
2
en
VO1/VO2
µV/oC
1
∅m
SR-
Unit
mV
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, AVCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 0 to 3V, Vo = 1.5V
+
Supply Voltage Rejection Ratio (VCC = 2.7 to 3.3V, VO = VCC /2)
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Positive Slew Rate
(AVCL = 1, RL = 10kΩ, C L = 100pF, Vi =1.3V to 1.7V)
Negative Slew Rate
(AVCL = 1, RL = 10kΩ, C L = 100pF, Vi =1.3V to 1.7V)
Phase Margin
SR+
Max.
10
5
12
7
5
Tmin. ≤ Tamb ≤ Tmax.
Io
Typ.
Input Offset Voltage Drift
Tmin. ≤ Tamb ≤ Tmax.
VOL
Min.
TS3V904
TS3V904A
TS3V904
TS3V904A
50
300
900
dB
V/mV
V
100
400
mV
150
600
40
40
mA
MHz
0.8
0.5
V/µs
V/µs
0.4
30
Degrees
Equivalent Input Noise Voltage (R s = 100Ω, f = 1kHz)
30
nV
√

Hz
Channel Separation (f = 1kHz)
120
dB
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
STANDBY MODE
VCC+ = 3V, VCC- = 0V, Tamb = 25oC (unless otherwise specified)
Symbol
Vin SBY/ON
Vin SBY/OFF
ICC SBY
Parameter
Pin 8/9 Threshold Voltage for STANDBY ON
Pin 8/9 Threshold Voltage for STANDBY OFF
Total Consumption
Standby 1 ON - Standby 2 OFF
Standby 1 OFF - Standby 2 ON
Standby 1 and 2 ON
TS3V904I/AI
Min.
Typ.
Max.
1.2
1.5
400
400
0.5
Unit
V
V
µA
3/11
TS3V904
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2 ,pin 8 and pin 9 connected to VCC+, Tamb = 25oC
(unless otherwise specified)
Symbol
Parameter
Vio
Input Offset Voltage (Vic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
GBP
Max.
10
5
12
7
Unit
mV
µV/oC
5
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, AVCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 1.5 to 3.5V, Vo = 2.5V
+
Supply Voltage Rejection Ratio (VCC = 3 to 5V, VO = VCC /2)
1
100
200
pA
1
150
300
350
450
pA
High Level Output Voltage (Vid = 1V)
Low Level Output Voltage (Vid = -1V
Output Short Circuit Current (Vid = ±1V)
230
75
80
30
RL = 10kΩ
RL = 600Ω
RL = 100Ω
4.9
4.25
4.95
4.65
3.7
RL = 10kΩ
RL = 600Ω
4.8
4.1
50
350
1400
RL = 10kΩ
RL = 600Ω
RL = 100Ω
RL = 10kΩ
RL = 600Ω
Source (Vo = VCC−)
+
Sink
(Vo = VCC )
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
µA
dB
50
50
10
7
Large Signal Voltage Gain (RL = 10kΩ, VO = 1.5V to 3.5V)
Tmin. ≤ Tamb ≤ Tmax.
Tmin. ≤ Tamb ≤ Tmax.
Io
Typ.
Input Offset Voltage Drift
Tmin. ≤ Tamb ≤ Tmax.
VOL
Min.
TS3V904
TS3V904A
TS3V904
TS3V904A
dB
V/mV
V
100
500
mV
150
750
45
45
60
60
mA
MHz
0.9
SR+
Positive Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi =1V to 4V)
0.8
V/µs
SR-
Negative Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi =1V to 4V)
Phase Margin
0.5
V/µs
Degrees
∅m
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
4/11
30
TS3V904
TYPICAL CHARACTERISTICS
(standby OFF = standby 1 and 2 OFF)
(standby ON = standby 1 and 2 ON)
Figure 1a : Supply Current (each amplifier)
versus Supply Voltage
Figure 1b : Supply Current (each amplifier)
versus Supply Voltage (in STANDBY
mode)
50
SUPPLY CURRENT, I CC ( µ A)
SUPPLY CURRENT, ICC ( mA)
60 0
Tamb = 25 C
A VCL = 1
V o = VCC / 2
S tandby OFF
50 0
400
300
200
Tamb = 25 C
A VCL = 1
S tandby ON
40
30
20
10
10 0
0
4
8
12
0
16
4
SUP PLY VOLTAGE, VCC (V)
OUTPUT VOLTAGE, VOH (V)
INPUT BIAS CURRENT, I ib (pA)
5
VCC = 10V
Vi = 5V
No loa d
S ta ndby O FF
10
T a mb = 25 C
V id = 100mV
S ta ndby OFF
4
2
VCC = +3V
1
0
50
75
100
1 25
-70
OUTPUT VOLTAGE, V OL (V)
VCC = +16V
12
-42
-28
-14
0
Figure 4a : Low Level Output Voltage versus Low
Level Output Current
5
T a mb = 25 C
V id = 100mV
S ta ndby OFF
-56
OUTPUT CURRENT, IOH (mA)
Figure 3b : High Level Output Voltage versus
High Level Output Current
OUTPUT VOLTAGE, VOH (V)
VCC = +5V
3
TEMPERATURE, T a mb ( C)
16
16
Figure 3a : High Level Output Voltage versus
High Level Output Current
1 00
20
12
SUP PLY VOLTAGE, V CC (V)
Figure 2 : Input Bias Current versus Temperature
1
25
8
VCC = +10V
8
4
4
3
T amb = 25 C
V id = 100mV
S ta ndby OFF
VCC = +3V
2
VCC = +5V
1
0
-70
-56
-42
-28
-14
OUTP UT CURRENT, IOH (mA)
0
0
14
28
42
56
70
OUTP UT CURRENT, I OL (mA)
5/11
TS3V904
Figure 4b : Low Level Output Voltage versus
Low Level Output Current
GAIN
40
6
V
4
V
CC
CC
= 16V
= 10V
0
30
P HASE
20
90
Tamb = 25 C
VCC = 10V
R L = 10k Ω
C L = 100pF
AVCL = 100
S tandby OFF
10
2
45
P ha s e
Margin
0
135
Ga in
Bandwidth
P roduct
180
PHASE (Degrees)
8
50
T a mb = 25 C
V id = 100mV
S ta ndby OFF
GAIN (dB)
OUTPUT VOLTAGE, VOL (V)
10
Figure 5a : Open Loop Frequency Response
and Phase Shift
-10
0
14
28
42
56
70
10
2
10
OUTPUT CURRENT, I OL (mA)
50
GAIN
0
30
Ta mb = 25 C
VCC = 10V
R L = 60 0Ω
C L = 10 0pF
A VCL = 100
S ta nd by O FF
20
10
0
10
10
45
P HASE
2
10
3
P ha s e
Margin
90
135
Ga in
Ba ndwidth
P roduct
4
180
5
10
10
10
FREQUENCY, f (Hz)
6
10
PHASE (Degrees)
GAIN (dB)
40
7
PHASE MARGIN, φ m (Degrees)
GAIN BANDW. PROD., GBP (kHz)
Ta mb = 25 C
R L = 600Ω
C L = 100pF
Sta ndby OFF
1000
6 00
200
4
8
12
SUPP LY VOLTAGE, VCC (V)
6/11
6
10
7
1800
Ta mb = 25 C
R L = 10k Ω
C L = 100pF
Sta ndby OFF
1400
1000
600
200
0
4
8
12
16
Figure 7a : Phase Margin versus Supply Voltage
1800
0
5
S UPP LY VOLTAGE, VCC (V)
Figure 6b : Gain bandwidth Product versus
Supply Voltage
1400
4
10
10
10
FREQUENCY, f (Hz)
Figure 6a : Gain Bandwidth Product versus
Supply Voltage
GAIN BANDW. PROD., GBP (kHz)
Figure 5b : Open Loop Frequency Response and
Phase Shift
3
16
60
Tamb = 2 5 C
R L = 1 0kΩ
C L = 1 00p F
Sta ndby OFF
50
40
30
20
0
4
8
12
S UPP LY VOLTAGE, VCC (V)
16
TS3V904
Figure 8 : Input Voltage Noise versus Frequency
60
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
PHASE MARGIN,φ m (Degrees)
Figure 7b : Phase Margin versus Supply Voltage
Ta mb = 25 C
R L = 600Ω
C L = 100 pF
Sta ndby OFF
50
40
30
20
0
4
8
12
150
VCC = 10V
Tamb = 25 C
R S = 100Ω
100
Sta ndby OFF
50
0
16
1000
100
FREQUENCY (Hz)
10
SUP PLY VOLTAGE, VCC (V)
10000
STANDBY APPLICATION
The TS3V904 offers two separate STANDBY pins :
..
.
.
..
STANDBY 1 (pin 8) acting on the n°2 and n°3 operators.
STANDBY 2 (pin 9) acting on the n°1 and n°4 operators.
When one of these standby is activated (STANDBY ON) :
The supply current of the corresponding operators is considerably reduced. The total consumption of
the circuit is then divided by 2 (one STANDBY ON) or decreased down to 0.5µA (VCC = 3V, two
STANDBY ON). (ref. figure 1b).
All the outputs of the corresponding operators are in high impedance state. No output current can
then be sourced or sinked.
The standby pins 8 and 9 should never stay unconnected.
The ”standby OFF” state, is reached when the pins 8 or 9 voltage is higher than Vin SBY/OFF.
The ”standby ON” state, is assured by the pins 8 or 9 voltage lower than Vin SBY/OFF.
(see electrical characteristics)
ORDERING INFORMATION
T
3
S
V
9
0
4
A
N
I
3V
FAMILY
RAIL TO RAIL
TEMPERATURE
RANGE
OFFS ET VOLTAG E
S ELE CTION
OP AMPs
I
”Nothing”
A
14
DUAL - 200µA/amp - 0.8MHz
04
DUAL - 200µA/amp - 0.8MHz
+ S TANDBY position with
High Impe dance Outputs
10mV max.
5mV max.
-40 C to +125 C
P ACKAGES
N
D
DT
DIP
S0
S 0 Ta pe &Re e l
7/11
TS3V904
MACROMODEL
.
.
.
DEDICATED TO 3.3V OR BATTERY SUPPLY
(specified at 3V and 5V)
RAIL TO RAIL INPUT AND OUTPUT
VOLTAGE RANGES
2 SEPARATE STANDBY : REDUCED
CONSUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIV E POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TS3V904 1 3 2 4 5 6 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.500000E-12
CIN 1 5 1.500000E-12
EIP 10 0 2 0 1
EIN 16 0 1 0 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.655100E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
FPOL 13 0 VSTB 1
CPS 11 15 3.82E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.5000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 -0.5000000E+00
FCP 4 5 VOFP 8.6E+00
FCN 5 4 VOFN 8.6E+00
ISTB0 5 4 900NA
* AMPLIFYING STAGE
FIP 0 19 VOFP 5.500000E+02
FIN 0 19 VOFN 5.500000E+02
RG1 19 120 5.087344E+05
GCOM1 120 5 POLY(1) 110 109 LEVEL=1 6.25E+11
RG2 121 19 5.087344E+05
GCOM2 121 4 POLY(1) 110 109 LEVEL=1 6.25E+11
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 12.33E+02
HZTN 5 30 VOFN 12.33E+02
8/11
.
.
..
.
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
EXTREMELY LOW INPUT BIAS CURRENT :
1pA TYP
LOW INPUT OFFSET VOLTAGE : 5mV max.
SPECIFIED FOR 600Ω AND 150Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3135
VIPM 28 4 150
HONM 21 27 VOUT 3135
VINM 5 27 150
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 103 65
COUT 103 5 1.000000E-12
GCOM 103 3 POLY(1) 110 109 LEVEL=1 6.25E+11
* OUTPUT SWING
DOP 19 68 MDTH 400E-12
VOP 4 25 1.924
HSCP 68 25 VSCP1 1E8
DON 69 19 MDTH 400E-12
VON 24 5 2.4419107
HSCN 24 69 VSCN1 1.5E8
VSCTHP 60 61 0.1375
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.75
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
* STAND BY
RMI1 4 111 1E+12
RMI2 5 111 1E+12
RSTBIN 6 0 1E+12
ESTBIN 106 0 6 0 1
ESTBREF 106 107 111 0 1
DSTB1 107 108 MDTH 400E-12
VSTB 108 109 0
ISTB 109 0 40U
RSTB 109 110 1
DSTB2 0 110 MDTH 400E-12
.ENDS
TS3V904
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, standby off, Tamb = 25oC
(unless otherwise specified)
Symbol
Conditions
Vio
Value
Unit
0
mV
Avd
RL = 10kΩ
30
V/mV
ICC
No load, per operator
230
µA
-0.2 to 5.2
V
Vicm
VOH
RL = 10kΩ
4.95
V
VOL
RL = 10kΩ
50
mV
Isink
VO = 10V
60
mA
Isource
VO = 0V
60
mA
GBP
RL = 10kΩ, CL = 100pF
0.8
MHz
SR
RL = 10kΩ, CL = 100pF
0.8
V/µs
∅m
RL = 10kΩ, CL = 100pF
30
Degrees
VSTBY = 0V
500
nA
ICC STBY
9/11
TS3V904
PM-DIP16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC DIP
a1
B
b
b1
D
E
e
e3
F
i
L
Z
10/11
Min.
0.51
0.77
Millimeters
Typ.
Max.
1.65
0.5
0.25
Min.
0.020
0.030
Inches
Typ.
Max.
0.065
0.020
0.010
20
8.5
2.54
17.78
0.787
0.335
0.100
0.700
7.1
5.1
3.3
0.280
0.201
0.130
1.27
0.050
DIP16.TBL
Dimensions
TS3V904
PM-SO16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC MICROPACKAGE (SO)
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
G
L
M
S
Min.
Millimeters
Typ.
0.1
0.35
0.19
Max.
1.75
0.2
1.6
0.46
0.25
Min.
Inches
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
o
45 (typ.)
9.8
5.8
10
6.2
0.386
0.228
1.27
8.89
3.8
4.6
0.5
0.394
0.244
0.050
0.350
4.0
5.3
1.27
0.62
0.150
0.181
0.020
0.157
0.209
0.050
0.024
SO16.TBL
Dimensions
o
8 (max.)
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specification mentioned in this publ ication are subject to change without notice. This publ ication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
ORDER CODE :
 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
11/11