ETC TS925IPT

TS925

RAIL TO RAIL HIGH OUTPUT CURRENT
QUAD OPERATIONAL AMPLIFIER
..
..
..
.
..
..
.
RAIL TO RAIL INPUT AND OUTPUT
LOW NOISE : 9nV/√
√Hz


LOW DISTORTION
HIGH OUTPUT CURRENT : 80mA
(able to drive 32Ω loads)
HIGH SPEED : 4MHz, 1.3V/µs
OPERATING FROM 2.7V TO 12V
LOW INPUT OFFSET VOLTAGE : 900µV max.
(TS925A)
D
SO16
(Plastic Micropackage)
N
DIP16
(Plastic Package)
ADJUSTABLE PHANTOM GROUND (VCC/2)
STANDBY MODE
ESD INTERNAL PROTECTION : 2kV
LATCH-UP IMMUNITY
MACROMODEL INCLUDED IN THIS
SPECIFICATION
P
TSSOP16
(Thin Shrink Small Outline Package)
DESCRIPTION
Part Number
o
-40, +125 C
TS925I
P
•
•
•
1
16
O utput 4
Inve rting
Inp ut 1
2
15
Inve rting
Inp u t 4
Non-inve rting
Inp ut 1
3
14
Non -inverting
Inp u t 4
-
+
+
-
-
+
4
13
V
Non-inve rting
Inp ut 2
5
12
Non -inverting
Inp u t 3
Inve rting
Inp ut 2
6
11
Inve rting
Inp u t 3
O utput 2
7
10
O utput 3
P hantom ground
8
9
CC
-
June 1998
D
O utput 1
+
Headphone amplifier
Soundcard amplifier, piezoelectric speaker
MPEG boards, multimedia systems, ...
Cordless telephones and portable communication equipment
Line driver, buffer
Instrumentation with low noise as key factor
N
PIN CONNECTIONS
V
APPLICATIONS
Package
Temperature Range
+
..
..
..
ORDER CODES
-
The TS925 is a RAIL TO RAIL quad BiCMOS
operational amplifier optimized and fully specified
for 3V and 5V operations.
It includes a high output current and low impedance
PHANTOM GROUND (no external reference requested).
The TS925 exhibits a very low noise, low distortion
and high output current making this device an
excellent choice for high quality, low voltage or
battery operated audio/telecom systems.
This device is stable when charging the output with
capacitive loads up to 500pF.
When the STANDBY mode is enabled, the total
consumption drops to 6µA (VCC = 3V).
CC
S tdby
1/16
TS925
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vid
Vi
Toper
Tj
Rthja
Notes :
1.
2.
3.
4.
Parameter
Supply Voltage - (note 1)
Differential Input Voltage - (note 2)
Input Voltage - (note 3)
Operating Free Air Temperature Range
Maximum Junction Temperation
Thermal Resistance Junction to Ambient
Output Short-Circuit Duration
Value
14
±1
-0.3 to 14
-40 to +125
150
130
see note 4
Unit
V
V
V
o
C
o
C
o
C/W
All voltage values, except differential voltage are with respect to network ground terminal.
Differential voltages are the non-inverting input terminal with respect to the inverting input t erminal.
The magnitude of input and output voltages must never exceed VCC+ +0.3V.
Short-circuits can cause excessive+ heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
Do not short circuit outputs to VCC when exceeding 8V : this can induce reliability defects.
OPERATING CONDITIONS
Symbol
VCC
Vicm
2/16
Parameter
Supply Voltage
Common Mode Input Voltage Range
VCC
Value
2.7 to 12
-0.2 to VCC +0.2
Unit
V
V
TS925
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, T amb = 25oC (unless otherwise specified)
OPERATIONAL AMPLIFIER
Symbol
Vio
Parameter
Test Condition
Input OffsetVoltage
Tmin. < Tamb. < Tmax.
DVio
Min.
Typ.
TS925
TS925A
TS925
TS925A
Input Offset Voltage Drift
Max.
Unit
3
0.9
5
1.8
mV
µV/oC
2
Iio
Input Offset Current
Vout = 1.5V
1
30
nA
Iib
Input Bias Current
Vout = 1.5V
15
100
nA
VOH
High Level Output Voltage
RL connected to VCC/2
R L = 10k
R L = 600Ω
RL = 32Ω
VOL
Low Level Output Voltage
RL connected to VCC/2
R L = 10k
R L = 600Ω
RL = 32Ω
180
Vout = 2Vpk-pk
R L = 10k
R L = 600Ω
RL = 32Ω
200
35
16
Avd
Large Signal Voltage Gain
GBP
Gain Bandwidth Product
CMR
Common Mode Rejection
Ratio
SVR
Supply Voltage RejectionRatio
2.90
2.87
2.63
50
100
mV
V/mV
R L = 600Ω
60
VCC = 2.7V to 3.3V
V
4
MHz
80
dB
60
85
dB
Output Short-circuit Current
50
80
mA
SR
Slew Rate
0.7
1.3
V/µs
Pm
Phase Margin at Unit Gain
R L = 600Ω, CL = 100pF
68
Degrees
GM
Gain Margin
R L = 600Ω, CL = 100pF
12
dB
9
nV

√
Hz
Io
en
THD
Cs
Equivalent Input Noise Voltage
Total Harmonic Distortion
Channel Separation
f = 1KHz
Vout = 2Vpk-pk, f = 1kHz
AV = 1
R L = 600Ω
%
0.01
120
dB
3/16
TS925
GLOBAL CIRCUIT
Symbol
Parameter
ICC
Total Supply Current
Istby
Total Supply Current in STANDBY
(pin 9 connected to VCC )
Test Condition
Min.
No load, Vout = VCC/2
Typ.
Max.
Unit
5
7
mA
µA
6
Venstby
Pin 9 Voltage to enable the STANDBY
mode - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Vdistby
Pin 9 Voltage to disable the
STANDBY mode - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
0.3
0.4
1.1
1
V
V
Note 1 : the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN.
PHANTOM GROUND
Symbol
Parameter
Vpg
Phantom Ground Output Voltage
Ipgsc
Phantom Ground Output Short Circuit
Current (sourced)
Zpg
Phantom Ground Impedance
Enpg
Phantom Ground Output Voltage
Noise (f = 1kHz)
Ipgsk
Phantom Ground Output Short Circuit
Current (sinked)
Note 2 : Cdec is the decoupling capacitor on Pin 9.
4/16
Test Condition
Min.
Typ.
Max.
Unit
No Output Current
VCC/2
-5%
VCC/2
VCC/2
+5%
V
12
18
mA
DC to 20kHz
3
Ω
Cdec = 100pF
Cdec = 1nF
Cdec = 10nF
(note 2)
200
40
17
nV⁄√
Hz

mA
12
18
TS925
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, T amb = 25oC (unless otherwise specified)
OPERATIONAL AMPLIFIER
Symbol
Vio
Parameter
Test Condition
Input OffsetVoltage
Tmin. < Tamb. < Tmax.
DVio
Min.
Typ.
TS925
TS925A
TS925
TS925A
Input Offset Voltage Drift
Max.
Unit
3
0.9
5
1.8
mV
µV/oC
2
Iio
Input Offset Current
Vout = 2.5V
1
30
nA
Iib
Input Bias Current
Vout = 2.5V
15
100
nA
VOH
High Level Output Voltage
RL connected to VCC/2
R L = 10k
R L = 600Ω
RL = 32Ω
VOL
Low Level Output Voltage
RL connected to VCC/2
R L = 10k
R L = 600Ω
RL = 32Ω
300
Vout = 4Vpk-pk
R L = 10k
R L = 600Ω
Vout = 2Vpk-pk, RL = 32Ω
200
40
17
Avd
Large Signal Voltage Gain
GBP
Gain Bandwidth Product
CMR
Common Mode Rejection Ratio
SVR
Supply Voltage RejectionRatio
4.9
4.85
4.4
50
120
mV
V/mV
R L = 600Ω
VCC = 3V to 5V
V
4
MHz
60
80
dB
60
85
dB
Output Short-circuit Current
50
80
mA
SR
Slew Rate
0.7
1.3
V/µs
Pm
Phase Margin at Unit Gain
RL = 600Ω, CL = 100pF
68
Degrees
GM
Gain Margin
RL = 600Ω, CL = 100pF
12
dB
f = 1KHz
9
nV

√
Hz
Vout = 3Vpk-pk, f= 1kHz
AV = 1
R L = 600Ω
0.01
Io
en
THD
Cs
Equivalent Input Noise Voltage
Total Harmonic Distortion
Channel Separation
%
120
dB
5/16
TS925
GLOBAL CIRCUIT
Symbol
Parameter
ICC
Total Supply Current
Istby
Total Supply Current in STANDBY
(pin 9 connected to VCC )
Test Condition
Min.
No load, Vout = VCC/2
Typ.
Max.
Unit
6
8
mA
µA
10
Venstby
Pin 9 Voltage to enable the
STANDBY mode - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Vdistby
Pin 9 Voltage to disable the
STANDBY mode - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
0.3
0.4
1.1
1
V
V
Note 1 : the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN.
PHANTOM GROUND
Symbol
Parameter
Min.
Typ.
Max.
Unit
No Output Current
VCC/2
-5%
VCC/2
VCC/2
+5%
V
12
18
mA
Ω
Vpg
Phantom Ground Output Voltage
Ipgsc
Phantom Ground Output Short Circuit
Current (sourced)
Zpg
Phantom Ground Impedance
DC to 20kHz
3
Enpg
Phantom Ground Output Voltage
Noise (f = 1kHz)
Cdec = 100pF
Cdec = 1nF
Cdec = 10nF
(note 2)
200
40
17
Ipgsk
Phantom Ground Output Short Circuit
Current (sinked)
Note 2 : Cdec is the decoupling capacitor on Pin 9.
6/16
Test Condition
nV⁄√
Hz

mA
12
18
TS925
INPUT OFFSET VOLTAGE DISTRIBUTION
TOTAL SUPPLY CURRENT VERSUS SUPPLY
VOLTAGE WITH NO LOAD
5.5
783 devices from 3 lots - Vcc=0/3V - T=25°C
SUPPLY CURRENT (mA)
110
100
90
80
70
60
50
40
4.4
3.3
2.2
30
20
1.1
10
0
-0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05
0.15
.25
.35
.45
.55
Vio (mV): average on 4 operators per device
0
12
6
SUP PLY VOLTAGE (V)
SUPPLY CURRENT/AMPLIFIER VERSUS
TEMPERATURE
OUTPUT SHORT CIRCUIT CURRENT VERSUS
OUTPUT VOLTAGE
100
80
OUTPUT SHORT-CIRCUIT
CURRENT (mA)
SUPPLY CURRENT PER AMPLIFIER (mA)
1.4
1.3
VCC = 0/5V
1.2
1.1
1
60
S ink
40
20
0
VCC = 0/12V
Ta mb. = 25 C
-20
-40
-60
S ource
-80
-100
0.9
-55
25
125
0
AMBIENT TEMPERATURE ( C)
100
100
80
80
60
S ink
40
20
0
VCC = 0/5V
Ta mb. = 25 C
-20
-40
-60
S ource
-80
-100
0
60
2
3
4
OUTP UT VOLTAGE (V)
S ink
40
20
0
VCC = 0/3V
Ta mb. = 25 C
-2 0
-40
-60
S ource
-80
-100
1
5
12
OUTPUT SHORT CIRCUIT CURRENT VERSUS
OUTPUT VOLTAGE
OUTPUT SHORT-CIRCUIT
CURRENT (mA)
OUTPUT SHORT-CIRCUIT
CURRENT (mA)
OUTPUT SHORT CIRCUIT CURRENT VERSUS
OUTPUT VOLTAGE
6
OUTP UT VOLTAGE (V)
0
1.5
3
OUTP UT VOLTAGE (V)
7/16
TS925
OUTPUT SHORT CIRCUIT CURRENT VERSUS
TEMPERATURE
VOLTAGE GAIN AND PHASE VERSUS
FREQUENCY
100
0
40
VCC= 0/5V
OPEN LOOP VOLTAGE
GAIN (dB)
OUTPUT SHORT-CIRCUIT
CURRENT (mA)
90
30
S ink
80
S ource
70
60
Pha se
20
90
10
180
0
Ga in
-10
270
-20
-30
-40
VCC = 1.5 V
C L = 500pF
Ta mb. = 25 C
-50
1M
FREQUENCY (Hz)
100k
50
-55
25
125
10M
AMBIENT TEMPERATURE ( C)
DISTORSION + NOISE VERSUS
FREQUENCY
THD + NOISE VERSUS
FREQUENCY
0.03
0.02
R L = 2k
Vo = 10Vpp
VCC = 0/12V
G = -1
R L = 2k
Vo = 10Vpp
VCC = 0/12V
Ga in = 1
0.015
THD + NOISE (%)
THD + NOISE (%)
0.025
0.02
0.015
0.01
0.01
0.005
0.005
0
0 0.01
0.03
0.1
0.3
1
3
10
0.01
30
0.03
0.1
FREQUENCY (kHz)
THD + NOISE VERSUS FREQUENCY
1
3
10
30
THD + NOISE VERSUS FREQUENCY
0.0 4
0.7
R L = 32 Ω
Vo = 4Vpp
VCC = 0/5V
Ga in = 1
R L = 32 Ω
Vo = 2Vpp
VCC = 0/3V
Ga in = 10
0.6
THD + NOISE (%)
0.032
THD + NOISE (%)
0.3
FREQUENCY (kHz)
0.024
0.1 6
0.5
0.4
0.3
0.2
0.008
0.1
0
0.01
0.03
0.1
0.3
1
FR EQUENC Y (kHz)
8/16
3
10
30
0
0 .01
0.03
0.1
0.3
1
FREQUENCY (kHz )
3
10
30
TS925
EQUIVALENT INPUT NOISE VOLTAGE
VERSUS FREQUENCY
TOTAL SUPPLY CURRENT VERSUS
STANDBY INPUT VOLTAGE
1.5V
VCC =
14
R S = 100 Ω
Tamb. = 25 C
12
5
VCC = 0/3V
TOTAL SUPPLY CURRENT (mA)
16
10
8
6
4
2
4
3
2
1
0
0
0
10
100
1k
10k
FREQUENCY (Hz)
0.4
0.8
100k
1.2
1.6
2
V s ta ndby (V)
PHANTOM GROUND SHORT CIRCUIT
OUTPUT CURRENT VERSUS PHANTOM
GROUND OUTPUT VOLTAGE
20
VCC = 0/12V
16
12
I pgsc (mA)
en - EQUIVALENT INPUT
NOISE VOLTAGE (nv/vHz)
18
8
4
0
-4
-8
-12
-16
-20
0
6
12
9/16
TS925
APPLICATION NOTE
PREAMPLIFIER AND SPEAKER DRIVER USING TS925
by F. MARICOURT
The TS925 is an input/output rail to rail quad
BiCMOS operational amplifier. It is able to operate
with low supply voltage (2.7V) and to drive low
output loads such as 32Ω.
As an illustration of these features, the following
technical note is describing the way to use all the
advantages of the device in a global audio application.
APPLICATION CIRCUIT
The figure 1 is showing that two operators (A1, A4)
are used in a preamplifier configurationand the two
others in a push-pull configuration driving a headset. The phantom ground is used as a common
refence level (VCC/2).
Figure 1 : Electrical Schematic
10/16
The power supply is delivered with 2 batteries LR6
(2x1.5V nominal).
Preamplifier : the operators A1 and A4 are wired
with a non inverting gain of respectively :
• A1# (R4/(R3+R17))
• A4# R6/R5
With the following values choosen :
• R4=22kΩ - R3=50Ω - R17=1.2kΩ
• R6=47kΩ - R5=1.2kΩ,
the gain of the preamplifier chain is then 58dB.
Nevertheless, the gain of A1 can be adjusted by
choosing a JFET transistor Q1 instead of R17.
TS925
Figure 2 : Frequency Response of the Global
Preamplifier Chain
70
Voltage Gain (dB)
60
50
40
30
20
100
Headphone amplifier : the operators A2 and A3
are organized in a push-pull configuration with a
gain of 5. The stereo inputs can be connected to a
CD-player and TS925 drives directly the headphone speakers.This configuration underscores
the ability of the circuit to drive 32Ω load with a
maximum output swing and a high fidelity for reproducing sounds and musics.
Figure 4 is displaying the available swing at the
headset outputs : this is done with TS925 (non
distorded curve) and with two other rail to rail
competitor parts.
Figure 4 : Maximul Output Swing Voltage at
Headphone Outputs
1000
10000
100000
1000000
10000000
1.0E+08
frequency (Hz)
Figure 3 : Voltage Noise Density versus
Frequency at Preamplifier Output
15
13
12
11
Figure 5 : THD+Noise versus Frequency
(headphone outputs)
10
9
8
7
10
100
1000
10000
100000
frequency (Hz)
0.4
0.35
0.3
THD+noise (%)
Noise Density (nV/sqrt(Hz))
14
0.25
0.2
0.15
0.1
0.05
0
100
1000
10000
100000
Hz
11/16
TS925
..
.
MACROMODEL
RAIL TO RAIL INPUT AND OUTPUT
LOW NOISE : 9nV√
√Hz


LOW DISTORTION
** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
. S UBCK T T S9 2 5 1 3 2 4 5 (an a lo g )
*********************************************************
.MODEL MDTH D IS=1E-8 KF=2.664234E-16
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8.125000E+00
RIN 15 16 8.125000E+00
RIS 11 15 2.238465E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 153.5u
VOFN 13 14 DC 0
IPOL 13 5 3.200000E-05
CPS 11 15 1e-9
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.100000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.400000E+00
FCP 4 5 VOFP 1.865000E+02
FCN 5 4 VOFN 1.865000E+02
FIBP 2 5 VOFP 6.250000E-03
FIBN 5 1 VOFN 6.250000E-03
* GM1 STAGE ***************
FGM1P 119 5 VOFP 1.1
FGM1N 119 5 VOFN 1.1
RAP 119 4 2.6E+06
RAN 119 5 2.6E+06
* GM2 STAGE ***************
G2P 19 5 119 5 1.92E-02
G2N 19 5 119 4 1.92E-02
12/16
.
..
HIGH OUTPUT CURRENT : 50mA min.
(able to drive 32Ω loads)
HIGH SPEED : 4MHz, 1.3V/µs
OPERATING FROM 2.7V TO 12V
R2P 19 4 1E+07
R2N 19 5 1E+07
**************************
VINT1 500 0 5
GCONVP 500 501 119 4 19.38 !envoie ds VP,
I(VP)=(V119-V4)/2/Ut VP 501 0 0
GCONVN 500 502 119 5 19.38 !envoie ds VN,
I(VN)=(V119-V5)/2/Ut VN 502 0 0
********* orientation isink isource *******
VINT2 503 0 5
FCOPY 503 504 VOUT 1
DCOPYP 504 505 MDTH 400E-9
VCOPYP 505 0 0
DCOPYN 506 504 MDTH 400E-9
VCOPYN 0 506 0
***************************
F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5 !multiplie
I(vout)*I(VP)=Iout*(V119-V4)/2/Ut
F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5
!multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut
F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75
!multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/Ut
F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75
!multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut
* COMPENSATION ************
CC 19 119 25p
* OUTPUT***********
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 6.250000E+02
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 6.250000E+02
VINM 5 27 5.000000E+01
VOUT 3 23 0
ROUT 23 19 6
COUT 3 5 1.300000E-10
DOP 19 25 MDTH 400E-12
VOP 4 25 1.052
DON 24 19 MDTH 400E-12
VON 24 5 1.052
.ENDS
TS925
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC
(unless otherwise specified)
Symbol
Conditions
Vio
Avd
RL = 10kΩ
ICC
No load, per operator
Vicm
Value
Unit
0
mV
200
V/mV
1.2
mA
-0.2 to 3.2
V
VOH
RL = 10kΩ
2.95
V
VOL
RL = 10kΩ
25
mV
Isink
VO = 3V
80
mA
Isource
VO = 0V
80
mA
GBP
RL = 600Ω
4
MHz
SR
RL = 10kΩ, CL = 100pF
1.3
V/µs
∅m
RL = 600Ω
68
Degrees
13/16
TS925
PM-DIP16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC DIP
a1
B
b
b1
D
E
e
e3
F
i
L
Z
14/16
Min.
0.51
0.77
Millimeters
Typ.
Max.
1.65
0.5
0.25
Min.
0.020
0.030
Inches
Typ.
Max.
0.065
0.020
0.010
20
8.5
2.54
17.78
0.787
0.335
0.100
0.700
7.1
5.1
3.3
0.280
0.201
0.130
1.27
0.050
DIP16.TBL
Dimensions
TS925
PM-SO16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC MICROPACKAGE (SO)
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
G
L
M
Min.
Millimeters
Typ.
0.1
0.35
0.19
Max.
1.75
0.2
1.6
0.46
0.25
Min.
Inches
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45o (typ.)
9.8
5.8
10
6.2
0.386
0.228
1.27
8.89
3.8
4.6
0.5
0.394
0.244
0.050
0.350
4.0
5.3
1.27
0.62
0.150
0.181
0.020
0.157
0.209
0.050
0.024
SO16.TBL
Dimensions
15/16
TS925
PACKAGE MECHANICAL DATA
16 PINS - THIN SHRINK SMALL OUTLINE PACKAGE
Dim.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
0.15
c
0.1
D
4.90
E
E1
Inches
0.15
1.00
5.00
0.05
0.01
1.05
0.031
0.30
0.005
0.20
0.003
5.10
0.192
6.40
4.30
e
4.40
o
0
l
0.50
4.50
0.039
0.041
0.15
0.012
0.196
0.20
0.169
0.173
0.177
0.025
o
0.60
0.006
0.252
0.65
k
Max.
o
8
0
0.75
0.09
8
0.0236
o
0.030
 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
16/16
ORDER CODE :
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all infor mation
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems
without express written approval of STMicroelectronics.
 The ST logo is a trademark of STMicroelectronics