ETC 24LC01BT-I/OT

24LC01B/02B
1K/2K 2.5V I2C™ Serial EEPROM
FEATURES
PDIP, SOIC
1
A1
2
A2
3
Vss
4
8
Vcc
7
WP
6
SCL
5
SDA
TSSOP*
1
A2
VSS
3
4
24LC01B/02B
A0
A1
2
8
7
Vcc
WP
6
5
SCL
SDA
SOT-23*
SCL
1
VSS
2
SDA
3
24LC01B
DESCRIPTION
The Microchip Technology Inc. 24LC01B and 24LC02B
are 1K bit and 2K bit Electrically Erasable PROMs. The
devices are organized as a single block of 128 x 8 bit or
256 x 8 bit memory with a two wire serial interface. Low
voltage design permits operation down to 2.5 volts with
a standby and active currents of only 5 µA and 1 mA
respectively. The 24LC01B and 24LC02B also have
page-write capability for up to 8 bytes of data. The
24LC01B and 24LC02B are available in the standard
8-pin DIP and an 8-pin surface mount SOIC package.
The SOT-23 and TSSOP packages are available for the
24LC01B.
A0
24LC01B/02B
• Single supply with operation down to 2.5V
• Low power CMOS technology
- 1 mA active current typical
- 10 µA standby current typical at 5.5V
- 5 µA standby current typical at 3.0V
• Organized as a single block of
128 bytes (128 x 8) -1K or 256 bytes (256 x 8) -2K
• 2-wire serial interface bus, I2C™ compatible
• 100 kHz (2.5V) and 400kHz (5.0V) compatibility
• Self-timed write cycle (including auto-erase)
• Page-write buffer for up to 8 bytes
• 2 ms typical write cycle time for page-write
• Hardware write protect for entire memory
• Can be operated as a serial ROM
• ESD protection > 3,000V
• 1,000,000 E/W cycles guaranteed
• Data retention > 200 years
• 8 pin DIP, SOIC, TSSOP* or SOT-23* package
• Available for temperature ranges
- Commercial (C):
0°C to +70°C
- Industrial (I):
-40°C to +85°C
PACKAGE TYPES
5
WP
4
Vcc
* Available for 24LC01B only
BLOCK DIAGRAM
WP
HV GENERATOR
I/O
CONTROL
LOGIC
MEMORY
CONTROL
LOGIC
XDEC
EEPROM
ARRAY
PAGE LATCHES
SDA SCL
YDEC
VCC
VSS
SENSE AMP
R/W CONTROL
* Available for 24LC01B only
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DS20071J-page 1
24LC01B/02B
1.0
ELECTRICAL CHARACTERISTICS
1.1
Maximum Ratings*
TABLE 1-1:
PIN FUNCTION TABLE
Name
Function
Ground
Serial Address/Data I/O
Serial Clock
Write Protect Input
+2.5V to 5.5V Power Supply
No Internal Connection
VSS
SDA
SCL
WP
VCC
A0, A1, A2
VCC...................................................................................7.0V
All inputs and outputs w.r.t. VSS ............... -0.6V to VCC +1.0V
Storage temperature .....................................-65°C to +150°C
Ambient temp. with power applied ................-65°C to +125°C
Soldering temperature of leads (10 seconds) ............. +300°C
ESD protection on all pins.............................................> 3 kV
*Notice: Stresses above those listed under “Maximum ratings”
may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any
other conditions above those indicated in the operational listings
of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
TABLE 1-1:
DC CHARACTERISTICS
VCC = +2.5V to +5.5V
Parameter
Symbol
Min.
WP, SCL and SDA pins:
High level input voltage
VIH
.7 VCC
Low level input voltage
VIL
Hysteresis of Schmidt trigger inputs
VHYS
Low level output voltage
Commercial (C): Tamb = 0°C to +70°C
Industrial
(I): Tamb = -40°C to +85°C
Max.
Units
Conditions
V
.3 VCC
.05 VCC
VOL
V
—
V
(Note)
.40
V
IOL = 3.0 mA, VCC = 2.5V
Input leakage current
ILI
-10
10
µA
VIN = .1V to 5.5V
Output leakage current
ILO
-10
10
µA
VOUT = .1V to 5.5V
CIN,
COUT
—
10
pF
VCC = 5.0V (Note 1)
Tamb = 25°C, FCLK = 1 MHz
ICC Write
—
3
mA
VCC = 5.5V, SCL = 400 kHz
ICC Read
—
1
mA
ICCS
—
30
µA
VCC = 3.0V, SDA = SCL = VCC
100
µA
VCC = 5.5V, SDA = SCL = VCC
WP = VSS
Pin capacitance (all inputs/outputs)
Operating current
Standby current
Note:
This parameter is periodically sampled and not 100% tested.
FIGURE 1-1:
BUS TIMING START/STOP
VHYS
SCL
THD:STA
TSU:STA
TSU:STO
SDA
START
DS20071J-page 2
Powered by ICminer.com Electronic-Library Service CopyRight 2003
STOP
 1999 Microchip Technology Inc.
24LC01B/02B
TABLE 1-2:
AC CHARACTERISTICS
Standard Mode
Parameter
Symbol
Vcc = 4.5 - 5.5V
Fast Mode
Units
Min.
Max.
Min.
Max.
—
400
kHz
Remarks
Clock frequency
FCLK
—
100
Clock high time
THIGH
4000
—
600
—
ns
Clock low time
TLOW
4700
—
1300
—
ns
SDA and SCL rise time
TR
—
1000
—
300
ns
(Note 1)
SDA and SCL fall time
TF
—
300
—
300
ns
(Note 1)
START condition hold time
THD:STA
4000
—
600
—
ns
After this period the first
clock pulse is generated
START condition setup time
TSU:STA
4700
—
600
—
ns
Only relevant for repeated
START condition
Data input hold time
THD:DAT
0
—
0
—
ns
(Note 2)
Data input setup time
TSU:DAT
250
—
100
—
ns
STOP condition setup time
TSU:STO
4000
—
600
—
ns
TAA
—
3500
—
900
ns
(Note 2)
Bus free time
Output valid from clock
TBUF
4700
—
1300
—
ns
Time the bus must be free
before a new transmission
can start
Output fall time from VIH
minimum to VIL maximum
TOF
—
250
20 +0.1
CB
250
ns
(Note 1), CB ð 100 pF
Input filter spike suppression
(SDA and SCL pins)
TSP
—
50
—
50
ns
(Note 3)
Write cycle time
TWR
—
10
—
10
ms
Byte or Page mode
—
1M
—
1M
—
Endurance
cycles 25°C, Vcc = 5.0V, Block
Mode (Note 4)
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.
3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved
noise spike suppression. This eliminates the need for a TI specification for standard operation.
4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website.
FIGURE 1-2:
BUS TIMING DATA
TR
TF
THIGH
TLOW
SCL
TSU:STA
SDA
IN
THD:DAT
TSU:DAT
TSU:STO
THD:STA
TSP
TAA
THD:STA
TAA
TBUF
SDA
OUT
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DS20071J-page 3
24LC01B/02B
2.0
FUNCTIONAL DESCRIPTION
The 24LC01B/02B supports a bi-directional two wire
bus and data transmission protocol. A device that
sends data onto the bus is defined as transmitter, and
a device receiving data as receiver. The bus has to be
controlled by a master device which generates the
serial clock (SCL), controls the bus access, and generates the START and STOP conditions, while the
24LC01B/02B works as slave. Both master and slave
can operate as transmitter or receiver but the master
device determines which mode is activated.
3.0
BUS CHARACTERISTICS
The following bus protocol has been defined:
• Data transfer may be initiated only when the bus
is not busy.
• During data transfer, the data line must remain
stable whenever the clock line is HIGH. Changes
in the data line while the clock line is HIGH will be
interpreted as a START or STOP condition.
Accordingly, the following bus conditions have been
defined (Figure 3-1).
3.1
Start Data Transfer (B)
A HIGH to LOW transition of the SDA line while the
clock (SCL) is HIGH determines a START condition. All
commands must be preceded by a START condition.
3.3
Stop Data Transfer (C)
A LOW to HIGH transition of the SDA line while the
clock (SCL) is HIGH determines a STOP condition. All
operations must be ended with a STOP condition.
FIGURE 3-1:
(A )
Data Valid (D)
The state of the data line represents valid data when,
after a START condition, the data line is stable for the
duration of the HIGH period of the clock signal.
The data on the line must be changed during the LOW
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a START condition
and terminated with a STOP condition. The number of
the data bytes transferred between the START and
STOP conditions is determined by the master device
and is theoretically unlimited, although only the last sixteen will be stored when doing a write operation. When
an overwrite does occur it will replace data in a first in
first out fashion.
3.5
Acknowledge
Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this acknowledge bit.
Note:
Bus Not Busy (A)
Both data and clock lines remain HIGH.
3.2
3.4
The 24LC01B/02B does not generate any
acknowledge bits if an internal programming cycle is in progress.
The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable LOW during the HIGH
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an acknowledge bit on the last
byte that has been clocked out of the slave. In this case,
the slave must leave the data line HIGH to enable the
master to generate the STOP condition.
DATA TRANSFER SEQUENCE ON THE SERIAL BUS
(B)
(D)
START
CONDITION
ADDRESS OR
ACKNOWLEDGE
VALID
(D)
(C)
(A)
SCL
SDA
DS20071J-page 4
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DATA
ALLOWED
TO CHANGE
STOP
CONDITION
 1999 Microchip Technology Inc.
24LC01B/02B
3.6
Devise Address
The 24LC01B/02B are software-compatible with older
devices such as 24C01A, 24C02A, 24LC01, and
24LC02. A single 24LC02B can be used in place of two
24LC01’s, for example, without any modifications to
software. The “chip select” portion of the control byte
becomes a don't care.
After generating a START condition, the bus master
transmits the slave address consisting of a 4-bit device
code (1010) for the 24LC01B/02B, followed by three
don't care bits.
The eighth bit of slave address determines if the master
device wants to read or write to the 24LC01B/02B
(Figure 3-2).
The 24LC01B/02B monitors the bus for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true and it is not in a
programming mode.
Operation
Control
Code
Chip
Select
R/W
Read
Write
1010
1010
XXX
XXX
1
0
FIGURE 3-2:
CONTROL BYTE
ALLOCATION
READ/WRITE
START
R/W
SLAVE ADDRESS
1
0
1
0
X
X
X = Don’t care
X
A
4.0
WRITE OPERATION
4.1
Byte Write
Following the start signal from the master, the device
code (4 bits), the don't care bits (3 bits), and the R/W
bit which is a logic low is placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will follow
after it has generated an acknowledge bit during the
ninth clock cycle. Therefore the next byte transmitted by
the master is the word address and will be written into
the address pointer of the 24LC01B/02B. After receiving another acknowledge signal from the 24LC01B/02B
the master device will transmit the data word to be written into the addressed memory location. The
24LC01B/02B acknowledges again and the master
generates a stop condition. This initiates the internal
write cycle, and during this time the 24LC01B/02B will
not generate acknowledge signals (Figure 4-1).
4.2
The write control byte, word address and the first data
byte are transmitted to the 24LC01B/02B in the same
way as in a byte write. But instead of generating a stop
condition the master transmits up to eight data bytes to
the 24LC01B/02B which are temporarily stored in the
on-chip page buffer and will be written into the memory
after the master has transmitted a stop condition. After
the receipt of each word, the three lower order address
pointer bits are internally incremented by one. The
higher order five bits of the word address remains constant. If the master should transmit more than eight
words prior to generating the stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the stop condition is received an internal write cycle will begin (Figure 4-2).
Note:
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
Page Write
Page write operations are limited to writing
bytes within a single physical page, regardless of the number of bytes actually being
written. Physical page boundaries start at
addresses that are integer multiples of the
page buffer size (or ‘page size’) and end at
addresses that are integer multiples of
[page size - 1]. If a page write command
attempts to write across a physical page
boundary, the result is that the data wraps
around to the beginning of the current page
(overwriting data previously stored there),
instead of being written to the next page as
might be expected. It is therefore necessary for the application software to prevent
page write operations that would attempt
to cross a page boundary.
DS20071J-page 5
24LC01B/02B
FIGURE 4-1:
BUS ACTIVITY
MASTER
SDA LINE
BYTE WRITE
S
T
A
R
T
CONTROL
BYTE
WORD
ADDRESS
S
P
A
C
K
BUS ACTIVITY
FIGURE 4-2:
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
O
P
DATA
A
C
K
A
C
K
PAGE WRITE
S
T
A
R
T
CONTROL
BYTE
WORD
ADDRESS (n)
DATAn + 1
DATA n
S
T
O
P
DATAn + 7
S
P
A
C
K
DS20071J-page 6
Powered by ICminer.com Electronic-Library Service CopyRight 2003
A
C
K
A
C
K
A
C
K
A
C
K
 1999 Microchip Technology Inc.
24LC01B/02B
5.0
ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can
be initiated immediately. This involves the master sending a start condition followed by the control byte for a
write command (R/W = 0). If the device is still busy with
the write cycle, then no ACK will be returned. If the
cycle is complete, then the device will return the ACK
and the master can then proceed with the next read or
write command. See Figure 5-1 for flow diagram.
FIGURE 5-1:
ACKNOWLEDGE POLLING
FLOW
Send
Write Command
7.0
7.1
Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, first the word address must
be set. This is done by sending the word address to the
24LC01B/02B as part of a write operation. After the
word address is sent, the master generates a start condition following the acknowledge. This terminates the
write operation, but not before the internal address
pointer is set. Then the master issues the control byte
again but with the R/W bit set to a one. The 24LC01B/
02B will then issue an acknowledge and transmits the
eight bit data word. The master will not acknowledge
the transfer but does generate a stop condition and the
24LC01B/02B discontinues transmission (Figure 7-2).
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
NO
YES
Next
Operation
6.0
Current Address Read
The 24LC01B/02B contains an address counter that
maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous
access (either a read or write operation) was to
address n, the next current address read operation
would access data from address n + 1. Upon receipt of
the slave address with R/W bit set to one, the
24LC01B/02B issues an acknowledge and transmits
the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition
and the 24LC01B/02B discontinues transmission
(Figure 7-1).
7.2
Did Device
Acknowledge
(ACK = 0)?
READ OPERATION
Read operations are initiated in the same way as write
operations with the exception that the R/W bit of the
slave address is set to one. There are three basic types
of read operations: current address read, random read,
and sequential read.
WRITE PROTECTION
The 24LC01B/02B can be used as a serial ROM when
the WP pin is connected to VCC. Programming will be
inhibited and the entire memory will be write-protected.
7.3
Sequential Read
Sequential reads are initiated in the same way as a random read except that after the 24LC01B/02B transmits
the first data byte, the master issues an acknowledge
as opposed to a stop condition in a random read. This
directs the 24LC01B/02B to transmit the next sequentially addressed 8-bit word (Figure 7-3).
To provide sequential reads the 24LC01B/02B contains
an internal address pointer which is incremented by
one at the completion of each operation. This address
pointer allows the entire memory contents to be serially
read during one operation.
7.4
Noise Protection
The 24LC01B/02B employs a VCC threshold detector
circuit which disables the internal erase/write logic if the
VCC is below 1.5 volts at nominal conditions.
The SCL and SDA inputs have Schmitt trigger and filter
circuits which suppress noise spikes to assure proper
device operation even on a noisy bus.
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DS20071J-page 7
24LC01B/02B
FIGURE 7-1:
CURRENT ADDRESS READ
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
CONTROL
BYTE
S
T
O
P
DATA n
P
N
O
A
C
K
BUS ACTIVITY
A
C
K
FIGURE 7-2:
RANDOM READ
T
S
T
A
R
T
S
S
S
T
CONTROL
BYTE
BUS ACTIVITY A
MASTER
R
SDA LINE
WORD
ADDRESS (n)
A
C
K
BUS ACTIVITY
CONTROL
BYTE
S
T
O
P
DATA n
P
A
C
K
A
C
K
N
O
A
C
K
FIGURE 7-3:
SEQUENTIAL READ
BUS ACTIVITY CONTROL
BYTE
MASTER
DATA n + 1
DATA n
DATA n + 2
S
T
O
P
DATA n + X
P
SDA LINE
BUS ACTIVITY
A
C
K
A
C
K
A
C
K
A
C
K
N
O
A
C
K
8.0
PIN DESCRIPTIONS
8.2
8.1
SDA Serial Address/Data Input/Output
This input is used to synchronize the data transfer from
and to the device.
This is a bi-directional pin used to transfer addresses
and data into and data out of the device. It is an open
drain terminal, therefore the SDA bus requires a pull-up
resistor to VCC (typical 10K¾ for 100 kHz, 2 K¾ for
400 kHz).
For normal data transfer SDA is allowed to change only
during SCL low. Changes during SCL high are
reserved for indicating the START and STOP conditions.
DS20071J-page 8
Powered by ICminer.com Electronic-Library Service CopyRight 2003
8.3
SCL Serial Clock
WP
This pin must be connected to either VSS or VCC.
If tied to VSS, normal memory operation is enabled
(read/write the entire memory).
If tied to VCC, WRITE operations are inhibited. The
entire memory will be write-protected. Read operations
are not affected.
 1999 Microchip Technology Inc.
24LC01B/02B
NOTES:
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DS20071J-page 9
24LC01B/02B
NOTES:
DS20071J-page 10
Powered by ICminer.com Electronic-Library Service CopyRight 2003
 1999 Microchip Technology Inc.
24LC01B/02B
24LC01B/02B PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
24LC01B/02B —
/P
P = Plastic DIP (300 mil Body), 8-lead
SN = Plastic SOIC (150 mil Body), 8-lead
Package:
SM = Plastic SOIC (207 mil Body), 8-lead
OT = SOT-23, 5-lead (24LC01B only)
ST = TSSOP, 8-lead (24LC01B only)
Temperature
Range:
Blank = 0°C to +70°C
I = -40°C to +85°C
24LC01B
Device:
24LC01BT
24LC02B
24LC02BT
1K I2C Serial EEPROM
1K I2C Serial EEPROM (Tape and Reel)
2K I2C Serial EEPROM
2K I2C Serial EEPROM (Tape and Reel)
Sales and Support
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
3. The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DS20071J-page 11
WORLDWIDE SALES AND SERVICE
AMERICAS
AMERICAS (continued)
Corporate Office
Toronto
Singapore
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Atlanta
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
ASIA/PACIFIC
Hong Kong
ASIA/PACIFIC (continued)
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
EUROPE
Beijing
United Kingdom
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835
India
Denmark
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
Japan
France
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Korea
Germany
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Shanghai
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Italy
11/15/99
Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99
Printed on recycled paper.
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.
 1999 Microchip Technology Inc.
Powered by ICminer.com Electronic-Library Service CopyRight 2003