ETC BAT54SWT1/D

BAT54SWT1
Preferred Device
Dual Series Schottky
Barrier Diodes
These Schottky barrier diodes are designed for high speed switching
applications, circuit protection, and voltage clamping. Extremely low
forward voltage reduces conduction loss. Miniature surface mount
package is excellent for hand held and portable applications where
space is limited.
http://onsemi.com
30 VOLT
DUAL SERIES
SCHOTTKY BARRIER
DIODES
• Extremely Fast Switching Speed
• Low Forward Voltage – 0.35 Volts (Typ) @ IF = 10 mAdc
1
ANODE
2
CATHODE
3
CATHODE/ANODE
MARKING
DIAGRAM
MAXIMUM RATINGS (TJ = 125°C unless otherwise noted)
Symbol
Value
Unit
Reverse Voltage
VR
30
Volts
Forward Power Dissipation
@ TA = 25°C
Derate above 25°C
PF
200
1.6
mW
mW/°C
Forward Current (DC)
IF
200 Max
mA
Junction Temperature
TJ
125 Max
°C
Storage Temperature Range
Tstg
–55 to +150
°C
Rating
3
3
B8
1
2
(SC–70)
SOT–323
CASE 419
STYLE 9
1
2
ORDERING INFORMATION
Device
Package
Shipping
BAT54SWT1
SOT–323
3000/Tape & Reel
Preferred devices are recommended choices for future use
and best overall value.
 Semiconductor Components Industries, LLC, 2000
November, 2000 – Rev. 5
Publication Order Number:
BAT54SWT1/D
BAT54SWT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (EACH DIODE)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)R
30
–
–
Volts
Total Capacitance (VR = 1.0 V, f = 1.0 MHz)
CT
–
7.6
10
pF
Reverse Leakage (VR = 25 V)
IR
–
0.5
2.0
µAdc
Forward Voltage (IF = 0.1 mAdc)
VF
–
0.22
0.24
Vdc
Forward Voltage (IF = 30 mAdc)
VF
–
0.41
0.5
Vdc
Forward Voltage (IF = 100 mAdc)
VF
–
0.52
0.8
Vdc
Reverse Recovery Time
(IF = IR = 10 mAdc, IR(REC) = 1.0 mAdc, Figure 1)
trr
–
–
5.0
ns
Forward Voltage (IF = 1.0 mAdc)
VF
–
0.29
0.32
Vdc
Forward Voltage (IF = 10 mAdc)
VF
–
0.35
0.40
Vdc
Forward Current (DC)
IF
–
–
200
mAdc
Repetitive Peak Forward Current
IFRM
–
–
300
mAdc
Non–Repetitive Peak Forward Current (t < 1.0 s)
IFSM
–
–
600
mAdc
Reverse Breakdown Voltage (IR = 10 µA)
http://onsemi.com
2
BAT54SWT1
820 Ω
+10 V
2k
100 µH
0.1 µF
IF
tr
tp
IF
T
10%
0.1 µF
trr
T
DUT
50 Ω OUTPUT
PULSE
GENERATOR
50 Ω INPUT
SAMPLING
OSCILLOSCOPE
90%
iR(REC) = 1 mA
IR
VR
OUTPUT PULSE
(IF = IR = 10 mA; measured
at iR(REC) = 1 mA)
INPUT SIGNAL
Notes: 1. A 2.0 kΩ variable resistor adjusted for a Forward Current (IF) of 10 mA.
Notes: 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
Notes: 3. tp » trr
Figure 1. Recovery Time Equivalent Test Circuit
100
1000
TA = 150°C
IR, REVERSE CURRENT (µA)
85°C
10
150°C
1.0
25°C
0.1
0.0
–40°C
–55°C
100
TA = 125°C
10
1.0
TA = 85°C
0.1
0.01
TA = 25°C
0.001
0.2
0.3
0.4
0.1
0.5
VF, FORWARD VOLTAGE (VOLTS)
0
0.6
5
15
25
10
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 2. Forward Voltage
Figure 3. Leakage Current
14
CT, TOATAL CAPACITANCE (pF)
IF, FORWARD CURRENT (mA)
125°C
12
10
8
6
4
2
0
0
5
10
15
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 4. Total Capacitance
http://onsemi.com
3
25
30
30
BAT54SWT1
INFORMATION FOR USING THE SOT–323 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
0.025
0.65
0.025
0.65
0.075
1.9
0.035
0.9
inches
mm
0.028
0.7
SC–70/SOT–323 POWER DISSIPATION
SOLDERING PRECAUTIONS
The power dissipation of the SC–70/SOT–323 is a
function of the collector pad size. This can vary from the
minimum pad size for soldering to the pad size given for
maximum power dissipation. Power dissipation for a
surface mount device is determined by TJ(max), the
maximum rated junction temperature of the die, RθJA, the
thermal resistance from the device junction to ambient; and
the operating temperature, TA. Using the values provided on
the data sheet, PD can be calculated as follows.
PD =
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
• Always preheat the device.
• The delta temperature between the preheat and
soldering should be 100°C or less.*
• When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference should be a maximum of 10°C.
• The soldering temperature and time should not exceed
260°C for more than 10 seconds.
• When shifting from preheating to soldering, the
maximum temperature gradient should be 5°C or less.
• After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and
result in latent failure due to mechanical stress.
• Mechanical stress or shock should not be applied
during cooling
TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature TA of 25°C, one can
calculate the power dissipation of the device which in this
case is 200 milliwatts.
PD =
150°C – 25°C
625°C/W
= 200 milliwatts
The 625°C/W assumes the use of the recommended
footprint on a glass epoxy printed circuit board to achieve a
power dissipation of 200 milliwatts. Another alternative
would be to use a ceramic substrate or an aluminum core
board such as Thermal Clad. Using a board material such
as Thermal Clad, a power dissipation of 300 milliwatts can
be achieved using the same footprint.
* Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
http://onsemi.com
4
BAT54SWT1
PACKAGE DIMENSIONS
(SC–70)
SOT–323
PLASTIC PACKAGE
CASE 419–02
ISSUE H
A
L
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3
B
S
1
2
D
G
C
0.05 (0.002)
J
N
K
H
http://onsemi.com
5
DIM
A
B
C
D
G
H
J
K
L
N
S
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.032
0.040
0.012
0.016
0.047
0.055
0.000
0.004
0.004
0.010
0.017 REF
0.026 BSC
0.028 REF
0.079
0.095
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.00
0.30
0.40
1.20
1.40
0.00
0.10
0.10
0.25
0.425 REF
0.650 BSC
0.700 REF
2.00
2.40
STYLE 9:
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE
BAT54SWT1
Notes
http://onsemi.com
6
BAT54SWT1
Notes
http://onsemi.com
7
BAT54SWT1
Thermal Clad is a registered trademark of the Bergquist Company.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: [email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: [email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: [email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
BAT54SWT1/D