ETC HIN208E

HIN202E, HIN206E, HIN207E, HIN208E,
HIN211E, HIN213E, HIN232E
®
Data Sheet
September 2003
FN4315.11
+/-15kV, ESD-Protected, +5V Powered,
RS-232 Transmitters/Receivers
Features
The HIN202E - HIN232E family of RS-232
transmitters/receivers interface circuits meet all ElA highspeed RS-232E and V.28 specifications, and are particularly
suited for those applications where ±12V is not available. A
redesigned transmitter circuit improves data rate and slew
rate, which makes this suitable for ISDN and high speed
modems. The transmitter outputs and receiver inputs are
protected to ±15kV ESD (Electrostatic Discharge). They
require a single +5V power supply and feature onboard
charge pump voltage converters which generate +10V and
-10V supplies from the 5V supply. The family of devices
offers a wide variety of high-speed RS-232
transmitter/receiver combinations to accommodate various
applications (see Selection Table).
• ESD Protection for RS-232 I/O Pins to ±15kV (IEC1000)
• High Speed ISDN Compatible . . . . . . . . . . . . . 230kbits/s
• Meets All RS-232E and V.28 Specifications
• Requires Only 0.1µF or Greater External Capacitors
• Two Receivers Active in Shutdown Mode (HIN213E)
• Requires Only Single +5V Power Supply
• Onboard Voltage Doubler/Inverter
• Low Power Consumption (Typ) . . . . . . . . . . . . . . . . . 5mA
• Low Power Shutdown Function (Typ) . . . . . . . . . . . . .1µA
• Three-State TTL/CMOS Receiver Outputs
• Multiple Drivers
- ±10V Output Swing for +5V Input
- 300Ω Power-Off Source Impedance
- Output Current Limiting
- TTL/CMOS Compatible
The HIN206E, HIN211E and HIN213E feature a low power
shutdown mode to conserve energy in battery powered
applications. In addition, the HIN213E provides two active
receivers in shutdown mode allowing for easy “wakeup”
capability.
• Multiple Receivers
- ±30V Input Voltage Range
- 3kΩ to 7kΩ Input Impedance
- 0.5V Hysteresis to Improve Noise Rejection
The drivers feature true TTL/CMOS input compatibility, slew
rate-limited output, and 300Ω power-off source impedance.
The receivers can handle up to ±30V input, and have a 3kΩ
to 7kΩ input impedance. The receivers also feature
hysteresis to greatly improve noise rejection.
Applications
• Any System Requiring High-Speed RS-232
Communications Port
- Computer - Portable, Mainframe, Laptop
- Peripheral - Printers and Terminals
- Instrumentation, UPS
- Modems, ISDN Terminal Adaptors
Selection Table
PART
NUMBER
HIN202E
POWER SUPPLY
VOLTAGE
NUMBER OF
RS-232
DRIVERS
NUMBER OF
RS-232
RECEIVERS
NUMBER OF
0.1µF
EXTERNAL
CAPACITORS
LOW POWER
SHUTDOWN/TTL
THREE-STATE
NUMBER OF
RECEIVERS
ACTIVE IN
SHUTDOWN
+5V
2
2
4 Capacitors
NO/NO
0
HIN206E
+5V
4
3
4 Capacitors
YES/YES
0
HIN207E
+5V
5
3
4 Capacitors
NO/NO
0
HIN208E
+5V
4
4
4 Capacitors
NO/NO
0
HIN211E
+5V
4
5
4 Capacitors
YES/YES
0
HIN213E
+5V
4
5
4 Capacitors
YES/YES
2
HIN232E
+5V
2
2
4 Capacitors
NO/NO
0
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2003. All Rights Reserved.
All other trademarks mentioned are the property of their respective owners.
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Ordering Information (Continued)
Ordering Information
PART NO.
TEMP.
RANGE (oC)
PACKAGE
PKG.
DWG. #
PART NO.
TEMP.
RANGE (oC)
PACKAGE
PKG.
DWG. #
HIN202ECB
0 to 70
16 Ld SOIC (W)
M16.3
HIN211ECB
0 to 70
28 Ld SOIC
M28.3
HIN202ECBN
0 to 70
16 Ld SOIC (N)
M16.15
HIN211EIA
-40 to 85
28 Ld SSOP
M28.209
HIN202ECBN-T
0 to 70
16 Ld SOIC (N)
Tape and Reel
M16.15
HIN211EIB
-40 to 85
28 Ld SOIC
M28.3
HIN213ECA
0 to 70
28 Ld SSOP
M28.209
HIN202ECP
0 to 70
16 Ld PDIP
E16.3
HIN213ECA-T
0 to 70
-40 to 85
16 Ld SOIC (W)
M16.3
28 Ld SSOP
Tape and Reel
M28.209
HIN202EIB
HIN202EIB-T
-40 to 85
16 Ld SOIC (W)
Tape and Reel
M16.3
HIN202EIBN
-40 to 85
16 Ld SOIC (N)
M16.15
HIN202EIBN-T
-40 to 85
16 Ld SOIC (N)
Tape and Reel
M16.15
HIN206ECB-T
0 to 70
24 Ld SOIC
Tape and Reel
M24.3
24 Ld SSOP
M24.209
HIN206EIA
-40 to 85
HIN207ECA-T
0 to 70
24 Ld SSOP
Tape and Reel
M24.209
HIN207ECB
0 to 70
24 Ld SOIC
M24.3
HIN207ECB-T
0 to 70
24 Ld SOIC
Tape and Reel
M24.3
HIN207EIB
-40 to 85
24 Ld SOIC
M24.3
HIN207EIB-T
-40 to 85
24 Ld SOIC
Tape and Reel
M24.3
HIN208ECA
0 to 70
24 Ld SSOP
M24.209
HIN208ECA-T
0 to 70
24 Ld SSOP
Tape and Reel
M24.209
HIN208ECB
0 to 70
24 Ld SOIC
M24.3
HIN208ECB-T
0 to 70
24 Ld SOIC
Tape and Reel
M24.3
HIN208EIA
-40 to 85
24 Ld SSOP
M24.209
HIN208EIB
-40 to 85
24 Ld SOIC
M24.3
HIN211ECA
0 to 70
28 Ld SSOP
M28.209
HIN211ECA-T
0 to 70
28 Ld SSOP
Tape and Reel
M28.209
2
HIN213EIA
-40 to 85
28 Ld SSOP
M28.209
HIN213EIA-T
-40 to 85
28 Ld SSOP
Tape and Reel
M28.209
HIN213EIB
-40 to 85
28 Ld SOIC
M28.3
HIN232ECA-T
0 to 70
16 Ld SSOP
Tape and Reel
M16.209
HIN232ECB
0 to 70
16 Ld SOIC (W)
M16.3
HIN232ECB-T
0 to 70
16 Ld SOIC (W)
Tape and Reel
M16.3
HIN232ECBN
0 to 70
16 Ld SOIC (N)
M16.15
HIN232ECP
0 to 70
16 Ld PDIP
E16.3
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Pinouts
HIN202E (PDIP, SOIC)
TOP VIEW
HIN206E (SOIC, SSOP)
TOP VIEW
T3OUT
1
24 T4OUT
15 GND
T1OUT
2
23 R2IN
14 T1OUT
T2OUT
3
22 R2OUT
R1IN
4
21 SD
R1OUT
5
20 EN
T2IN
6
19 T4IN
T1IN
7
18 T3IN
GND
8
17 R3OUT
VCC
9
16 R3IN
16 VCC
C1+ 1
V+ 2
C1- 3
13 R1IN
C2+ 4
12 R1OUT
C2- 5
6
11 T1IN
T2OUT 7
10 T2IN
V-
9 R2OUT
R2IN 8
C1+ 10
15 V-
V+ 11
14 C2-
C1- 12
13 C2+
+5V
9
+5V
16
1
0.1µF
+
3
4
0.1µF
T1IN
T2IN
+
5
C1+
C1C2+
C2-
0.1µF
VCC
+5V TO 10V
VOLTAGE INVERTER V+
+10V TO -10V
VOLTAGE INVERTER
2
+
0.1µF
V- 6
+
+5V
400kΩ
T1
11
T2
10
+5V
400kΩ
14
7
12
0.1µF
0.1µF
T1OUT
T2OUT
T1IN
T2IN
T3IN
T4IN
13
R1IN
R1OUT
9
8
5kΩ
R2
+5V TO 10V
VOLTAGE DOUBLER
+10V TO -10V
VOLTAGE INVERTER
V- 15
T1
+5V
400kΩ
T2
6
18
+5V
400kΩ
T3
+5V
400kΩ
T4
19
2
3
1
24
5
R2IN
0.1µF
T1OUT
T2OUT
T3OUT
T4OUT
4
R1IN
5kΩ
22
23
R2IN
R2OUT
GND
5kΩ
17
16
R3IN
R3OUT
20
5kΩ
R3
21
SD
EN
GND
8
3
+
+
+5V
400kΩ
7
R2
15
11
V+
R1
R2OUT
0.1µF
VCC
R1OUT
5kΩ
R1
10
C1+
+
12
C113
C2+
+
14
C2-
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Pinouts
(Continued)
HIN207E (SOIC, SSOP)
TOP VIEW
T3OUT
T1OUT
T2OUT
24 T3OUT
2
23 R3IN
R2IN
3
22 R3OUT
R2OUT
4
21 T4IN
T1IN
5
20 T4OUT
R1OUT
6
19 T3IN
R1IN
7
18 T2IN
GND
8
17 R4OUT
VCC
9
16 R4IN
22 R2OUT
3
21 T5IN
20 T5OUT
5
19 T4IN
T1IN 7
VCC
1
T1OUT
23 R2IN
2
T2IN 6
GND
T2OUT
24 T4OUT
1
R1IN 4
R1OUT
HIN208E (SOIC, SSOP)
TOP VIEW
18 T3IN
17 R3OUT
8
16 R3IN
9
C1+ 10
15 V14 C2-
V+ 11
13 C2+
C1- 12
15 V-
C1+ 10
V+ 11
14 C2-
C1- 12
13 C2+
+5V
+5V
9
9
0.1µF
0.1µF
T1IN
T2IN
T3IN
T4IN
T5IN
10
C1+
+
12
C113
C2+
+
14
C2-
11
+5V TO 10V
VOLTAGE DOUBLER
V+
+10V TO -10V
VOLTAGE INVERTER
V- 15
+
T1
+5V
400kΩ
6
T2
+5V
400kΩ
18
T3
+5V
400kΩ
19
T4
+5V
400kΩ
21
T5
0.1µF
0.1µF
+
+5V
400kΩ
7
0.1µF
VCC
2
3
1
24
0.1µF
T1OUT
T2OUT
T3OUT
T4OUT
T1IN
T2IN
T3IN
T4IN
10
C1+
+
12
C113
C2+
+
14
C2-
0.1µF
VCC
11
+5V TO 10V
VOLTAGE DOUBLER
V+
+10V TO -10V
VOLTAGE INVERTER
V- 15
+
+5V
400kΩ
5
T1
+5V
400kΩ
T2
18
19
+5V
400kΩ
T3
+5V
400kΩ
T4
21
2
1
24
20
6
5
4
22
23
R2IN
17
22
R3IN
5kΩ
GND
5kΩ
17
R3IN
R3
23
R3OUT
R3
16
R3OUT
16
R4IN
R4OUT
5kΩ
R4
GND
8
4
R2IN
5kΩ
R2
T4OUT
5kΩ
R2
R2OUT
T3OUT
3
R2OUT
5kΩ
R1
T2OUT
R1IN
T5OUT
R1IN
R1OUT
T1OUT
5kΩ
R1
4
0.1µF
7
R1OUT
20
+
8
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Pinouts
(Continued)
HIN211E (SOIC, SSOP)
TOP VIEW
HIN213E (SOIC, SSOP)
TOP VIEW
T3OUT 1
28 T4OUT
T3OUT 1
28 T4OUT
T1OUT 2
27 R3IN
T1OUT 2
27 R3IN
T2OUT 3
26 R3OUT
T2OUT 3
26 R3OUT
R2IN 4
25 SD
R2IN 4
25 SD
R2OUT 5
24 EN
R2OUT 5
24 EN
T2IN 6
23 R4IN
T2IN 6
23 R4IN
T1IN 7
22 R4OUT
T1IN 7
22 R4OUT
R1OUT 8
21 T4IN
R1OUT 8
21 T4IN
R1IN 9
20 T3IN
R1IN 9
20 T3IN
GND 10
19 R5OUT
GND 10
19 R5OUT
VCC 11
18 R5IN
VCC 11
18 R5IN
C1+ 12
17 V-
C1+ 12
17 V-
V+ 13
16 C2-
V+ 13
16 C2-
C1- 14
15 C2+
C1- 14
15 C2+
NOTE: R4 and R5 active in shutdown.
+5V
+5V
11
0.1µF
0.1µF
T1IN
T2IN
T3IN
T4IN
R1OUT
12
C1+
+
14
C115
C2+
+
16
C2-
13
+5V TO 10V
VOLTAGE DOUBLER
V+
+10V TO -10V
VOLTAGE INVERTER
V- 17
+
0.1µF
0.1µF
+
+5V
400kΩ
7
T1
+5V
400kΩ
T2
6
20
+5V
400kΩ
T3
21
+5V
400kΩ
T4
2
3
1
28
8
9
0.1µF
T1OUT
T1IN
T2OUT
T2IN
T3OUT
T3IN
T4OUT
T4IN
R1IN
R1OUT
5
4
26
+5V
400kΩ
T2
6
20
+5V
400kΩ
T3
21
+5V
400kΩ
T4
R1IN
5kΩ
4
R2IN
5kΩ
27
R3IN
5kΩ
23
R4IN
5kΩ
19
18
R5IN
R5OUT
5kΩ
25
GND
9
R4
24
SD
T4OUT
R4OUT
18
R5
T3OUT
28
8
5kΩ
EN
1
22
R5IN
T2OUT
R3OUT
23
R5OUT
T1OUT
3
26
R4IN
0.1µF
2
R3
R4OUT
19
+
T1
5kΩ
R4
V- 17
R2
R3IN
22
+10V TO -10V
VOLTAGE INVERTER
+
R2OUT
27
R3
+5V TO 10V
VOLTAGE DOUBLER
+5V
400kΩ
7
5kΩ
R3OUT
13
V+
5
R2IN
R2
0.1µF
VCC
R1
R2OUT
5kΩ
R5
25
EN
SD
GND
10
5
12
C1+
+
14
C115
C2+
+
16
C2-
5kΩ
R1
24
11
0.1µF
VCC
10
S
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Pinouts
(Continued)
HIN232E (PDIP, SOIC, SSOP)
TOP VIEW
+5V
16
1
C1+ 1
16 VCC
V+ 2
15 GND
14 T1OUT
C1- 3
C2+ 4
13 R1IN
C2- 5
12 R1OUT
6
11 T1IN
T2OUT 7
10 T2IN
V-
0.1µF
3
4
0.1µF
T1IN
9 R2OUT
R2IN 8
+
T2IN
+
5
C1+
C1C2+
C2-
VCC
+5V TO 10V
VOLTAGE INVERTER V+
+10V TO -10V
VOLTAGE INVERTER
2
+
V- 6
+
+5V
400kΩ
T1
11
+5V
400kΩ
T2
10
0.1µF
0.1µF
14
7
12
T2OUT
13
R1IN
R1OUT
5kΩ
R1
R2OUT
T1OUT
9
8
R2IN
5kΩ
R2
GND
15
Pin Descriptions
PIN
VCC
FUNCTION
Power Supply Input 5V ±10%, (5V ±5% HIN207E).
V+
Internally generated positive supply (+10V nominal).
V-
Internally generated negative supply (-10V nominal).
GND
Ground Lead. Connect to 0V.
C1+
External capacitor (+ terminal) is connected to this lead.
C1-
External capacitor (- terminal) is connected to this lead.
C2+
External capacitor (+ terminal) is connected to this lead.
C2-
External capacitor (- terminal) is connected to this lead.
TIN
Transmitter Inputs. These leads accept TTL/CMOS levels. An internal 400kΩ pull-up resistor to VCC is connected to each lead.
TOUT
RIN
ROUT
Transmitter Outputs. These are RS-232 levels (nominally ±10V).
Receiver Inputs. These inputs accept RS-232 input levels. An internal 5kΩ pull-down resistor to GND is connected to each input.
Receiver Outputs. These are TTL/CMOS levels.
EN, EN
Receiver Enable Input. With EN = 5V (HIN213E EN=0V), the receiver outputs are placed in a high impedance state.
SD, SD
Shutdown Input. With SD = 5V (HIN213E SD = 0V), the charge pump is disabled, the receiver outputs are in a high impedance
state (except R4 and R5 of HIN213E) and the transmitters are shut off.
NC
No Connect. No connections are made to these leads.
6
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Absolute Maximum Ratings
Thermal Information
VCC to Ground. . . . . . . . . . . . . . . . . . . . . . (GND -0.3V) < VCC < 6V
V+ to Ground . . . . . . . . . . . . . . . . . . . . . . . . (VCC -0.3V) < V+ < 12V
V- to Ground . . . . . . . . . . . . . . . . . . . . . . .-12V < V- < (GND +0.3V)
Input Voltages
TIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V < VIN < (V+ +0.3V)
RIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30V
Output Voltages
TOUT . . . . . . . . . . . . . . . . . . . .(V- -0.3V) < VTXOUT < (V+ +0.3V)
ROUT . . . . . . . . . . . . . . . . . (GND -0.3V) < VRXOUT < (V+ +0.3V)
Short Circuit Duration
TOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
ROUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
ESD Classification . . . . . . . . . . . . . . . . . . . . See Specification Table
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
16 Ld SOIC (N) Package . . . . . . . . . . . . . . . . . . . . .
110
16 Ld SOIC (W) Package. . . . . . . . . . . . . . . . . . . . .
100
16 Ld SSOP Package . . . . . . . . . . . . . . . . . . . . . . .
155
16 Ld PDIP Package . . . . . . . . . . . . . . . . . . . . . . . .
90
24 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . .
75
24 Ld SSOP Package . . . . . . . . . . . . . . . . . . . . . . .
135
28 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . .
70
28 Ld SSOP Package . . . . . . . . . . . . . . . . . . . . . . .
100
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC
(SOIC and SSOP - Lead Tips Only)
Operating Conditions
Temperature Range
HIN2XXECX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
HIN2XXEIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Test Conditions: VCC = +5V ±10%, (VCC = +5V ±5% HIN207E); C1-C4 = 0.1µF; TA = Operating Temperature
Range
Electrical Specifications
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
SUPPLY CURRENTS
Power Supply Current, ICC
No Load,
TA = 25oC
Shutdown Supply Current, ICC(SD)
TA = 25oC
HIN202E
-
8
15
mA
HIN206E - HIN208E, HIN211E,
HIN213E
-
11
20
mA
HIN232E
-
5
10
mA
HIN206E, HIN211E
-
1
10
µA
HIN213E
-
15
50
µA
-
-
0.8
V
LOGIC AND TRANSMITTER INPUTS, RECEIVER OUTPUTS
Input Logic Low, VlL
TIN , EN, SD, EN, SD
Input Logic High, VlH
TIN
2.0
-
-
V
EN, SD, EN, SD
2.4
-
-
V
Transmitter Input Pullup Current, IP
TIN = 0V
-
15
200
µA
TTL/CMOS Receiver Output Voltage Low, VOL
IOUT = 1.6mA (HIN202E, HIN232E, IOUT = 3.2mA)
-
0.1
0.4
V
TTL/CMOS Receiver Output Voltage High, VOH
IOUT = -1mA
3.5
4.6
-
V
TTL/CMOS Receiver Output Leakage
EN = VCC , EN = 0, 0V < ROUT < VCC
-
0.5
±10
µA
-30
-
+30
V
3.0
5.0
7.0
kΩ
RECEIVER INPUTS
RS-232 Input Voltage Range, VIN
Receiver Input Impedance, RIN
TA = 25oC, VIN = ±3V
Receiver Input Low Threshold, VIN (H-L)
VCC = 5V,
TA = 25oC
Active Mode
-
1.2
-
V
Shutdown Mode HIN213E R4 and R5
-
1.5
-
V
VCC = 5V,
TA = 25oC
Active Mode
-
1.7
2.4
V
Shutdown Mode HIN213E R4 and R5
-
1.5
2.4
V
0.2
0.5
1.0
V
Receiver Input High Threshold, VIN (L-H)
Receiver Input Hysteresis, VHYST
7
VCC = 5V, No Hysteresis in Shutdown Mode
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Test Conditions: VCC = +5V ±10%, (VCC = +5V ±5% HIN207E); C1-C4 = 0.1µF; TA = Operating Temperature
Range (Continued)
Electrical Specifications
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
TIMING CHARACTERISTICS
Output Enable Time, tEN
HIN206E, HIN211E, HIN213E
-
600
-
ns
Output Disable Time, tDIS
HIN206E, HIN211E, HIN213E
-
200
-
ns
Transmitter, Receiver Propagation Delay, tPD
HIN213E SD = 0V, R4, R5
-
4.0
40
µs
HIN213E SD = VCC , R1 - R5
-
0.5
10
µs
All except HIN213E
-
0.5
10
µs
RL = 3kΩ, CL = 1000pF Measured from +3V to -3V
or -3V to +3V, 1 Transmitter Switching (Note 2)
3
20
45
V/µs
Output Voltage Swing, TOUT
Transmitter Outputs, 3kΩ to Ground
±5
±9
±10
V
Output Resistance, TOUT
VCC = V+ = V- = 0V, VOUT = ±2V
300
-
-
Ω
RS-232 Output Short Circuit Current, ISC
TOUT Shorted to GND
-
±10
-
mA
Human Body Model
-
±15
-
kV
Transition Region Slew Rate, SRT
TRANSMITTER OUTPUTS
ESD PERFORMANCE
RS-232 Pins
(TOUT, RIN)
All Other Pins
IEC1000-4-2 Contact Discharge
-
±8
-
kV
IEC1000-4-2 Air Gap (Note 3)
-
±15
-
kV
Human Body Model
-
±2
-
kV
NOTES:
2. Guaranteed by design.
3. Meets Level 4.
Test Circuits (HIN232E)
+4.5V TO
+5.5V INPUT
0.1µF
C3
0.1µF
C1
1 C1+
-
2 V+
+
3 C1-
+
-
0.1µF +
C2 -
-
+
0.1µF C4
3kΩ
1 C1+
VCC 16
2 V+
GND 15
T1OUT 14
4 C2+
R1IN 13
RS-232 ±30V INPUT
5 C2-
R1OUT 12
TTL/CMOS OUTPUT
6 V7 T2OUT
8 R2IN
T1 OUTPUT
T1IN 11
TTL/CMOS INPUT
T2IN 10
TTL/CMOS INPUT
R2OUT 9
TTL/CMOS OUTPUT
T2
OUTPUT
GND 15
T1OUT 14
4 C2+
R1IN 13
5 C2-
R1OUT 12
3kΩ
3 C1-
VCC 16
6 V-
T1IN 11
7 T2OUT
T2IN 10
8 R2IN
ROUT = VIN /I
R2OUT 9
T2OUT
T1OUT
VIN = ±2V
A
RS-232
±30V INPUT
FIGURE 1. GENERAL TEST CIRCUIT
8
FIGURE 2. POWER-OFF SOURCE RESISTANCE
CONFIGURATION
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
VOLTAGE DOUBLER
S1
VOLTAGE INVERTER
S2
C1+
V+ = 2VCC
S5
C2+
S6
VCC
GND
+
GND
S3
C1-
+
C1
-
+
C3
VCC
S4
+
C2
-
C4
GND
C2-
S7
V- = - (V+)
S8
RC
OSCILLATOR
FIGURE 3. CHARGE PUMP
Detailed Description
The HIN2XXE family of high-speed RS-232
transmitters/receivers are powered by a single +5V power
supply, feature low power consumption, and meet all ElA
RS232C and V.28 specifications. The circuit is divided into
three sections: the charge pump, transmitter, and receiver.
Charge Pump
An equivalent circuit of the charge pump is illustrated in
Figure 3. The charge pump contains two sections: the
voltage doubler and the voltage inverter. Each section is
driven by a two phase, internally generated clock to
generate +10V and -10V. The nominal clock frequency is
125kHz. During phase one of the clock, capacitor C1 is
charged to VCC . During phase two, the voltage on C1 is
added to VCC , producing a signal across C3 equal to twice
VCC . During phase two, C2 is also charged to 2VCC , and
then during phase one, it is inverted with respect to ground
to produce a signal across C4 equal to -2VCC . The charge
pump accepts input voltages up to 5.5V. The output
impedance of the voltage doubler section (V+) is
approximately 200Ω, and the output impedance of the
voltage inverter section (V-) is approximately 450Ω. A typical
application uses 0.1µF capacitors for C1-C4, however, the
value is not critical. Increasing the values of C1 and C2 will
lower the output impedance of the voltage doubler and
inverter, increasing the values of the reservoir capacitors, C3
and C4, lowers the ripple on the V+ and V- supplies.
During shutdown mode (HIN206E, HIN211E and HIN213E)
the charge pump is turned off, V+ is pulled down to VCC , Vis pulled up to GND, and the supply current is reduced to
less than 10µA. The transmitter outputs are disabled and the
receiver outputs (except for HIN213E, R4 and R5) are
placed in the high impedance state.
Transmitters
The transmitters are TTL/CMOS compatible inverters which
translate the inputs to RS-232 outputs. The input logic
threshold is about 26% of VCC , or 1.3V for VCC = 5V. A logic
1 at the input results in a voltage of between -5V and V- at
the output, and a logic 0 results in a voltage between +5V
9
and (V+ -0.6V). Each transmitter input has an internal 400kΩ
pullup resistor so any unused input can be left unconnected
and its output remains in its low state. The output voltage
swing meets the RS-232C specifications of ±5V minimum
with the worst case conditions of: all transmitters driving 3kΩ
minimum load impedance, VCC = 4.5V, and maximum
allowable operating temperature. The transmitters have an
internally limited output slew rate which is less than 30V/µs.
The outputs are short circuit protected and can be shorted to
ground indefinitely. The powered down output impedance is
a minimum of 300Ω with ±2V applied to the outputs and
VCC = 0V.
Receivers
The receiver inputs accept up to ±30V while presenting the
required 3kΩ to 7kΩ input impedance even if the power is off
(VCC = 0V). The receivers have a typical input threshold of
1.3V which is within the ±3V limits, known as the transition
region, of the RS-232 specifications. The receiver output is
0V to VCC . The output will be low whenever the input is
greater than 2.4V and high whenever the input is floating or
driven between +0.8V and -30V. The receivers feature 0.5V
hysteresis (except during shutdown) to improve noise
rejection. The receiver Enable line EN, (EN on HIN213E)
when unasserted, disables the receiver outputs, placing
them in the high impedance mode. The receiver outputs are
also placed in the high impedance state when in shutdown
mode (except HIN213E R4 and R5).
V+
VCC
400kΩ
300Ω
TXIN
TOUT
GND < TXIN < VCC
V- < VTOUT < V+
V-
FIGURE 4. TRANSMITTER
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Application Information
VCC
RXIN
ROUT
-30V < RXIN < +30V
GND < VROUT < VCC
5kΩ
GND
FIGURE 5. RECEIVER
A simple duplex RS-232 port with CTS/RTS handshaking is
illustrated in Figure 7. Fixed output signals such as DTR
(data terminal ready) and DSRS (data signaling rate select)
is generated by driving them through a 5kΩ resistor
connected to V+.
TIN
OR
RIN
TOUT
OR
ROUT
VOL
VOL
tPHL
tPLH
AVERAGE PROPAGATION DELAY =
The HIN2XXE may be used for all RS-232 data terminal and
communication links. It is particularly useful in applications
where ±12V power supplies are not available for
conventional RS-232 interface circuits. The applications
presented represent typical interface configurations.
tPHL + tPLH
2
In applications requiring four RS-232 inputs and outputs
(Figure 8), note that each circuit requires two charge pump
capacitors (C1 and C2) but can share common reservoir
capacitors (C3 and C4). The benefit of sharing common
reservoir capacitors is the elimination of two capacitors and
the reduction of the charge pump source impedance which
effectively increases the output swing of the transmitters.
FIGURE 6. PROPAGATION DELAY DEFINITION
+5V
-
HIN213E Operation in Shutdown
The HIN213E features two receivers, R4 and R5, which
remain active in shutdown mode. During normal operation
the receivers propagation delay is typically 0.5µs. This
propagation delay may increase slightly during shutdown.
When entering shut down mode, receivers R4 and R5 are
not valid for 80µs after SD = VIL. When exiting shutdown
mode, all receiver outputs will be invalid until the charge
pump circuitry reaches normal operating voltage. This is
typically less than 2ms when using 0.1µF capacitors.
1
C1 +
0.1µF -
+
16
3
HIN232E
6
4
C2 +
0.1µF TD
INPUTS
OUTPUTS
TTL/CMOS
RTS
5
T1
11
14
T2
10
7
13
12
RD
CTS
9
+
R2
R1
15
8
CTR (20) DATA
TERMINAL READY
DSRS (24) DATA
SIGNALING RATE
SELECT
RS-232
INPUTS AND OUTPUTS
TD (2) TRANSMIT DATA
RTS (4) REQUEST TO SEND
RD (3) RECEIVE DATA
CTS (5) CLEAR TO SEND
SIGNAL GROUND (7)
FIGURE 7. SIMPLE DUPLEX RS-232 PORT WITH CTS/RTS
HANDSHAKING
10
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
1
C1 +
0.1µF TD
INPUTS
OUTPUTS
TTL/CMOS
RTS
4
HIN232E
3
T1
11
-
14
T2
10
+ C2
0.1µF
5
TD (2) TRANSMIT DATA
7
RTS (4) REQUEST TO SEND
13
12
RD (3) RECEIVE DATA
RD
R2
9
CTS
R1
8
CTS (5) CLEAR TO SEND
15
VCC
16
-
2
C3
+
+
C4
6
V- V+
0.2µF
6
+5V
-
RS-232
INPUTS AND OUTPUTS
0.2µF
2
VCC
16
HIN232E
C1 +
0.1µF DTR
INPUTS
OUTPUTS
TTL/CMOS
DSRS
1
4
3
5
T1
11
14
T2
10
12
7
13
DCD
R1
9
R2
R1
15
8
+ C2
0.1µF
-
DTR (20) DATA TERMINAL READY
DSRS (24) DATA SIGNALING RATE SELECT
DCD (8) DATA CARRIER DETECT
R1 (22) RING INDICATOR
SIGNAL GROUND (7)
FIGURE 8. COMBINING TWO HIN232Es FOR 4 PAIRS OF RS-232 INPUTS AND OUTPUTS
Typical Performance Curves
12
0.1µF
SUPPLY VOLTAGE (|V|)
V- SUPPLY VOLTAGE (V)
12
10
8
6
4
V+ (VCC = 5V)
8
6
V+ (VCC = 4V)
V- (VCC = 4V)
4
TA = 25oC
TRANSMITTER OUTPUTS
OPEN CIRCUIT
2
2
0
3.0
10
3.5
FIGURE 9.
4.0
4.5
VCC
5.0
5.5
V- SUPPLY VOLTAGE vs VCC
11
6.0
0
0
5
10
15
V- (VCC = 5V)
20
25
30
|ILOAD| (mA)
FIGURE 10. V+, V- OUTPUT VOLTAGE vs LOAD
35
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Die Characteristics
DIE DIMENSIONS:
PASSIVATION:
128 mils x 77 mils
Type: Nitride over Silox
Nitride Thickness: 8kÅ
Silox Thickness: 7kÅ
METALLIZATION:
Type: Al
Thickness: 10kÅ ±1kÅ
TRANSISTOR COUNT:
185
SUBSTRATE POTENTIAL
PROCESS:
GND
CMOS Metal Gate
Metallization Mask Layout
HIN232E
VPIN 6
C2PIN 5
C2+
PIN 4
C1PIN 3
PIN 2 V+
PIN 1 C1+
T2OUT PIN 7
R2IN
PIN 8
T3OUT PIN 9
PIN 17 VCC
R2OUT PIN 10
PIN 11
T2IN
PIN 12
T1IN
12
PIN 13
R1OUT
PIN 14
R1IN
PIN 15
T1OUT
PIN 16
GND
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Dual-In-Line Plastic Packages (PDIP)
E16.3 (JEDEC MS-001-BB ISSUE D)
N
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE
E1
INDEX
AREA
1 2 3
INCHES
N/2
-B-
-AE
D
BASE
PLANE
-C-
A2
SEATING
PLANE
A
L
D1
e
B1
D1
A1
eC
B
0.010 (0.25) M
C A B S
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
-
0.210
-
5.33
4
A1
0.015
-
0.39
-
4
A2
0.115
0.195
2.93
4.95
-
B
0.014
0.022
0.356
0.558
-
C
L
B1
0.045
0.070
1.15
1.77
8, 10
eA
C
0.008
0.014
C
D
0.735
0.775
eB
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English and
Metric dimensions, the inch dimensions control.
0.005
-
0.13
-
5
0.300
0.325
7.62
8.25
6
E1
0.240
0.280
6.10
7.11
5
e
0.100 BSC
eA
0.300 BSC
eB
-
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
L
0.115
N
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
13
5
E
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
0.355
19.68
D1
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication No. 95.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and eA are measured with the leads constrained to be perpendicular to datum -C- .
0.204
18.66
16
2.54 BSC
7.62 BSC
0.430
-
0.150
2.93
16
6
10.92
7
3.81
4
9
Rev. 0 12/93
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Small Outline Plastic Packages (SOIC)
M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
N
INCHES
INDEX
AREA
H
0.25(0.010) M
B M
SYMBOL
E
-B-
1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
B
0.25(0.010) M
C
0.10(0.004)
C A M
B S
MILLIMETERS
MAX
MIN
MAX
NOTES
A
0.053
0.069
1.35
1.75
-
A1
0.004
0.010
0.10
0.25
-
B
0.014
0.019
0.35
0.49
9
C
0.007
0.010
0.19
0.25
-
D
0.386
0.394
9.80
10.00
3
E
0.150
0.157
3.80
4.00
4
e
µα
A1
MIN
0.050 BSC
1.27 BSC
-
H
0.228
0.244
5.80
6.20
-
h
0.010
0.020
0.25
0.50
5
L
0.016
0.050
0.40
1.27
6
8o
0o
N
α
16
0o
16
7
8o
Rev. 1 02/02
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
14
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Small Outline Plastic Packages (SSOP)
M16.209 (JEDEC MO-150-AC ISSUE B)
N
16 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
0.25(0.010) M
H
B M
INCHES
E
GAUGE
PLANE
-B1
2
3
L
0.25
0.010
SEATING PLANE
-A-
A
D
-C-
µα
e
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
-
0.078
-
2.00
-
A1
0.002
-
0.05
-
-
A2
0.065
0.072
1.65
1.85
-
B
0.009
0.014
0.22
0.38
9
C
0.004
0.009
0.09
0.25
-
D
0.233
0.255
5.90
6.50
3
E
0.197
0.220
5.00
5.60
4
e
A2
A1
B S
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.20mm (0.0078
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.20mm (0.0078 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.13mm (0.005 inch) total in excess of “B” dimension at maximum material condition.
10. Controlling dimension: MILLIMETER. Converted inch dimensions are
not necessarily exact.
15
0.026 BSC
H
0.292
L
0.022
N
α
NOTES:
MILLIMETERS
0.65 BSC
0.322
7.40
0.037
0.55
16
0o
-
8.20
-
0.95
6
16
8o
0o
7
8o
Rev. 2
3/95
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Small Outline Plastic Packages (SOIC)
M16.3 (JEDEC MS-013-AA ISSUE C)
N
16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
0.25(0.010) M
H
B M
INCHES
E
-B1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
A1
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.0926
0.1043
2.35
2.65
-
A1
0.0040
0.0118
0.10
0.30
-
B
0.013
0.0200
0.33
0.51
9
C
0.0091
0.0125
0.23
0.32
-
D
0.3977
0.4133
10.10
10.50
3
E
0.2914
0.2992
7.40
7.60
4
e
µα
B S
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above
the seating plane, shall not exceed a maximum value of 0.61mm (0.024
inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are
not necessarily exact.
16
0.050 BSC
1.27 BSC
-
H
0.394
0.419
10.00
10.65
-
h
0.010
0.029
0.25
0.75
5
L
0.016
0.050
0.40
1.27
6
N
α
NOTES:
MILLIMETERS
16
0o
16
8o
0o
7
8o
Rev. 0 12/93
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Shrink Small Outline Plastic Packages (SSOP)
M24.209 (JEDEC MO-150-AG ISSUE B)
N
24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
0.25(0.010) M
H
B M
INCHES
E
GAUGE
PLANE
-B1
2
3
L
0.25
0.010
SEATING PLANE
-A-
A
D
-C-
µα
e
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
-
0.078
-
2.00
-
0.05
-
-
0.072
1.65
1.85
-
A1
0.002
A2
0.065
B S
B
0.009
0.014
0.22
0.38
9
0.004
0.009
0.09
0.25
-
D
0.312
0.334
7.90
8.50
3
E
0.197
0.220
5.00
5.60
4
0.026 BSC
H
0.292
L
0.022
N
α
NOTES:
-
C
e
A2
A1
MILLIMETERS
0.65 BSC
0.322
7.40
0.037
0.55
24
0o
-
8.20
-
0.95
6
24
8o
0o
7
8o
Rev. 1
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.20mm
(0.0078 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.20mm (0.0078 inch) per
side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.13mm (0.005 inch) total in excess of “B” dimension at maximum material condition.
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
17
3/95
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Small Outline Plastic Packages (SOIC)
M24.3 (JEDEC MS-013-AD ISSUE C)
N
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
0.25(0.010) M
H
B M
INCHES
E
-B1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
A1
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.0926
0.1043
2.35
2.65
-
A1
0.0040
0.0118
0.10
0.30
-
B
0.013
0.020
0.33
0.51
9
C
0.0091
0.0125
0.23
0.32
-
D
0.5985
0.6141
15.20
15.60
3
E
0.2914
0.2992
7.40
7.60
4
e
µα
B S
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm
(0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per
side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
18
0.05 BSC
1.27 BSC
-
H
0.394
0.419
10.00
10.65
-
h
0.010
0.029
0.25
0.75
5
L
0.016
0.050
0.40
1.27
6
N
α
NOTES:
MILLIMETERS
24
0o
24
8o
0o
7
8o
Rev. 0 12/93
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Shrink Small Outline Plastic Packages (SSOP)
M28.209 (JEDEC MO-150-AH ISSUE B)
N
28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
0.25(0.010) M
H
B M
INCHES
E
GAUGE
PLANE
-B1
2
3
L
0.25
0.010
SEATING PLANE
-A-
A
D
-C-
µα
e
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
-
0.078
-
2.00
-
A1
0.002
-
0.05
-
-
A2
0.065
0.072
1.65
1.85
-
B
0.009
0.014
0.22
0.38
9
C
0.004
0.009
0.09
0.25
-
D
0.390
0.413
9.90
10.50
3
E
0.197
0.220
5.00
5.60
4
e
A2
A1
B S
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.20mm (0.0078 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.20mm (0.0078 inch)
per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dambar protrusion shall be 0.13mm (0.005 inch) total in excess of “B”
dimension at maximum material condition.
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
19
0.026 BSC
H
0.292
L
0.022
N
α
NOTES:
MILLIMETERS
0.65 BSC
0.322
7.40
0.037
0.55
28
0o
-
0.95
6
28
8o
0o
-
8.20
7
8o
Rev. 1 3/95
HIN202E, HIN206E, HIN207E, HIN208E, HIN211E, HIN213E, HIN232E
Small Outline Plastic Packages (SOIC)
M28.3 (JEDEC MS-013-AE ISSUE C)
N
28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
INDEX
AREA
0.25(0.010) M
H
B M
INCHES
E
SYMBOL
-B-
1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
A1
B
C
0.10(0.004)
0.25(0.010) M
C A M
B S
MILLIMETERS
MIN
MAX
NOTES
A
0.0926
0.1043
2.35
2.65
-
0.0040
0.0118
0.10
0.30
-
B
0.013
0.0200
0.33
0.51
9
C
0.0091
0.0125
0.23
0.32
-
D
0.6969
0.7125
17.70
18.10
3
E
0.2914
0.2992
7.40
7.60
4
0.05 BSC
10.00
h
0.01
0.029
0.25
0.75
5
L
0.016
0.050
0.40
1.27
6
8o
0o
28
0o
10.65
-
0.394
N
0.419
1.27 BSC
H
α
NOTES:
MAX
A1
e
µα
MIN
28
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication Number 95.
-
7
8o
Rev. 0 12/93
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at website www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
20