ETC IL256AT

IL256AT
AC Input Phototransistor
Small Outline Surface Mount
Optocoupler
FEATURES
• Guaranteed CTR Symmetry, 2:1 Maximum
• Bidirectional AC Input
Industry Standard SOIC-8 Surface
• Mountable Package
• Standard Lead Spacing, .05"
• Available only on Tape and Reel Option
(Conforms to EIA Standard RS481A)
• Underwriters Lab File #E52744
(Code Letter Y)
DESCRIPTION
Dimensions in inches (mm)
Anode/
Cathode 1
Cathode/ 2
Anode
.154 ±.005
CL
NC 3
(3.91±.13)
.120±.005
(3.05±.13)
.240
(6.10)
8 NC
7 Base
6 Collector
5 Emitter
NC 4
.016 (.41)
Pin One ID
.192±.005
(4.88±.13)
.015±.002
(.38± .05)
.004 (.10)
.008 (.20)
The IL256A is an AC input phototransistor optocoupler. The device consists of two infrared emitters connected in anti-parallel and coupled to a
silicon NPN phototransistor detector.
.008 (.20)
.050 (1.27)
typ.
.020±.004
(.51±.10)
.021 (.53)
2 plcs.
7°
.058±.005
(1.49±.13)
40°
.125 ±.005
(3.18 ±.13)
5°max.
R.010
(.25) max.
Lead
Coplanarity
± .0015 (.04)
max.
These circuit elements are constructed with a
standard SOIC-8 foot print.
The product is well suited for telecom applications such as ring detection or off/on hook status,
given its bidirectional LED input and guaranteed
current transfer ratio (CTR) minimum of 20% at
IF=10 mA.
Maximum Ratings
Emitter
Continuous Forward Current ...................... 60 mA
Power Dissipation at 25°C......................... 90 mW
Derate Linearly from 25°C................... 0.8 mW/°C
Detector
Collector-Emitter Breakdown Voltage............ 30 V
Emitter-Collector Breakdown Voltage........... 5.0 V
Collector-Base Breakdown Voltage............... 70 V
Power Dissipation ................................... 150 mW
Derate Linearly from 25°C................... 2.0 mW/°C
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector) ................................. 240 mW
Derate Linearly from 25°C.................... 3.2mW/°C
Storage Temperature ................ –55°C to +150°C
Operating Temperature ............ –55°C to +100°C
Soldering Time at 260°C ........................... 10 sec.
Characteristics TA=25°C
Symbol
Min.
Typ.
Max. Unit
Condition
VF
—
1.2
1.5
V
IF=±10 mA
BVCEO
30
50
—
V
IC=1.0 mA
BVECO
5.0
10
—
V
IE=100 µA
BVCBO
70
90
—
V
IC=100 µA
ICEO
—
5.0
50
nA
VCE=10 V
DC Current Transfer
Ratio
CTR
20
—
—
%
IF=±10 mA,
VCE=5.0 V
Symmetry
CTR at +10mA
CTR at –10 mA
—
0.5
1.0
2.0
—
—
Saturation Voltage,
Collector-Emitter
VCEsat
—
—
0.4
—
IF=±16 mA,
IC=2.0 mA
Isolation Voltage,
Input to Output
VIO
3000
—
—
VRMS
—
Emitter
Forward Voltage
Detector
Breakdown Voltage
Leakage Current,
Collector-Emitter
Package
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
1
April 3, 2000-18
Figure 5. Normalized saturated CTR
1.0
60
40
85°C
Normalized CTR
20
25°C
0
-55°C
-20
-40
0.8
0.6
0.4
-0.5
0.0
0.5
1.0
1.5
0.0
VF - LED Forward Voltage - V
.1
Figure 2. Forward voltage versus forward current
TA = -55°C
1.2
TA = 25°C
1.1
1.0
0.9
TA = 100°C
0.8
.1
1
10
IF - Forward Current - mA
10000
1.0
TA = 25°C
TA = 50°C
TA = 70°C
0.5
.1
1
10
IF - LED Current - mA
1000
τ
DF = /t
ICB - Photocurrent - µA
t
10
10-6 10-5 10-4 10-3 10-2 10-1 100 101
t - LED Pulse Duration - s
Figure 4. Normalized CTR versus IF and Ta
25°C
100
70°C
10
1
.1
.1
1
10
IF - LED Current - mA
700
Normalized to:
IF = 10 mA, VCE =10V
TA = 25°C
TA = 25°C
TA = 50°C
TA = 70°C
TA = 100°C
HFE - Transistor Gain
0.0
1
10
IF - LED Current - mA
100
VCE=0.4 V, TA=25°C
0.5
.1
100
Figure 8. Base current versus IF and HFE
2.0
1.0
100
Figure 7. Photocurrent versus LED current
τ
Duty Factor
.005
.01
1000 .02
.05
.1
.2
.5
100
Normalized to:
IF = 10 mA
TA = 25°C
0.0
100
Figure 3. Peak LED current versus duty factor, Tau
1.5
100
1.5
1.3
0.7
If(pk) - Peak LED Current - mA
1
10
IF - LED Current - mA
Figure 6. Normalized CTRcb
Normalized CTRcb
VF - Forward Voltage - V
1.4
Normalized CTR
Normalized to:
IF = 10 mA, VCE =10 V
TA = 25°C
0.2
-60
-1.5 -1.0
VCE(sat) =0.4 V
TA = 25°C
TA = 50°C
TA = 70°C
TA = 100°C
100
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
2
600
500
10
400
300
1
200
100
1
10
100
IB - Base Current - µA
IF - LED Current - mA
IF - LED Forward Current - mA
Figure 1. LED forward current versus forward voltage
.1
1000
IL256AT
April 3, 2000-18
Figure 9. Normalized HFE versus Ib, Ta
Figure 11. Base emitter voltage versus base current
Normalized to:
IB = 10 µA
TA = 25°C
VCE = 10 V
1.0
NHFE -20°C
NHFE 25°C
NHFE 50°C
NHFE 70°C
0.8
0.6
1000
IB - Base Current - µA
Normalized HFE
1.2
0.4
10
100
IB - Base Current - µA
Figure 10. Normalized saturated HFE versus Ib
Normalized Saturated HFE
1.5
Normalized to:
HFE at VCE = 10V, ICB = 10 µA
TA = 25°C
1.0
TA = -20°C
TA = 25°C
TA = 50°C
TA = 70°C
0.5
VCE(sat) = 0.4 V
0.0
1
10
100
IB - Base Current - µA
1000
 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany
www.osram-os.com • +49-941-202-7178
3
TA = 25°C
10
1
.1
.01
.001
0.4
1000
0.5
0.6
0.7
VBE - Base Emitter Voltage - V
0.8
Figure 12. Collector-emitter leakage current versus
temperature
ICEO - Collector-Emitter - nA
1
100
105
104
103
102
VCE = 10 V
101
Typical
100
10-1
10-2
-20
0
20
40
60
80
100
TA - Ambient Temperature - °C
IL256AT
April 3, 2000-18