ETC PBSS4350X

DISCRETE SEMICONDUCTORS
DATA SHEET
book, halfpage
M3D109
PBSS4350X
50 V, 3 A
NPN low VCEsat (BISS) transistor
Product specification
2003 Jun 24
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
FEATURES
QUICK REFERENCE DATA
• SOT89 (SC-62) package
SYMBOL
• Low collector-emitter saturation voltage VCEsat
VCEO
collector-emitter voltage
50
V
IC
collector current (DC)
3
A
• Higher efficiency leading to less heat generation
ICM
peak collector current
5
A
• Reduced printed-circuit board requirements.
RCEsat
equivalent on-resistance
130
• High collector current capability: IC and ICM
PARAMETER
MAX. UNIT
mΩ
PINNING
APPLICATIONS
• Power management
PIN
DESCRIPTION
– DC/DC converters
1
emitter
– Supply line switching
2
collector
– Battery charger
3
base
– LCD backlighting.
• Peripheral drivers
– Driver in low supply voltage applications (e.g. lamps
and LEDs).
handbook, halfpage
– Inductive load driver (e.g. relays,
buzzers and motors).
2
3
DESCRIPTION
1
NPN low VCEsat transistor in a SOT89 plastic package.
PNP complement: PBSS5350X.
1
Bottom view
2
3
MAM296
MARKING
TYPE NUMBER
PBSS4350X
2003 Jun 24
MARKING CODE
Fig.1 Simplified outline (SOT89) and symbol.
S43
2
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCBO
collector-base voltage
open emitter
−
50
V
VCEO
collector-emitter voltage
open base
−
50
V
VEBO
emitter-base voltage
open collector
−
5
V
IC
collector current (DC)
note 4
−
3
A
ICM
peak collector current
limited by Tj max
−
5
A
IB
base current (DC)
−
0.5
A
Ptot
total power dissipation
note 1
−
550
mW
note 2
−
1
W
note 3
−
1.4
W
note 4
−
1.6
W
Tamb ≤ 25 °C
Tj
junction temperature
−
150
°C
Tamb
operating ambient temperature
−65
+150
°C
Tstg
storage temperature
−65
+150
°C
Notes
1. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; standard footprint.
2. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; mounting pad for collector 1 cm2.
3. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; mounting pad for collector 6 cm2.
4. Device mounted on a ceramic printed-circuit board 5 cm2, single-sided copper, tinplated.
2003 Jun 24
3
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
MLE186
2
handbook, halfpage
Ptot
(W)
(1)
1.6
(2)
1.2
(3)
0.8
(4)
0.4
0
0
40
(1) Ceramic PCB; 5 cm2
mounting pad for collector.
(2) FR4 PCB; 6 cm2 copper
mounting pad for collector.
80
120
160
Tamb (°C)
(3) FR4 PCB; 1 cm2 copper
mounting pad for collector.
(4) Standard footprint.
Fig.2 Power derating curves.
2003 Jun 24
4
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
Rth j-a
Rth-js
VALUE
UNIT
in free air
note 1
225
K/W
note 2
125
K/W
note 3
90
K/W
note 4
80
K/W
16
K/W
thermal resistance from junction to soldering point
Notes
1. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; standard footprint.
2. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; mounting pad for collector 1 cm2.
3. Device mounted on a FR4 printed-circuit board; single-sided copper; tinplated; mounting pad for collector 6 cm2.
4. Device mounted on a ceramic printed-circuit board 5 cm2, single-sided copper, tinplated.
MLE187
103
handbook, full pagewidth
Zth
(K/W)
δ=1
102
0.75
0.5
0.33
0.2
0.1
10
0.05
0.02
0.01
1
10−5
0
10−4
10−3
10−2
10−1
1
10
102
Fig.3 Transient thermal impedance as a function of pulse time; typical values.
2003 Jun 24
5
tp (s)
103
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
CHARACTERISTICS
Tj = 25 °C; unless otherwise specified.
SYMBOL
ICBO
PARAMETER
collector cut-off current
CONDITIONS
−
100
nA
−
−
50
µA
VCE = 50 V; VBE = 0
−
−
100
nA
−
−
100
nA
IC = 0.1 A
300
−
−
IC = 0.5 A
300
−
−
IC = 1 A; note 1
300
−
700
IC = 2 A; note 1
200
−
−
IEBO
emitter cut-off current
VEB = 5 V; IC = 0
DC current gain
VCE = 2 V
100
−
−
IC = 0.5 A; IB = 50 mA
−
−
80
mV
IC = 1 A; IB = 50 mA
−
−
160
mV
IC = 2 A; IB = 100 mA
−
−
280
mV
IC = 2 A; IB = 200 mA; note 1
−
−
260
mV
IC = 3 A; IB = 300 mA; note 1
−
−
370
mV
IC = 2 A; IB = 200 mA; note 1
−
100
130
mΩ
IC = 3 A; note 1
equivalent on-resistance
VBEsat
base-emitter saturation voltage
UNIT
−
hFE
RCEsat
MAX.
VCB = 50 V; IE = 0
collector cut-off current
collector-emitter saturation
voltage
TYP.
VCB = 50 V; IE = 0; Tj = 150 °C
ICES
VCEsat
MIN.
IC = 2 A; IB = 100 mA
−
−
1.1
V
IC = 3 A; IB = 300 mA; note 1
−
−
1.2
V
1.1
−
−
V
VBEon
base-emitter turn-on voltage
VCE = 2 V; IC = 1 A
fT
transition frequency
IC = 100 mA; VCE = 5 V; f = 100 MHz
100
−
−
MHz
Cc
collector capacitance
VCB = 10 V; IE = Ie = 0; f = 1 MHz
−
−
25
pF
Note
1. Pulse test: tp ≤ 300 µs; δ ≤ 0.02.
2003 Jun 24
6
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
MLE181
800
MLE180
1.2
handbook, halfpage
handbook, halfpage
hFE
VBE
(1)
(V)
600
(1)
0.8
(2)
(2)
400
(3)
(3)
0.4
200
0
10−1
1
102
10
0
10−1
103
104
IC (mA)
1
VCE = 2 V.
(1) Tamb = 100 °C.
(2) Tamb = 25 °C.
(3) Tamb = −55 °C.
VCE = 2 V.
(1) Tamb = −55 °C.
(2) Tamb = 25 °C.
(3) Tamb = 100 °C.
Fig.4
Fig.5
DC current gain as a function of collector
current; typical values.
MLE183
1
10
102
Base-emitter voltage as a function of
collector current; typical values.
MLE184
1
handbook, halfpage
103
104
IC (mA)
handbook, halfpage
VCEsat
VCEsat
(V)
(V)
10−1
10−1
(1)
(1)
(2)
(2)
(3)
10−2
10−3
10−1
1
10
102
10−2
(3)
10−3
10−1
103
104
IC (mA)
IC/IB = 20.
(1) Tamb = 100 °C.
(2) Tamb = 25 °C.
(3) Tamb = −55 °C.
Tamb = 25 °C.
(1) IC/IB = 100.
(2) IC/IB = 50.
(3) IC/IB = 10.
Fig.6
Fig.7
Collector-emitter saturation voltage as a
function of collector current; typical values.
2003 Jun 24
7
1
10
102
103
104
IC (mA)
Collector-emitter saturation voltage as a
function of collector current; typical values.
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
MLE185
1.4
MLE178
1200
handbook, halfpage
handbook, halfpage
(1)
IC
(mA)
VBEsat
(V)
(2)
(3)
1
800
(4)
(1)
(5)
(2)
(6)
(7)
(3)
0.6
400
(8)
(9)
(10)
0.2
10−1
1
10
102
0
103
104
IC (mA)
0.4
0
0.8
1.2
Tamb = 25 °C.
IC/IB = 20.
(1) Tamb = −55 °C.
(2) Tamb = 25 °C.
(3) Tamb = 100 °C.
(1)
(2)
(3)
(4)
Fig.8
Fig.9
Base-emitter saturation voltage as a
function of collector current; typical values.
IB = 2600 µA.
IB = 2340 µA.
IB = 2080 µA.
IB = 1820 µA.
(5) IB = 1560 µA.
(6) IB = 1300 µA.
(7) IB = 1040 µA.
(8) IB = 780 µA.
(9) IB = 520 µA.
(10) IB = 260 µA.
MLE179
5
handbook, halfpage
RCEsat
2
VCE (V)
Collector current as a function of
collector-emitter voltage; typical values.
MLE182
103
handbook, halfpage
1.6
(6)
(5)
(4)
(3)
(2)
(1)
IC
(A)
(Ω)
102
4
(7)
(8)
10
3
(9)
(10)
1
2
(1)
10−1
10−2 −1
10
(2)
1
10
102
1
(3)
0
103
104
IC (mA)
0
(2) Tamb = 25 °C.
(3) Tamb = −55 °C.
Fig.10 Collector-emitter equivalent on-resistance
as a function of collector current; typical
values.
2003 Jun 24
1.2
Tamb = 25 °C.
(1)
(2)
(3)
(4)
IC/IB = 20.
(1) Tamb = 150 °C.
0.8
0.4
IB = 120 mA.
IB = 108 mA.
IB = 96 mA.
IB = 84 mA.
(5)
(6)
(7)
(8)
IB = 72 mA.
IB = 60 mA.
IB = 48 mA.
IB = 36 mA.
1.6
2
VCE (V)
(9) IB = 24 mA.
(10) IB = 12 mA.
Fig.11 Collector current as a function of
collector-emitter voltage; typical values.
8
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
PACKAGE OUTLINE
Plastic surface mounted package; collector pad for good heat transfer; 3 leads
SOT89
B
D
A
b3
E
HE
L
1
2
3
c
b2
w M
b1
e1
e
0
2
4 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
b1
b2
b3
c
D
E
e
e1
HE
L
min.
w
mm
1.6
1.4
0.48
0.35
0.53
0.40
1.8
1.4
0.44
0.37
4.6
4.4
2.6
2.4
3.0
1.5
4.25
3.75
0.8
0.13
OUTLINE
VERSION
SOT89
2003 Jun 24
REFERENCES
IEC
JEDEC
EIAJ
TO-243
SC-62
9
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
99-09-13
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2003 Jun 24
10
Philips Semiconductors
Product specification
50 V, 3 A
NPN low VCEsat (BISS) transistor
PBSS4350X
NOTES
2003 Jun 24
11
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA75
© Koninklijke Philips Electronics N.V. 2003
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
613514/01/pp12
Date of release: 2003
Jun 24
Document order number:
9397 750 11512