AD OP290

a
Precision, Low Power, Micropower
Dual Operational Amplifier
OP290
FEATURES
Single-/Dual-Supply Operation, 1.6 V to 36 V, ⴞ0.8 V to ⴞ18 V
True Single-Supply Operation; Input and Output Voltage
Ranges Include Ground
Low Supply Current (Per Amplifier), 20 ␮A Max
High Output Drive, 5 mA Min
Low Input Offset Voltage, 200 ␮V Max
High Open-Loop Gain, 700 V/mV Min
Outstanding PSRR, 5.6 ␮V/V Max
Industry Standard 8-Lead Dual Pinout
Available in Die Form
PIN CONNECTIONS
PDIP
(P-Suffix)
OUT A
1
A
B
8
V+
7
OUT B
–IN A
2
+IN A
3
6
–IN B
V–
4
5
+IN B
OP290
GENERAL DESCRIPTION
The OP290 is a high performance micropower dual op amp that
operates from a single supply of 1.6 V to 36 V or from dual
supplies of ± 0.8 V to ± 18 V. Input voltage range includes the
negative rail allowing the OP290 to accommodate input signals
down to ground in single-supply operation. The OP290’s output swing also includes ground when operating from a single
supply, enabling “zero-in, zero-out” operation.
The OP290 draws less than 20 µA of quiescent supply current
per amplifier, while able to deliver over 5 mA of output current
to a load. Input offset voltage is below 200 µV eliminating the
need for external nulling. Gain exceeds 700,000 and common-mode
rejection is better than 100 dB. The power supply rejection ratio
of under 5.6 µV/V minimizes offset voltage changes experienced
in battery-powered systems. The low offset voltage and high gain
offered by the OP290 bring precision performance to micropower
applications. The minimal voltage and current requirements
of the OP290 suit it for battery- and solar-powered applications,
such as portable instruments, remote sensors, and satellites. For
a single op amp, see the OP90; for a quad, see the OP490.
V+
+IN
OUTPUT
–IN
NULL
NULL
V
ELECTRONICALLY ADJUSTED ON CHIP
FOR MINIMUM OFFSET VOLTAGE
Figure 1. Simplified Schematic (one of two amplifiers is shown)
REV. B
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
OP290–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
Parameter
Symbol
INPUT OFFSET VOLTAGE
VOS
INPUT OFFSET CURRENT
IOS
INPUT BIAS CURRENT
LARGE-SIGNAL
VOLTAGE GAIN
(@ VS = ⴞ1.5 V to ⴞ15 V, TA = 25ⴗC, unless otherwise noted.)
Conditions
Min
OP290G
Typ
Max
Unit
125
500
µV
VCM = 0 V
0.1
5
nA
IB
VCM = 0 V
4.0
25
nA
AVO
VS = ±15 V, VO = ±10 V
RL = 100 kΩ
RL = 10 kΩ
RL = 2 kΩ
V+ = 5 V, V– = 0 V,
1 V < VO < 4 V
RL = 100 kΩ
RL = 10 kΩ
400
200
100
600
400
200
V/mV
V/mV
V/mV
100
70
250
140
V/mV
V/mV
INPUT VOLTAGE RANGE1
IVR
V+ = 5 V, V– = 0 V
V S = ± 5 V1
0/4
–15/13.5
OUTPUT VOLTAGE SWING
VO
VS = ± 5 V
RL = 10 kΩ
RL = 2 kΩ
V+ = 5 V, V– = 0 V
RL = 10kΩ
± 13.5
± 10.5
4.0
10
± 14.2
± 11.5
4.2
50
V
V
V
µV
80
100
dB
90
120
dB
VOH, VOL
COMMON-MODE
REJECTION
CMR
POWER SUPPLY
REJECTION RATIO
PSRR
SUPPLY CURRENT
(All Amplifiers)
ISY
CAPACITIVE LOAD
STABILITY
V+ = 5 V, V– = 0 V
0 V < VCM < 4 V
VS = ± 15 V,
–15 V < VCM < +13.5 V
V
V
3.2
10
µV/V
VS = ± 1.5 V
VS = ± 15 V
19
25
30
40
µA
µA
AV = +1
No Oscillations
650
pF
INPUT NOISE VOLTAGE1
enp-p
fO = 0.1 Hz to 10 Hz
VS = ± 15 V
3
µV p-p
INPUT RESISTANCE
DIFFERENTIAL-MODE
RIN
VS = ±15 V
30
MΩ
INPUT RESISTANCE
COMMON-MODE
RINCM
VS = ± 15 V
20
GΩ
SLEW RATE
SR
AV = +1
VS = ± 15 V
12
V/ms
GAIN BANDWIDTH
PRODUCT
GBWP
Vs = +15 V
VS = ± 15 V
20
kHz
CHANNEL
SEPARATION2
CS
fO = 10 Hz
VO = 20 V p-p
VS = ± 15 V2
150
dB
5
120
NOTES
1
Guaranteed by CMR test.
2
Guaranteed but not 100% tested.
Specifications subject to change without notice.
–2–
REV. B
OP290
ELECTRICAL CHARACTERISTICS
(@ VS = ⴞ1.5 V to ⴞ15 V, –40ⴗC ≤ TA ≤ +85ⴗC for OP290G, unless otherwise noted.)
Conditions
Min
OP290G
Typ
Max
200
750
Parameter
Symbol
INPUT OFFSET VOLTAGE
VOS
AVERAGE INPUT OFFSET
VOLTAGE DRIFT
TCVOS
VS = ± 15 V
1.2
INPUT OFFSET CURRENT
IOS
VCM = 0 V
0.1
7
nA
INPUT BIAS CURRENT
IB
VCM = 0 V
4.2
25
nA
LARGE-SIGNAL
VOLTAGE GAIN
AVO
VS = ±5 V, VO = ±0 V
RL = 100 kΩ
RL = 10 kΩ
RL = 2 kΩ
V+ = 5 V, V– = 0 V,
1 V < VO < 4 V
RL = 100 kΩ
RL = 10 kΩ
INPUT VOLTAGE RANGE*
IVR
V+ = 5 V, V– = 0 V
VS = +15 V*
OUTPUT VOLTAGE SWING
VO
VS = ± 15 V
RL = 10 kΩ
RL = 2 kΩ
V+ = 5 V, V– = 0 V
RL = 2 kΩ
V+ = 5 V, V– = 0 V
RL = 10 kΩ
VOH
VOL
COMMON-MODE
REJECTION
CMR
POWER SUPPLY
REJECTION RATIO
PSRR
SUPPLY CURRENT
(All Amplifiers)
ISY
V+ = 5 V, V– = 0 V,
0 V < VCM < 3.5 V
VS = ± 15 V
–15 V < VCM < 13.5 V
VS = ± 1.5 V
VS = ± 15 V
*Guaranteed by CMR test.
Specifications subject to change without notice.
REV. B
–3–
Unit
µV
µV/°C
300
150
75
600
250
125
V/mV
V/mV
V/mV
80
40
160
90
V/mV
V/mV
0/3.5
–15/+13.5
V
V
± 13
± 10
± 14
± 11
V
V
3.9
4.1
V
10
100
µV
80
100
dB
90
110
dB
5.6
15
µV/V
24
31
50
60
µA
µA
OP290
ABSOLUTE MAXIMUM RATINGS 1
ORDERING GUIDE
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Differential Input Voltage . . . . [(V–) – 20 V] to [(V+) + 20 V]
Common-Mode Input Voltage . [(V–) – 20 V] to [(V+) + 20 V]
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
P Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP290G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature (TJ) . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C
Package Type
␪JA2
␪JC
Unit
8-Lead Plastic DIP (P)
96
37
°C/W
Model
Temperature
Range
TA = 25ⴗC
VOS Max
(mV)
Package
Description
OP290GP
XIND
500
PDIP
NOTES
1
Absolute Maximum Ratings applies to packaged part.
2
␪JA is specified for worst-case mounting conditions, i.e., ␪JA is specified for
device in socket for PDIP package.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the OP290 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
–4–
WARNING!
ESD SENSITIVE DEVICE
REV. B
Typical Performance Characteristics–OP290
60
40
20
0.12
0.10
0.08
0.06
0
0
25 50 75
–75 –50 –25
TEMPERATURE – C
28
VS = 15V
20
16
VS = 1.5V
12
TA = 85 C
400
300
TA = 125 C
200
100
8
4
0
25
50
75
–75 –50 –25
TEMPERATURE – C
0
100 125
5
10
15
20
TEMPERATURE – C
25
20
0
100
GAIN
80
80
PHASE
60
60
40
40
20
20
0
5
100
1k
10k
FREQUENCY – Hz
100k
4
3
2
1
TPC 7. Closed-Loop Gain vs.
Frequency
REV. B
0
100
5
10
15
20
FREQUENCY – Hz
25
0
30
14
12
10
8
6
4
2
–20
10
120
16
OUTPUT VOLTAGE SWING – V
OUTPUT VOLTAGE SWING – V
40
140
TA = 25 C
VS = 15V
RL = 100k⍀
TPC 6. Open-Loop Gain and Phase
Shift vs. Frequency
TA = 25 C
V+ = 5V, V– = 0V
TA = 25 C
VS = 15V
100 125
100
0
30
6
60
CLOSED-LOOP GAIN – dB
0
TPC 5. Open-Loop Gain vs.
Single-Supply Voltage
TPC 4. Supply Current vs.
Temperature
3.7
120
OPEN-LOOP GAIN – dB
OPEN-LOOP GAIN – V/mV
SUPPLY CURRENT – ␮A
32
3.9
3.8
140
TA = 25 C
500
36
4.0
TPC 3. Input Bias Current vs.
Temperature
RL = 10k⍀
NO LOAD
40
24
100 125
600
44
4.1
3.5
–75 –50 –25
0
25 50 75
TEMPERATURE – C
TPC 2. Input Offset Current vs.
Temperature
TPC 1. Input Offset Voltage vs.
Temperature
4.3
4.2
3.6
0
25 50 75
–75 –50 –25
TEMPERATURE – C
100 125
VS = 15V
4.4
INPUT BIAS CURRENT – nA
80
4.5
VS = 15V
0.14
1k
10k
LOAD RESISTANCE – ⍀
100k
TPC 8. Ouput Voltage Swing vs.
Load Resistance
–5–
PHASE SHIFT – Degrees
VS = 15V
INPUT OFFSET CURRENT – nA
INPUT OFFSET VOLTAGE – ␮V
100
0
100
TA = 25 C
VS = 15V
1k
10k
LOAD RESISTANCE – ⍀
100k
TPC 9. Output Voltage Swing
vs. Load Resistance
OP290
NEGATIVE SUPPLY
120
100
POSITIVE SUPPLY
80
60
120
100
60
40
1
10
100
FREQUENCY – Hz
1
1k
TPC 10. Power Supply Rejection
vs. Frequency
CURRENT NOISE DESTINY– nV/ Hz
1,000
10
100
FREQUENCY – Hz
10
0.1
1k
TPC 11. Common-Mode Rejection
vs. Frequency
1
10
100
FREQUENCY – Hz
1k
TPC 12. Noise Voltage Density
vs. Frequency
TA = 25 C
VS = 15V
100
100
90
90
TA = 25 C
VS = 15V
AV = +1
RL = 10k⍀
CL = 500pF
TA = 25 C
VS = 15V
AV = +1
RL = 10k⍀
CL = 500pF
1
10
10
0%
0%
20mV
0.1
0.1
TA = 25 C
VS = 15V
100
80
40
10
TA = 25 C
VS = 15V
NOISE VOLTAGE DESTINY– nV/ Hz
140
TA = 25 C
COMMON-MODE REJECTION – dB
POWER SUPPLY REJECTION – dB
140
1
10
100
FREQUENCY – Hz
TPC 13. Current Noise Density
vs. Frequency
100␮s
5V
1ms
1k
TPC 14. Small-Signal Transient
Response
–6–
TPC 15. Large-Signal Transient
Response
REV. B
OP290
+18V
+15V
+15V
8
100k⍀
1/2
2
200⍀
3
6
OP290
1/2
OP290
A
1k⍀
V2
OP37A
9k⍀
1/2
OP290
100k⍀
1
10k⍀
100⍀
7
–15V
5
–15V
VIN
4
1/2
OP290
V1 20Vp-p @ 10Hz
B
V1
CHANNEL SEPARATION = 20 LOG V2/1000
–18V
Figure 3. Channel Separation Test Circuit
Figure 2. Burn-In Circuit
The OP290 can be operated on a minimum supply voltage of
1.6 V, or with dual supplies of 0.8 V, and draws only 19 pA of
supply current. In many battery-powered circuits, the OP290
can be continuously operated for thousands of hours before
requiring battery replacement, reducing equipment downtime
and operating cost.
High-performance portable equipment and instruments frequently use lithium cells because of their long shelf-life, light
weight, and high energy density relative to older primary cells.
Most lithium cells have a nominal output voltage of 3 V and are
noted for a flat discharge characteristic. The low supply voltage
requirement of the OP290, combined with the flat discharge
characteristic of the lithium cell, indicates that the OP290 can
be operated over the entire useful life of the cell. Figure 1 shows
the typical discharge characteristic of a 1 Ah lithium cell powering an OP290 with each amplifier, in turn, driving full output
swing into a 100 kΩ load.
APPLICATIONS
TEMPERATURE TO 4–20 mA TRANSMITTER
A simple temperature to 4–20 mA transmitter is shown in Figure 5.
After calibration, the transmitter is accurate to +0.5°C over the
–50°C to +150°C temperature range. The transmitter operates
from 8 V to 40 V with supply rejection better than 3 ppm/V.
One half of the OP290 is used to buffer the VTEMP pins while
the other half regulates the output current to satisfy the current
summation at its noninverting input.
IOUT =
INPUT VOLTAGE PROTECTION
The OP290 uses a PNP input stage with protection resistors in
series with the inverting and noninverting inputs. The high
breakdown of the PNP transistors coupled with the protection
resistors provide a large amount of input protection, allowing
the inputs to be taken 20 V beyond either supply without damaging the amplifier.
80
60
40
20
0
SINGLE-SUPPLY OUTPUT VOLTAGE RANGE
In single-supply operation the OP290’s input and output ranges
include ground. This allows true “zero-in, zero-out” operation.
The output stage provides an active pull-down to around 0.8 V
above ground. Below this level, a load resistance of up to 1 MΩ
to ground is required to pull the output down to zero.
In the region from ground to 0.8 V, the OP290 has voltage gain
equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground.
REV. B
VTEMP ( R6 + R7)
 R2 R6 R7 
– VSET 

R2 R10
 R2 R10 
100
LITHIUM SULPHUR DIOXIDE
CELL VOLTAGE – V
APPLICATIONS INFORMATION
BATTERY-POWERED APPLICATIONS
0
500
1000
1500
2000
HOURS
2500
3000
3500
Figure 4. Lithium Sulphur Dioxide Cell Discharge
Characteristic with OP290 and 100 k⍀ Loads
The change in output current with temperature is the derivative
of the transfer function:
∆IOUT
=
∆T
–7–
∆VTEMP
(R6 + R7)
∆T
R2 R10
OP290
VARIABLE SLEW RATE FILTER
From the formulas, it can be seen that if the span trim is adjusted
before the zero trim, the two trims are not interactive, which
greatly simplifies the calibration procedure.
The circuit shown in Figure 6 can be used to remove pulse noise
from an input signal without limiting the response rate to a genuine signal. The nonlinear filter has use in applications where
the input signal of interest is known to have physical limitations.
An example of this is a transducer output where a change of
temperature or pressure cannot exceed a certain rate due to
physical limitations of the environment. The filter consists of a
comparator which drives an integrator. The comparator compares the input voltage to the output voltage and forces the
integrator output to equal the input voltage. A1 acts as a comparator with its output high or low. Diodes D1 and D2 clamp
the voltage across R3 forcing a constant current to flow in or
out of C2. R3, C2, and A2 form an integrator with A2’s output
slewing at a maximum rate of:
Calibration of the transmitter is simple. First, the slope of the
output current versus temperature is calibrated by adjusting the
span trim, R7. A couple of iterations may be required to be sure
the slope is correct.
Once the span trim has been completed, the zero trim can be made.
Remember that adjusting the offset trim will not affect the gain.
The offset trim can be set at any known temperature by adjusting
R5 until the output current equals:


∆I FS
IOUT = 
– TMIN ) + 4 mA
 (T
 ∆TOPERATING  AMBIENT
0.6 V
VD
≈
R3 C 2 R3 C 2
For an input voltage slewing at a rate under this maximum slew
rate, the output simply follows the input with A1 operating in its
linear region.
Maximum slew rate =
Table I shows the values of R6 required for various temperature ranges.
Table I.
Temperature Range
R6 (k⍀)
0°C to +70°C
–40°C to +85°C
–55°C to +150°C
10
6.2
3
1N4002
V+
8V TO 40V
SPAN TRIM
VIN
REF-43BZ
2
2
1/2
VOUT 6
VTEMP
GND
3 R1
4
10k⍀
R6
R4
20k⍀
8
OP290GP
1
VTEMP
R2
3k⍀
6
1k⍀
1/2
4
R3
100k⍀
R7
5k⍀
R5
5k⍀
VSET 5
ZERO
TRIM
OP290GP
7
R8
1k⍀
2N1711
R9
100k⍀
R10
100⍀
1%, 1/2W
IOUT
RLOAD
Figure 5. Temperature to 4-20 mA Transmitter
–8–
REV. B
OP290
The 200 Ω variable resistor is used to trim the output voltage.
For the lowest temperature drift, parallel resistors can be used in
place of the variable resistor and taken out of the circuit as required
to adjust the output voltage.
+15V
R1
8
2
250k⍀
C1
0.1␮F
1/2
OP290GP
1
3
R2
100k⍀
V+
2
VIN
R3
1M⍀
REF-43FZ
C1
R4
D1
VOUT
D2
25k⍀
6
OP290GP
8
2
1/2
GND
4700pF
OP290GP
7
1
2N2907A
3
4
1/2
5
6
4
VOUT
VOUT
R2
4
R1A
2.37⍀
1%
–15V
DIODES ARE 1N4148
R1B
200⍀
20-TURN
BOURNS 3006P-1-201
Figure 6. Variable Slew Rate Filter
2k⍀
1%
C1
10␮F
LOW OVERHEAD VOLTAGE REFERENCE
Figure 7 shows a voltage reference that requires only 0.1 V of
overhead voltage. As shown, the reference provides a stable
4.5 V output with a 4.6 V to 36 V supply. Output voltage drift is
only 12 ppm/°C. Line regulation of the reference is under 5 µV/V
with load regulation better than 10 µV/mA with up to 50 mA of
output current.
Figure 7. Low Overhead Voltage Reference
The REF-43 provides a stable 2.5 V which is multiplied by the
OP290. The PNP output transistor enables the output voltage
to approach the supply voltage.
Resistors R1 and R2 determine the output voltage.
 R2 
VOUT = 2.5 V 1 +


R1 
REV. B
–9–
C2
0.1␮F
OP290
OUTLINE DIMENSIONS
8-Lead Plastic Dual In-Line Package [PDIP]
[P-Suffix]
(N-8)
Dimensions shown in inches and (millimeters)
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
8
5
1
4
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.180
(4.57)
MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.015
(0.38)
MIN
SEATING
PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
–10–
REV. B
OP290
Revision History
Location
Page
12/03—Data Sheet changed from REV. A to REV. B.
Deleted OP290E and OP290F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Replaced PIN CONNECTIONS with PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Deleted ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Changes to TPC 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Change to SINGLE SUPPLY OUTPUT VOLTAGE RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Changes to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Change to LOW OVERHEAD VOLTAGE REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1/02—Data Sheet changed from REV. 0 to REV. A.
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Edits to DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
REV. B
–11–
–12–
C00327–0–12/03(B)