ETC 4N28FR2VM

Order this document
by 4N25/D
4N25
4N26
4N27
4N28
GlobalOptoisolator
The 4N25, 4N26, 4N27 and 4N28 devices consist of a gallium arsenide
infrared emitting diode optically coupled to a monolithic silicon phototransistor
detector.
• Most Economical Optoisolator Choice for Medium Speed, Switching Applications
• Meets or Exceeds All JEDEC Registered Specifications
• To order devices that are tested and marked per VDE 0884 requirements, the
suffix ”V” must be included at end of part number. VDE 0884 is a test option.
Applications
• General Purpose Switching Circuits
• Interfacing and coupling systems of different potentials and impedances
• I/O Interfacing
6
• Solid State Relays
1
STANDARD THRU HOLE
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
3
Volts
Forward Current — Continuous
IF
60
mA
LED Power Dissipation @ TA = 25°C
with Negligible Power in Output Detector
Derate above 25°C
PD
120
mW
1.41
mW/°C
INPUT LED
OUTPUT TRANSISTOR
Collector–Emitter Voltage
VCEO
30
Volts
Emitter–Collector Voltage
Collector–Base Voltage
VECO
7
Volts
VCBO
70
Volts
Collector Current — Continuous
IC
150
mA
Detector Power Dissipation @ TA = 25°C
with Negligible Power in Input LED
Derate above 25°C
PD
150
mW
1.76
mW/°C
VISO
7500
Vac(pk)
Total Device Power Dissipation @ TA = 25°C
Derate above 25°C
PD
250
2.94
mW
mW/°C
Ambient Operating Temperature Range
TA
– 55 to +100
°C
Tstg
– 55 to +150
°C
TL
260
°C
TOTAL DEVICE
Isolation Surge Voltage(1)
(Peak ac Voltage, 60 Hz, 1 sec Duration)
Storage Temperature Range
Soldering Temperature (10 sec, 1/16″ from case)
1. Isolation surge voltage is an internal device dielectric breakdown rating.
1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
SCHEMATIC
1
6
2
5
3
4
PIN 1.
2.
3.
4.
5.
6.
LED ANODE
LED CATHODE
N.C.
EMITTER
COLLECTOR
BASE
4N25 4N26 4N27 4N28
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1)
Symbol
Min
Typ(1)
Max
Unit
VF
—
—
—
1.15
1.3
1.05
1.5
—
—
Volts
Reverse Leakage Current (VR = 3 V)
IR
—
—
100
µA
Capacitance (V = 0 V, f = 1 MHz)
CJ
—
18
—
pF
Characteristic
INPUT LED
Forward Voltage (IF = 10 mA)
TA = 25°C
TA = –55°C
TA = 100°C
OUTPUT TRANSISTOR
Collector–Emitter Dark Current
(VCE = 10 V, TA = 25°C
4N25,26,27
4N28
ICEO
—
—
1
1
50
100
nA
(VCE = 10 V, TA = 100°C)
All Devices
ICEO
—
1
—
µA
ICBO
—
0.2
—
nA
Collector–Emitter Breakdown Voltage (IC = 1 mA)
V(BR)CEO
30
45
—
Volts
Collector–Base Breakdown Voltage (IC = 100 µA)
V(BR)CBO
70
100
—
Volts
Emitter–Collector Breakdown Voltage (IE = 100 µA)
V(BR)ECO
7
7.8
—
Volts
DC Current Gain (IC = 2 mA, VCE = 5 V)
hFE
—
500
—
—
Collector–Emitter Capacitance (f = 1 MHz, VCE = 0)
CCE
—
7
—
pF
Collector–Base Capacitance (f = 1 MHz, VCB = 0)
CCB
—
19
—
pF
Emitter–Base Capacitance (f = 1 MHz, VEB = 0)
CEB
—
9
—
pF
2 (20)
1 (10)
7 (70)
5 (50)
—
—
VCE(sat)
—
0.15
0.5
Volts
Turn–On Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3)
ton
—
2.8
—
µs
Turn–Off Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3)
toff
—
4.5
—
µs
tr
—
1.2
—
µs
Collector–Base Dark Current (VCB = 10 V)
COUPLED
IC (CTR)(2)
Output Collector Current (IF = 10 mA, VCE = 10 V)
4N25,26
4N27,28
Collector–Emitter Saturation Voltage (IC = 2 mA, IF = 50 mA)
Rise Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3)
Fall Time (IF = 10 mA, VCC = 10 V, RL = 100 Ω)(3)
mA (%)
tf
—
1.3
—
µs
Isolation Voltage (f = 60 Hz, t = 1 sec)(4)
VISO
7500
—
—
Vac(pk)
Isolation Resistance (V = 500 V)(4)
RISO
1011
—
—
Ω
Isolation Capacitance (V = 0 V, f = 1 MHz)(4)
CISO
—
0.2
—
pF
1.
2.
3.
4.
Always design to the specified minimum/maximum electrical limits (where applicable).
Current Transfer Ratio (CTR) = IC/IF x 100%.
For test circuit setup and waveforms, refer to Figure 11.
For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
4N25 4N26 4N27 4N28
VF, FORWARD VOLTAGE (VOLTS)
2
PULSE ONLY
PULSE OR DC
1.8
1.6
1.4
TA = –55°C
1.2
25°C
100°C
1
1
10
100
IF, LED FORWARD CURRENT (mA)
1000
I C , OUTPUT COLLECTOR CURRENT (NORMALIZED)
TYPICAL CHARACTERISTICS
10
NORMALIZED TO:
IF = 10 mA
1
0.1
0.01
IF = 10 mA
20
16
5 mA
12
8
2 mA
4
1 mA
0
0
1
2
3
4
5
6
7
8
9
10
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
50
10
7
5
NORMALIZED TO TA = 25°C
2
1
0.7
0.5
0.2
0.1
–60
–40
–20
0
20
40
60
80
100
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Output Current versus Ambient Temperature
100
NORMALIZED TO:
VCE = 10 V
TA = 25°C
100
50
VCC = 10 V
20
t, TIME (µs)
ICEO, COLLECTOR–EMITTER DARK CURRENT
(NORMALIZED)
Figure 3. Collector Current versus
Collector–Emitter Voltage
I C , OUTPUT COLLECTOR CURRENT (NORMALIZED)
IC , COLLECTOR CURRENT (mA)
24
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
Figure 2. Output Current versus Input Current
Figure 1. LED Forward Voltage versus Forward Current
28
0.5
10
VCE = 30 V
10
RL = 1000
5
RL = 100
1
0.1
20
40
60
80
100
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Dark Current versus Ambient Temperature
1
0.1
tf
{
2
10 V
0
{
tf
tr
tr
0.2
0.5
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
Figure 6. Rise and Fall Times
(Typical Values)
50
100
4N25 4N26 4N27 4N28
100
70
50
VCC = 10 V
t off, TURN –OFF TIME ( µs)
t on, TURN –ON TIME ( µs)
100
70
50
RL = 1000
20
10
7
5
100
10
VCC = 10 V
20
RL = 1000
10
7
5
100
10
2
2
1
0.1
0.2
0.5 0.7 1
2
5 7 10
20
1
0.1
50 70 100
0.2
0.5 0.7 1
IF, LED INPUT CURRENT (mA)
Figure 7. Turn–On Switching Times
(Typical Values)
5 7 10
20
50 70 100
Figure 8. Turn–Off Switching Times
(Typical Values)
20
4
IF = 0
IB = 7 µA
18
6 µA
16
3
5 µA
4 µA
2
3 µA
1
0
2
4
6
8
10
12
14
16
C, CAPACITANCE (pF)
I , TYPICAL COLLECTOR CURRENT (mA)
C
2
IF, LED INPUT CURRENT (mA)
12
10
CEB
8
6
4
1 µA
2
20
f = 1 MHz
CCB
14
2 µA
18
CLED
CCE
0
0.05 0.1
0.2
0.5
1
2
5
10
20
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
Figure 9. DC Current Gain (Detector Only)
Figure 10. Capacitances versus Voltage
TEST CIRCUIT
WAVEFORMS
INPUT PULSE
VCC = 10 V
IF = 10 mA
RL = 100 Ω
10%
INPUT
OUTPUT
OUTPUT PULSE
90%
tr
ton
Figure 11. Switching Time Test Circuit and Waveforms
tf
toff
50
4N25 4N26 4N27 4N28
PACKAGE DIMENSIONS
–A–
6
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4
–B–
1
3
F 4 PL
C
N
–T–
L
K
SEATING
PLANE
J 6 PL
0.13 (0.005)
G
M
E 6 PL
D 6 PL
0.13 (0.005)
M
T A
B
M
M
T B
M
M
A
M
DIM
A
B
C
D
E
F
G
J
K
L
M
N
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.008
0.012
0.100
0.150
0.300 BSC
0
15
0.015
0.100
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.21
0.30
2.54
3.81
7.62 BSC
0
15
0.38
2.54
ANODE
CATHODE
NC
EMITTER
COLLECTOR
BASE
THRU HOLE
–A–
6
4
–B–
1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3
F 4 PL
L
H
C
–T–
G
J
K 6 PL
E 6 PL
0.13 (0.005)
D 6 PL
0.13 (0.005)
M
T A
M
B
M
SEATING
PLANE
T B
M
A
M
M
SURFACE MOUNT
DIM
A
B
C
D
E
F
G
H
J
K
L
S
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.020
0.025
0.008
0.012
0.006
0.035
0.320 BSC
0.332
0.390
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.51
0.63
0.20
0.30
0.16
0.88
8.13 BSC
8.43
9.90
*Consult factory for leadform
option availability
4N25 4N26 4N27 4N28
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
–A–
6
4
–B–
1
3
L
N
F 4 PL
C
–T–
SEATING
PLANE
G
J
K
DIM
A
B
C
D
E
F
G
J
K
L
N
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.008
0.012
0.100
0.150
0.400
0.425
0.015
0.040
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.21
0.30
2.54
3.81
10.16
10.80
0.38
1.02
D 6 PL
E 6 PL
0.13 (0.005)
M
T A
M
B
M
0.4" LEAD SPACING
*Consult factory for leadform
option availability
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
www.fairchildsemi.com
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
© 2000 Fairchild Semiconductor Corporation