ETC BC857BTT1

BC857BTT1, BC857CTT1
Preferred Devices
Advance Information
General Purpose Transistor
PNP Silicon
These transistors are designed for general purpose amplifier
applications. They are housed in the SOT–416/SC–75 which is
designed for low power surface mount applications.
http://onsemi.com
• Device Marking:
COLLECTOR
3
BC857BTT1 = 3F
BC857CTT1 = 3G
1
BASE
2
EMITTER
MAXIMUM RATINGS (TA = 25°C)
Symbol
Max
Unit
Collector – Emitter Voltage
VCEO
–45
V
Collector – Base Voltage
VCBO
–50
V
Emitter – Base Voltage
VEBO
–5.0
V
IC
–100
mAdc
Rating
Collector Current — Continuous
3
2
1
THERMAL CHARACTERISTICS
Characteristic
Symbol
Total Device Dissipation,
FR–4 Board (1)
TA = 25°C
Derated above 25°C
PD
Thermal Resistance,
Junction to Ambient (1)
RθJA
Total Device Dissipation,
FR–4 Board (2)
TA = 25°C
Derated above 25°C
PD
Thermal Resistance,
Junction to Ambient (2)
Junction and Storage
Temperature Range
Max
Unit
200
mW
1.6
mW/°C
600
°C/W
CASE 463
SOT–416/SC–75
STYLE 1
DEVICE MARKING
300
mW
2.4
mW/°C
RθJA
400
°C/W
TJ, Tstg
–55 to
+150
°C
(1) FR–4 @ Minimum Pad
(2) FR–4 @ 1.0 × 1.0 Inch Pad
See Table
ORDERING INFORMATION
Device
Package
Shipping
BC857BTT1
SOT–416
3000 / Tape & Reel
BC857CTT1
SOT–416
3000 / Tape & Reel
Preferred devices are recommended choices for future use
and best overall value.
This document contains information on a new product. Specifications and information
herein are subject to change without notice.
 Semiconductor Components Industries, LLC, 2000
May, 2000 – Rev. 1
1
Publication Order Number:
BC857BTT1/D
BC857BTT1, BC857CTT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
–45
—
—
–50
—
—
–50
—
—
–5.0
—
—
—
—
—
—
–15
–4.0
BC857B
BC857C
—
—
150
270
—
—
BC857B
BC857C
220
420
290
520
475
800
—
—
—
—
–0.3
–0.65
—
—
–0.7
–0.9
—
—
–0.6
—
—
—
–0.75
–0.82
fT
100
—
—
MHz
Output Capacitance
(VCB = –10 V, f = 1.0 MHz)
Cob
—
—
4.5
pF
Noise Figure
(IC = –0.2 mA, VCE = –5.0 Vdc, RS = 2.0 kΩ,
f = 1.0 kHz, BW = 200 Hz)
NF
—
—
10
dB
Characteristic
Unit
OFF CHARACTERISTICS
Collector – Emitter Breakdown Voltage
(IC = –10 mA)
BC857 Series
V(BR)CEO
Collector – Emitter Breakdown Voltage
(IC = –10 µA, VEB = 0)
BC857 Series
Collector – Base Breakdown Voltage
(IC = –10 mA)
BC857 Series
Emitter – Base Breakdown Voltage
(IE = –1.0 mA)
BC857 Series
V
V(BR)CES
V
V(BR)CBO
V
V(BR)EBO
Collector Cutoff Current (VCB = –30 V)
Collector Cutoff Current (VCB = –30 V, TA = 150°C)
ICBO
V
nA
µA
ON CHARACTERISTICS
DC Current Gain
(IC = –10 µA, VCE = –5.0 V)
(IC = –2.0 mA, VCE = –5.0 V)
hFE
Collector – Emitter Saturation Voltage
(IC = –10 mA, IB = –0.5 mA)
(IC = –100 mA, IB = –5.0 mA)
VCE(sat)
Base – Emitter Saturation Voltage
(IC = –10 mA, IB = –0.5 mA)
(IC = –100 mA, IB = –5.0 mA)
VBE(sat)
Base – Emitter On Voltage
(IC = –2.0 mA, VCE = –5.0 V)
(IC = –10 mA, VCE = –5.0 V)
VBE(on)
—
V
V
V
SMALL– SIGNAL CHARACTERISTICS
Current – Gain — Bandwidth Product
(IC = –10 mA, VCE = –5.0 Vdc, f = 100 MHz)
http://onsemi.com
2
BC857BTT1, BC857CTT1
TYPICAL CHARACTERISTICS
1.5
–1.0
TA = 25°C
–0.9
VCE = –10 V
TA = 25°C
VBE(sat) @ IC/IB = 10
–0.8
V, VOLTAGE (VOLTS)
hFE , NORMALIZED DC CURRENT GAIN
2.0
1.0
0.7
0.5
–0.7
VBE(on) @ VCE = –10 V
–0.6
–0.5
–0.4
–0.3
–0.2
0.3
VCE(sat) @ IC/IB = 10
–0.1
0.2
–0.2
–0.5 –1.0 –2.0
–5.0 –10 –20
–50
IC, COLLECTOR CURRENT (mAdc)
0
–0.1 –0.2
–100 –200
Figure 1. Normalized DC Current Gain
θVB , TEMPERATURE COEFFICIENT (mV/ °C)
VCE , COLLECTOR–EMITTER VOLTAGE (V)
TA = 25°C
–1.2
IC =
–10 mA
IC = –50 mA
IC = –200 mA
IC = –100 mA
IC = –20 mA
–0.4
–0.02
–55°C to +125°C
1.2
1.6
2.0
2.4
2.8
–10 –20
–0.1
–1.0
IB, BASE CURRENT (mA)
–0.2
10
Cib
7.0
TA = 25°C
5.0
Cob
3.0
2.0
1.0
–0.4 –0.6
–1.0
–2.0
–4.0 –6.0
–10
–10
–1.0
IC, COLLECTOR CURRENT (mA)
–100
Figure 4. Base–Emitter Temperature Coefficient
f T, CURRENT–GAIN – BANDWIDTH PRODUCT (MHz)
Figure 3. Collector Saturation Region
C, CAPACITANCE (pF)
–100
1.0
–1.6
0
–50
Figure 2. “Saturation” and “On” Voltages
–2.0
–0.8
–0.5 –1.0 –2.0
–5.0 –10 –20
IC, COLLECTOR CURRENT (mAdc)
–20 –30 –40
400
300
200
150
VCE = –10 V
TA = 25°C
100
80
60
40
30
20
–0.5
–1.0
–2.0 –3.0
–5.0
–10
–20
–30
–50
VR, REVERSE VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (mAdc)
Figure 5. Capacitances
Figure 6. Current–Gain – Bandwidth Product
http://onsemi.com
3
r(t), NORMALIZED TRANSIENT THERMAL RESISTANCE
BC857BTT1, BC857CTT1
1.0
D = 0.5
0.2
0.1
0.1
0.05
0.02
0.01
0.01
SINGLE PULSE
0.001
0.00001
0.0001
0.001
0.01
0.1
1.0
10
100
1000
t, TIME (s)
Figure 7. Thermal Response
–200
IC, COLLECTOR CURRENT (mA)
1s
3 ms
–100
–50
–10
–5.0
–2.0
–1.0
TA = 25°C
The safe operating area curves indicate IC–VCE limits of the
transistor that must be observed for reliable operation. Collector
load lines for specific circuits must fall below the limits indicated
by the applicable curve.
The data of Figure 14 is based upon TJ(pk) = 150°C; TC or TA
is variable depending upon conditions. Pulse curves are valid
for duty cycles to 10% provided TJ(pk) ≤ 150°C. TJ(pk) may be
calculated from the data in Figure 13. At high case or ambient
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by the
secondary breakdown.
TJ = 25°C
BC558
BC557
BC556
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
–5.0
–10
–30 –45 –65 –100
VCE, COLLECTOR–EMITTER VOLTAGE (V)
Figure 8. Active Region Safe Operating Area
http://onsemi.com
4
BC857BTT1, BC857CTT1
INFORMATION FOR USING THE SOT-416 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the
total design. The footprint for the semiconductor packages
must be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
ÉÉÉ
ÉÉÉ ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ ÉÉÉ
ÉÉÉ
ÉÉÉ
Unit: mm
0.5 min. (3x)
1
TYPICAL
SOLDERING PATTERN
0.5
0.5 min. (3x)
1.4
SOT–416/SC–75 POWER DISSIPATION
The power dissipation of the SOT–416/SC–75 is a
function of the pad size. This can vary from the minimum
pad size for soldering to the pad size given for maximum
power dissipation. Power dissipation for a surface mount
device is determined by TJ(max), the maximum rated
junction temperature of the die, RθJA, the thermal
resistance from the device junction to ambient; and the
operating temperature, TA. Using the values provided on
the data sheet, PD can be calculated as follows.
PD =
into the equation for an ambient temperature TA of 25°C,
one can calculate the power dissipation of the device which
in this case is 200 milliwatts.
PD =
150°C – 25°C
600°C/W
= 200 milliwatts
The 600°C/W assumes the use of the recommended
footprint on a glass epoxy printed circuit board to achieve a
power dissipation of 200 milliwatts. Another alternative
would be to use a ceramic substrate or an aluminum core
board such as Thermal Clad. Using a board material such
as Thermal Clad, a higher power dissipation can be
achieved using the same footprint.
TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values
SOLDERING PRECAUTIONS
• The soldering temperature and time should not exceed
260°C for more than 10 seconds.
• When shifting from preheating to soldering, the
maximum temperature gradient should be 5°C or less.
• After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and
result in latent failure due to mechanical stress.
• Mechanical stress or shock should not be applied
during cooling
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
• Always preheat the device.
• The delta temperature between the preheat and
soldering should be 100°C or less.*
• When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference should be a maximum of 10°C.
* Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
http://onsemi.com
5
BC857BTT1, BC857CTT1
SOLDER STENCIL GUIDELINES
The stencil opening size for the surface mounted package
should be the same as the pad size on the printed circuit
board, i.e., a 1:1 registration.
Prior to placing surface mount components onto a printed
circuit board, solder paste must be applied to the pads. A
solder stencil is required to screen the optimum amount of
solder paste onto the footprint. The stencil is made of brass
or stainless steel with a typical thickness of 0.008 inches.
TYPICAL SOLDER HEATING PROFILE
The line on the graph shows the actual temperature that
might be experienced on the surface of a test board at or
near a central solder joint. The two profiles are based on a
high density and a low density board. The Vitronics
SMD310 convection/infrared reflow soldering system was
used to generate this profile. The type of solder used was
62/36/2 Tin Lead Silver with a melting point between
177–189°C. When this type of furnace is used for solder
reflow work, the circuit boards and solder joints tend to
heat first. The components on the board are then heated by
conduction. The circuit board, because it has a large surface
area, absorbs the thermal energy more efficiently, then
distributes this energy to the components. Because of this
effect, the main body of a component may be up to 30
degrees cooler than the adjacent solder joints.
For any given circuit board, there will be a group of
control settings that will give the desired heat pattern. The
operator must set temperatures for several heating zones,
and a figure for belt speed. Taken together, these control
settings make up a heating “profile” for that particular
circuit board. On machines controlled by a computer, the
computer remembers these profiles from one operating
session to the next. Figure NO TAG shows a typical heating
profile for use when soldering a surface mount device to a
printed circuit board. This profile will vary among
soldering systems but it is a good starting point. Factors that
can affect the profile include the type of soldering system in
use, density and types of components on the board, type of
solder used, and the type of board or substrate material
being used. This profile shows temperature versus time.
STEP 1
PREHEAT
ZONE 1
“RAMP”
200°C
STEP 2
STEP 3
VENT
HEATING
“SOAK” ZONES 2 & 5
“RAMP”
DESIRED CURVE FOR HIGH
MASS ASSEMBLIES
STEP 5
STEP 4
HEATING
HEATING
ZONES 3 & 6 ZONES 4 & 7
“SPIKE”
“SOAK”
STEP 6 STEP 7
VENT COOLING
205° TO 219°C
PEAK AT
SOLDER JOINT
170°C
160°C
150°C
150°C
140°C
100°C
100°C
SOLDER IS LIQUID FOR
40 TO 80 SECONDS
(DEPENDING ON
MASS OF ASSEMBLY)
DESIRED CURVE FOR LOW
MASS ASSEMBLIES
50°C
TMAX
TIME (3 TO 7 MINUTES TOTAL)
Figure 9. Typical Solder Heating Profile
http://onsemi.com
6
BC857BTT1, BC857CTT1
PACKAGE DIMENSIONS
SOT–416/SC–75
CASE 463–01
ISSUE B
–A–
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
2
3
D 3 PL
0.20 (0.008)
G –B–
1
M
B
K
J
0.20 (0.008) A
C
L
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM
A
B
C
D
G
H
J
K
L
S
MILLIMETERS
MIN
MAX
0.70
0.80
1.40
1.80
0.60
0.90
0.15
0.30
1.00 BSC
–––
0.10
0.10
0.25
1.45
1.75
0.10
0.20
0.50 BSC
H
STYLE 2:
PIN 1. ANODE
2. N/C
3. CATHODE
STYLE 3:
PIN 1. ANODE
2. ANODE
3. CATHODE
http://onsemi.com
7
STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
INCHES
MIN
MAX
0.028
0.031
0.055
0.071
0.024
0.035
0.006
0.012
0.039 BSC
–––
0.004
0.004
0.010
0.057
0.069
0.004
0.008
0.020 BSC
BC857BTT1, BC857CTT1
Thermal Clad is a trademark of the Bergquist Company.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: [email protected]
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2745
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
BC857BTT1/D