AD ADN2820ACHIPS

10.7 Gbps, 3.3 V, Low Noise,
TIA with Average Power Monitor
ADN2820
FEATURES
PRODUCT DESCRIPTION
Technology: high performance SiGe
Bandwidth: 9 GHz
Input noise current density: 1.0 µA
Optical sensitivity: –19.3 dBm
Differential transimpedance: 5000 V/A
Power dissipation: 200 mW
Input current overload: 2.8 mA p-p
Linear input range: 0.15 mA p-p
Output resistance: 50 Ω/side
Output offset adjustment range: 240 mV
Average input power monitor: 1 V/mA
Die size: 0.87 mm × 1.06 mm
The ADN2820 is a compact, high performance, 3.3 V power
supply SiGe transimpedance amplifier (TIA) optimized for
10 Gbps Metro-Access and Ethernet systems. It is a single chip
solution for detecting photodiode current with a differential
output voltage. The ADN2820 features low input referred noise
current and high output transimpedance gain, capable of
driving a typical CDR or transceiver directly. A POWMON
output is provided for input average power monitoring and
alarm generation. Low nominal output offset enables dc output
coupling to 3.3 V circuits. The OFFSET control input enables
output slice level adjustment for asymmetric input signals. The
ADN2820 operates with a 3.3 V power supply and is available in
die form.
APPLICATIONS
10.7 Gbps optical modules
SONET/SDH OC-192/STM-64 and 10 GbE
receivers, transceivers, and transponders
FUNCTIONAL BLOCK DIAGRAM
3.3V
VCC (1,2,3)
RF
50Ω
50Ω
RF = 500Ω
OUT (5)
OUTB (6)
hυ
OFFSET (14)
AV = 20dB
IN (13)'
CB
0.85V
20mA
CF
POWMON (8)
GND (10, 11)
GND (4,7)
CLF (9)
CLF
03194-0-001
Figure 1. Functional Block Diagram/Typical Operating Circuit
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2003 Analog Devices, Inc. All rights reserved.
ADN2820
TABLE OF CONTENTS
Specifications..................................................................................... 3
Applications........................................................................................8
Absolute Maximum Ratings............................................................ 4
Optical Sensitivity .........................................................................8
ESD Caution.................................................................................. 4
Optical Power Monitor.................................................................8
Pad Layout and Functional Descriptions ...................................... 5
Output Offset Adjust Input ..........................................................9
Pad Layout ..................................................................................... 5
Low Frequency Transimpedance Cutoff Capacitor Selection.9
Die Information............................................................................ 5
Bandwidth versus Input Bond Wire Inductance.................... 10
Pad Descriptions........................................................................... 5
Bandwidth versus Output Bond Wire Inductance................. 10
Pad Coordinates ........................................................................... 5
Butterfly Package Assembly ...................................................... 11
Typical Performance Characteristics ............................................. 6
Outline Dimensions ....................................................................... 12
Ordering Guide .......................................................................... 12
REVISION HISTORY
Revision 0: Initial Version
Rev. 0 | Page 2 of 12
ADN2820
SPECIFICATIONS
Table 1. Electrical Specifications
Parameter
DYNAMIC PERFORMANCE
Bandwidth1, 2
Total Input RMS Noise1, 2
Small Signal Transimpedance
Transimpedance Ripple
Group Delay Variation
2
2
Total Peak-to-Peak Jitter 2, 3
Low Frequency Cutoff
S22
Linear Input Range
Input Overload Current1, 2
Maximum Output Swing
DC PERFORMANCE
Power Dissipation
Input Voltage
Output Common-Mode Voltage
Output Offset
Offset Adjust Sensitivity
Offset Adjust Range
POWMON Sensitivity
POWMON Offset
Conditions1
Min
Typ
–3 dB
DC to 10 GHz
100 MHz
100 MHz to 3 GHz
100 MHz to 3 GHz
100 MHz to 9 GHz
IIN,P-P = 2.5 mA
CLF = 0.1 µF
DC – 10 GHz, differential
Peak-to-peak, <1 dB compression
ER = 10 dB
ER = 4 dB
Differential, IIN P-P = 2.0 mA
7.5
9
1.0
5000
±0.5
±10
±30
17
12
–10
0.15
2.8
1.9
1.1
4000
1.4
1.0
0.88
147
0.75
DC terminated to VCC
IIN, AVE < 0.1 mA
See Figure 3
See Figure 3
IIN, AVE = 10 µA to 1 mA
IIN, AVE = 0 µA
–20
0.76
200
0.85
VCC – 0.3
±3
120
240
1
20
Max
6000
264
0.93
+20
1.2
Unit
GHz
µA
V/A
dB
ps
ps
ps
kHz
dB
mA
mA p-p
mA p-p
V p-p
mW
V
V
mV
mV/V
mV
V/mA
mV
Min/Max VCC = 3.3 V ± 0.3 V, TAMBIENT = –15°C to +85°C; Typ VCC = 3.3 V, TAMBIENT = 25°C.
Photodiode capacitance CD = 0.22 pF ± 0.04 pF; photodiode resistance = 20 Ω; CB = CF = 100 pF; RF = 100 Ω; input wire bond inductance LIN = 0.5 nH ± 0.15 nH; output
bond wire inductance LOUT, OUTB = 0.85 nH ± 0.15 nH; load impedance = 50 Ω (each output, dc- or ac-coupled).
3
10–12 BER, 8 dB extinction ratio, 0.85 A/W PIN responsivity.
1
2
Rev. 0 | Page 3 of 12
ADN2820
ABSOLUTE MAXIMUM RATINGS
Table 2. ADN2820 Absolute Maximum Ratings
Parameter
Supply Voltage (VCC to GND)
Internal Power Dissipation
Output Short Circuit Duration
Maximum Input Current
Storage Temperature Range
Operating Ambient Temperature Range
Maximum Junction Temperature
Die Attach Temperature (<60 seconds)
Rating
5.2 V
Indefinite
5 mA
–65°C to +125°C
–15°C to +85°C
165°C
450°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
this product features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 4 of 12
ADN2820
PAD LAYOUT AND FUNCTIONAL DESCRIPTIONS
PAD LAYOUT
DIE INFORMATION
Die Size
14
1
2
3
VCC
VCC
VCC
GND
OFFSET
0.875 mm × 1.060 mm
4
Die Thickness
12 mils = 0.3 mm
Passivation Openings
13
OUT
5
OUTB
6
IN
0,0'
0.08 mm × 0.08 mm
0.12 mm × 0.08 mm
12
TEST
0.08 mm × 0.12 mm
11
GND
GND
GND
CLF
POWMON
10
9
8
7
Passivation Composition
5000 Å Si3N4 (Top)
+5000 Å SiO2 (Bottom)
03194-0-002
Pad Composition
Al/1% Cu
Figure 2. ADN2820 Pad Layout
Backside Contact
P-Type Handle (Oxide Isolated from Active Circuitry)
PAD DESCRIPTIONS
Table 3. Pad Descriptions
Pin No.
1–3
4, 7, 10, 11
5
6
8
Pad
VCC
GND
OUT
OUTB
POWMON
9
12
13
CLF
TEST
IN
14
OFFSET
Function
Positive Supply. Bypass to GND with a 100 pF or greater single-layer capacitor.
Ground.
Positive Output. Drives 50 Ω termination (ac or dc termination).
Negative Output. Drives 50 Ω termination (ac or dc termination).
Input Average Power Monitor. Analog signal proportional to average optical input power. Leave open if
unused.
Low Frequency Cutoff Setpoint. Connect with a 0.1 μF capacitor to GND for 20 kHz.
Test Pad. Leave Floating.
Current Input. Bond directly to reverse biased PIN or APD anode. Filter PIN or APD anode with 100 pF × 100 Ω
or greater.
Output Offset Adjust Input. Leave open if not being used and the input slice threshold will automatically be set
to the eye center.
PAD COORDINATES
Table 4. Pad Coordinates
Pin
No.
1
2
3
4
5
6
7
PAD
VCC
VCC
VCC
GND
OUT
OUTB
GND
X (mm)
–0.20
0.00
0.20
0.35
0.35
0.35
0.35
Y (mm)
0.45
0.45
0.45
0.30
0.10
–0.10
–0.30
Pin
No.
8
9
10
11
12
13
14
Rev. 0 | Page 5 of 12
PAD
POWMON
CLF
GND
GND
TEST
IN
OFFSET
X (mm)
0.20
0.00
–0.20
–0.35
–0.35
–0.35
–0.35
Y (mm)
–0.45
–0.45
–0.45
–0.30
–0.10
0.10
0.30
ADN2820
TYPICAL PERFORMANCE CHARACTERISTICS
0.25
–10
0.20
–15
–20
0.10
0.05
|s22| (dB)
VOUT DIFFERENTIAL (V)
0.15
0
–0.05
–25
–30
–35
–0.10
–40
–0.15
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
OFFSET CONTROL INPUT (V)
–50
0.01
03194-0-008
–0.25
Figure 3. VOUT Differential vs. OFFSET Adjust
1
Figure 6. Differential S22 vs. Frequency
10
VPOWMON (V)
0.001
1
10
100
1k
10k
IIN (µA)
800
600
400
200
0
03194-0-009
0.1
1000
0
LOG
5dB/REF 0dB
2:11.571dB
1.0
1.5
2.0
2.5
3.0
INPUT CURRENT (mA p-p)
Figure 4. VPOWMON vs. IIN
S21
0.5
03194-0-012
DIFFERENTIAL OUTPUT VOLTAGE (mV p-p)
1200
1
Figure 7. Output Voltage vs. Input Current
8.156 326 057GHz
80
CH1 MARKERS
1:14.563 dB
100.000 MHz
75
1
TZ GAIN (dB Ω)
2
70
65
60
START .050 000 000GHz
STOP 20.000 000 000GHz
50
0
0.5
1.0
1.5
2.0
2.5
INPUT CURRENT (mA p-p)
Figure 8. Transimpedance Gain vs. Input Current
Figure 5. ADN2820 S21
Rev. 0 | Page 6 of 12
3.0
03194-0-013
55
03194-0-010
CH1
0.1
FREQUENCY (GHz)
03194-0-011
–45
–0.20
ADN2820
40
TOTAL JITTER p-p (ps)
35
30
25
20
15
10
0
0.5
1.0
1.5
2.0
2.5
3.0
AVERAGE CURRENT (mA)
Figure 9. Total Jitter Peak-to-Peak vs. Average Input Current (IIN = 2 mA p-p)
03194-0-016
0
03194-0-014
5
Figure 11. Electrical Eye Diagram at 10 Gbps, PRBS 2 31 with IIN = 100 µA p-p
60
40
30
20
0
0
0.5
1.0
1.5
2.0
2.5
3.0
INPUT AMPLITUDE p-p (mA)
Figure 10. Total Jitter Peak-to-Peak vs. Input Amplitude (ER = 10 dB)
03194-0-017
10
03194-0-015
TOTAL JITTER p-p (ps)
50
Figure 12. Electrical Eye Diagram at 10 Gbps, PRBS 2 31 with IIN = 2.5 mA p-p
Rev. 0 | Page 7 of 12
ADN2820
APPLICATIONS
OPTICAL SENSITIVITY
(IRMS × α + VS / ZT ) × (ER + 1) × (1000mW /W )
2ρ( ER − 1)
where:
ρ = photodiode responsivity (A/W), 0.85 A/W typical
IRMS = TIA input referred noise (A), typically 1.05 µA for the
ADN2820
α = BER factor, α = 14.1 for 10–12 BER
ER = extinction ratio, 8 dB typical
VS = PA/CDR input sensitivity (V), 5 mV to 100 mV
ZT = TIA transimpedance (V/A), 5 kΩ for ADN2820
OPM (W) = (POWMON (V) – POWMONOFFSET (V))/(ρ (A/W)
× POWMONGAIN (V/A))
OPM calculation from typical ADN2820 POWMON versus
IIN,AVE measurement data:
(POWMONOFFSET = 20 mV, POWMONGAIN = 1 V/mA, ρ =1 A/W)
0
–5
Table 5. Optical Sensitivity
–15
–20
–25
–30
–30
OPTICAL POWER MONITOR
–25
–20
–15
–10
–5
0
AVERAGE INPUT POWER (dBm)
Average optical power monitor (OPM) measurement is a
recommended diagnostic feature in module multisource
specification agreements (MSAs) such as the 300-pin 10 Gb
transponder (MSA300) and 10 Gb form factor pluggable
module (XFP) specifications.
03194-0-001
10 mV
5 mV
OPM (dBm)
Optical Input Sensitivity (dBm)
PA/CDR
100 mV
Input
50 mV
Sensitivity (VS)
25 mV
–10
Transimpedance (ZT)
2 kΩ
5 kΩ
Infinite
–13.1 –15.7 –19.3
–15.1 –17.1 –19.3
–16.7 –18.1 –19.3
–18.1 –18.8 –19.3
–18.7 –19.0 –19.3
Figure 13. POWMON Transfer Function
The ADN2820 enables the simple calculation of OPM using the
POWMON output, which is linearly proportional to the average
input current. When monitoring the POWMON output,
connect to a high impedance input; typical POWMON output
impedance is 1 kΩ. To disable the POWMON feature, leave the
pad floating (not bonded).
Assuming linear diode responsivity ρ, average input current is
linearly proportional to average input power:
OPM MEASUREMENT ERROR (dB)
1.0
0.6
0.2
–0.2
–0.6
–1.0
–30
IIN,AVE (A) = ρ (A/W) × PIN,AVE (W)
–25
–20
–15
–10
AVERAGE INPUT POWER (dBm)
Ideally,
Figure 14. POWMON Accuracy
POWMON (V) = ρ (A/W) × PIN,AVE (W) ×
POWMONGAIN (V/A) + POWMONOFFSET (V)
Rev. 0 | Page 8 of 12
–5
0
03194-0-002
Sensitivity(dBm) = 10 log 10
From a POWMON measurement, the average input power can
be estimated by calculating the optical power monitor (OPM):
ADN2820
OUTPUT OFFSET ADJUST INPUT
Long reach optical links may suffer from unbalanced 1 and 0
signal shaping due to dispersion and/or optical or avalanche
amplification noise. The ADN2820 enables the user to adjust
the input-referred slice level by adjusting the output offset with
the ADN2820’s outputs dc-coupled.
With the OFFSET pad open (not bonded), the average output
voltage offset [OUT – OUTB] is internally balanced to be less
than ±5 mV. When externally driven by a voltage source, the
ADN2820 average output voltage offset [OUT – OUTB] is
linearly proportional to an applied OFFSET input voltage:
Digital encoding methods may generate long strings of 1s or 0s,
requiring the transimpedance amplifier pass band to extend to
1 MHz or below. To accommodate this requirement, the
ADN2820 has –3 dB low frequency transimpedance cutoff set
by external capacitor CLF. For CLF, values greater than 1000 pF,
the typical –3 dB low frequency transimpedance cutoff can be
estimated by the equation
f–3dB ~ 2 kHz × (1 µF/CLF)
Because CLF is not part of the 10 Gbps signal chain, it is not
required to be a high frequency capacitor type. A ceramic
capacitor is recommended.
Applied Offset (V) = (OFFSET (V) – ~1.6 V) × OFFSETGAIN (mV/V)
where:
With transimpedance, TZ, the input referred slice adjust can be
calculated from the following equation:
Input Slice Adjust = 1/TZ × (OFFSET (V) – ~1.6 V) × OFFSETGAIN (mV/V))
50
40
30
20
10M
1M
100k
10k
1k
1pF
10
10pF
0.1nF
1nF
10nF
0.1µF
EXTERNAL CLF CAPACITANCE VALUE
1µF
03194-0-004
OFFSETGAIN = 120 mV/V
TZ –3dB LOW FREQUENCY CUTOFF (Hz)
100M
OFFSET = voltage applied to the OFFSET pad
0
Figure 16. Low Frequency Transimpedance Cutoff vs. CLF Capacitance Using
Typical Data with a 0.1 µF Ceramic Capacitor and Simulation Results with
1 pF to 1 µF Capacitance
–10
–20
–30
–40
–50
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
OFFSET CONTROL INPUT (V)
03194-0-003
INPUT REFERRED SLICE ADJUST (µA)
LOW FREQUENCY TRANSIMPEDANCE CUTOFF
CAPACITOR SELECTION
Figure 15. Input Slice Adjust vs. OFFSET Calculation Using Typical
[OUT,OUTB] vs. OFFSET Measurement Data
Rev. 0 | Page 9 of 12
ADN2820
BANDWIDTH VERSUS INPUT BOND WIRE
INDUCTANCE
BANDWIDTH VERSUS OUTPUT BOND WIRE
INDUCTANCE
The ADN2820’s –3 dB bandwidth (BW) is a strong function of
input (IN) bond wire inductance (LIN). The maximum BW
peaks near and falls rapidly after the resonant frequency of the
input bond wire inductance and photodiode capacitance
(CD) ~ 1/(2π × √(LIN × CD)).
The ADN2820 –3 dB bandwidth (BW) depends strongly on the
output (OUT, OUTB) inductance values (LOUT, LOUTB). With
output inductance greater than 2 nH, the BW is dominated by
the output LOUT, LOUTB/(RO + RL) settling time constant, where
RO = RL = 50 Ω are the nominal single-ended output resistance
and load impedance.
Table 6. Simulated ADN2820 –3 dB BW vs. LIN
Table 7. Simulated ADN2820 –3 dB BW vs LOUT, LOUTB
LIN (nH)
0
1
2
3
LOUT, LOUTB (nH)
0
1
2
3
–3 dB Bandwidth (GHz)
7.4
9.0
7.8
7.0
76
3nH
75
76
2nH
1nH
75
0nH
74
1nH
SIMULATED DIFFERENTIAL
TRANSIMPEDANCE (dB Ω)
73
0nH
72
71
70
69
68
67
73
72
3nH
2nH
71
70
69
68
67
10
FREQUENCY (GHz)
100
Figure 17. Simulated Differential Transimpedance (dB) vs. Frequency (Hz)
with 0 nH, 1 nH, 2 nH, and 3 nH LIN Inductance
Note: LOUT, LOUTB = 1 nH, CD = 0.22 pF.
Recommendation: LIN × CD = 1 nH × 0.22 pF.
66
0.1
03194-0-005
1
1
10
FREQUENCY (GHz)
100
03194-0-006
SIMULATED DIFFERENTIAL
TRANSIMPEDANCE (dB Ω)
74
66
0.1
–3 dB Bandwidth (GHz)
9.1
9.0
7.5
5.9
Figure 18. Simulated Differential Transimpedance (dB) vs. Frequency (Hz)
with 0 nH, 1 nH, 2 nH, and 3 nH LOUT, LOUTB inductance
Note: LIN = 1 nH, CD = 0.22 pF.
Recommendation: LOUT, LOUTB ≤ 1 nH
Rev. 0 | Page 10 of 12
ADN2820
BUTTERFLY PACKAGE ASSEMBLY
OFFSET
VCC
7.5mm
Rf
Cb
5mm
Cf
OUT
OUTB
PD
2.5mm
Clf
POWMON
03194-0-007
0mm
Figure 19. Butterfly Package
Table 8. Bill of Materials
PD
TIA
CB
CLF
CF
RF
Qty.
1
1
2
1
1
1
Description
VENDOR SPECIFIC (0.5 mm × 0.5 mm)
ADN2820 (0.87 mm × 1.06 mm)
GM250X7R10216 (0.5 mm × 0.5 mm)
GM260Y5V104Z10 (0.8 mm × 0.8 mm)
D20BV201J5PX (0.5 mm × 0.5 mm)
WMIF0021000AJ (0.4 mm × 0.5 mm)
Source
10 Gbps Photodiode
Analog Devices SiGe 10 Gbps Transimpedance Amplifier
Murata 1000 pF Ceramic Single Layer Capacitor
Murata 0.1 µF Ceramic Single Layer Capacitor
DiLabs 100 pF RF Single Layer Capacitor
Vishay 100 Ω Thin Film Microwave Resistor
Rev. 0 | Page 11 of 12
ADN2820
OUTLINE DIMENSIONS
1
2
3
4
14
13
5
ADN2820
1.060 mm
SINGLE PAD SIZE: 0.080 mm x 0.080 mm
(pads 1, 2, 3, 5, 6, 8, 9, 12, 13, 14)
6
12
DOUBLE PAD SIZE: 0.120 mm x 0.080 mm
(pads 4, 7, 10, 11)
11
7
9
10
8
0.875 mm
0.30 mm
Figure 20. 14-Pad Bare Die
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADN2820ACHIPS
Temperature Range
–25°C to +85°C
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
C03194–0–10/03(0)
Rev. 0 | Page 12 of 12
Package Description
Die Form