ETC IRGBC40K-S

PD - 9.1134
IRGBC40K-S
INSULATED GATE BIPOLAR TRANSISTOR
Features
Short Circuit Rated
UltraFast Fast IGBT
C
• Short circuit rated - 10µs @ 125°C, VGE = 15V
• Switching-loss rating includes all "tail" losses
• Optimized for high operating frequency (over
5kHz)
See Fig. 1 for Current vs. Frequency
curve
VCES = 600V
VCE(sat) ≤ 3.2V
G
@VGE = 15V, IC = 25A
E
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier
have higher usable current densities than comparable bipolar transistors,
while at the same time having simpler gate-drive requirements of the
familiar power MOSFET. They provide substantial benefits to a host of
high-voltage, high-current applications.
These new short circuit rated devices are especially suited for motor
control and other applications requiring short circuit withstand capability.
SMD-220
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
I CM
ILM
tsc
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
42
25
84
84
10
±20
15
160
65
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Wt
Junction-to-Case
Junction-to-Ambient, (PCB mount)**
Junction-to-Ambient, typical socket mount
Weight
** When mounted on 1" square PCB (FR-4 or G-10 Material)
Min.
Typ.
Max.
---------------------
---------------2 (0.07)
0.77
40
80
------
For recommended footprint and soldering techniques refer to application note #AN-994.
Units
°C/W
g (oz)
IRGBC40K-S
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltage 600 ---- ---V
VGE = 0V, IC = 250µA
Emitter-to-Collector Breakdown Voltage „ 20
---- ---V
VGE = 0V, IC = 1.0A
∆V (BR)CES/∆T J Temperature Coeff. of Breakdown Voltage---- 0.46 ---- V/°C VGE = 0V, IC = 1.0mA
Collector-to-Emitter Saturation Voltage
---- 2.1 3.2
IC = 25A
V GE = 15V
VCE(on)
---- 2.8 ---V
IC = 42A
See Fig. 2, 5
---- 2.5 ---IC = 25A, TJ = 150°C
VGE(th)
Gate Threshold Voltage
3.0 ---- 5.5
VCE = VGE, IC = 250µA
∆V GE(th)/∆T J Temperature Coeff. of Threshold Voltage ---- -13 ---- mV/°C VCE = VGE, IC = 250µA
Forward Transconductance …
7.0
14
---S
VCE = 100V, IC = 25A
gfe
ICES
Zero Gate Voltage Collector Current
---- ---- 250
µA
VGE = 0V, VCE = 600V
---- ---- 1000
VGE = 0V, VCE = 600V, TJ = 150°C
IGES
Gate-to-Emitter Leakage Current
---- ---- ±100 nA
VGE = ±20V
V(BR)CES
V(BR)ECS
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Q gc
t d(on)
tr
t d(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
t d(on)
tr
t d(off)
tf
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
------------------------------10
Typ.
61
13
22
35
27
160
130
0.52
1.2
1.7
----
---34
---28
---- 300
---- 310
---- 3.6
---- 7.5
---- 1500
---- 190
---17
Max. Units
Conditions
92
IC = 25A
19
nC
VCC = 400V
See Fig. 8
33
VGE = 15V
---TJ = 25°C
---ns
IC = 25A, VCC = 480V
240
VGE = 15V, RG = 10Ω
200
Energy losses include "tail"
------mJ See Fig. 9, 10, 11, 14
2.6
---µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 10Ω, VCPK < 500V
---TJ = 150°C,
---ns
IC = 25A, VCC = 480V
---VGE = 15V, RG = 10Ω
---Energy losses include "tail"
---mJ
See Fig. 10, 14
---nH Measured 5mm from package
---VGE = 0V
---pF
VCC = 30V
See Fig. 7
---ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE=20V, pulse width
limited by max. junction temperature.
( See fig. 13b )
‚ VCC=80%(VCES), VGE=20V, L=10µH,
RG= 10Ω, ( See fig. 13a )
ƒ Repetitive rating; pulse width limited
by maximum junction temperature.
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
… Pulse width 5.0µs,
single shot.
IRGBC40K-S
50
For both:
40
Load Current (A)
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 28W
Clamp voltage:
80% of rated
30
Square wave:
60% of rated
voltage
20
10
Ideal diodes
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK )
1000
10
TJ = 150°C
TJ = 25°C
1
VGE = 15V
20µs PULSE WIDTH A
0.1
0.1
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
IC , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
100
TJ = 150°C
10
TJ = 25°C
VCC = 100V
5µs PULSE WIDTH A
1
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
20
IRGBC40K-S
5.0
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
50
40
30
20
10
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
3.0
I C = 25A
2.0
1.0
-60
150
I C = 50A
4.0
I C = 13A
A
-40
-20
0
20
40
60
80
100 120 140 160
TC, Case Temperature (°C)
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
0.02
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
0.01
0.01
0.00001
1
/t
1
t
2
2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
10
IRGBC40K-S
2500
VGE , Gate-to-Emitter Voltage (V)
2000
C, Capacitance (pF)
20
V GE = 0V,
f = 1MHz
Cies = Cge + C gc , Cce SHORTED
Cres = C gc
Coes = C ce + C gc
Cies
1500
C oes
1000
500
Cres
A
0
1
10
VCE = 400V
I C = 25A
16
12
8
4
A
0
100
0
20
VCE, Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
2.0
1.9
1.8
1.7
A
1.6
0
10
80
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
VCC = 480V
VGE = 15V
T C = 25°C
I C = 25A
2.1
60
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
2.2
40
20
30
40
50
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
60
I C = 50A
I C = 25A
I C = 13A
1
RG = 10Ω
V GE = 15V
V CC = 480V
0.1
-60
-40
-20
0
20
40
60
80
A
100 120 140 160
TC , Case Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Case Temperature
IRGBC40K-S
1000
RG = 10Ω
T C = 150°C
VCC = 480V
VGE = 15V
8
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
10
6
4
2
100
A
0
0
10
20
30
40
50
VGE = 20V
TJ = 125°C
SAFE OPERATING AREA
10
A
1
1
60
10
100
VCE, Collector-to-Emitter Voltage (V)
IC , Collector-to-Emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
4.69 (0.185)
4.20 (0.165)
10.54 (0.415)
10.29 (0.405)
1.32 (0.052)
1.22 (0.048)
1.40 (0.055) MAX.
4
15.49 (0.610)
14.73 (0.580)
10.67 (0.420)
9.91 (0.390)
1
2
2°
3
1.78 (0.070)
1.27 (0.050)
1.15 (0.045) MIN.
5° TYP.
2.79 (0.110)
2.29 (0.090)
1.40 (0.055)
1.15 (0.045)
0.64 (0.025)
0.46 (0.018)
0.010 (0.004)
0.93 (0.037)
0.69 (0.027)
2.89 (0.114)
2.64 (0.104)
2.54 (0.100)
5.08 (0.200) REF.
OUTLINE SMD-220
Dimensions in Millimeters and (Inches)
LEAD ASSIGNMENTS
1 - GATE
2 - COLLECTOR
3 - EMITTER
4 - COLLECTOR
1000
IRGBC40K-S
L
D.U.T.
VC *
50V
RL =
0 - 480V
1000V
480V
4 X IC@25°C
480µF
960V

‚
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
VC
Fig. 14a - Switching
Loss Test Circuit
50V

1000V
‚
ƒ
* Driver same type
as D.U.T., VC =
480V

‚
90%
ƒ
VC
10%
Fig. 14b - Switching Loss
Waveforms
90%
t d(off)
10%
I C 5%
tf
tr
t d(on)
t=5µs
Eon
Eoff
Ets = (Eon +Eoff )