AD ADD8709ASTZ-REEL

18-Channel Gamma Buffer
with Regulator
ADD8709
FEATURES
APPLICATIONS
TFT LCD monitor panels
TFT LCD TV panels
GENERAL DESCRIPTION
The ADD8709 is an 18-channel gamma reference for use in
high-resolution TFT LCD monitor and TV panels. The output
buffers feature low offset voltage and high current drive under
transient load conditions to provide a more accurate and stable
gamma curve. Two channels swing to VDD and two channels
swing to GND, increasing the overall range of the curve. An
on-board voltage regulator is available for external applications.
Here again, external component costs are reduced and the
quality of the gray scale is increased.
FUNCTIONAL BLOCK DIAGRAM
48
47
46
45
44
43
42
41
40
39
38
37
1
36
2
35
VREG
3
34
4
33
5
32
6
31
18
18
7
30
8
29
9
28
10
27
11
26
12
25
13
14
15
16
17
18
19
20
21
22
23
24
Figure 1. 48-Lead LQFP
The ADD8709 is specified over the temperature range of
–40°C to +100°C and comes in a robust, low profile quad
flat package.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
04715-0-001
Integrated voltage regulator
Upper/lower buffers swing to VDD/GND
Single-supply operation: 7.5 V to 16.5 V
Continuous current drive: 15 mA
High peak output current: 150 mA
Low offset voltage: 15 mV max
Output voltage stable under transient load conditions
ADD8709
TABLE OF CONTENTS
Electrical Characteristics ................................................................. 3
Absolute Maximum Ratings............................................................ 4
Pin Configuration and Function Descriptions............................. 5
Typical Applications Circuit............................................................ 7
Typical Performance Characteristics ............................................. 8
Application Notes ........................................................................... 12
Maximum Power Dissipation ................................................... 12
Operating Temperature Range ................................................. 12
Outline Dimensions ....................................................................... 13
Ordering Guide........................................................................... 14
REVISION HISTORY
7/04—Revision 0: Initial Version
Rev. 0 | Page 2 of 16
ADD8709
ELECTRICAL CHARACTERISTICS
7.5 V ≤ VDD ≤ 16 V, TA @ 25°C, unless otherwise noted.
Table 1.
Parameter
ALL DEVICES
POWER SUPPLY
Supply Voltage
Supply Current
VS
ISYS
VOLTAGE REGULATOR
Dropout Voltage
∆VDO
Line Regulation
Load Regulation
Load Current
Thermal Regulation
GAMMA BUFFERS
POWER SUPPLY
Power Supply Rejection Ratio
INPUT CHARACTERISTICS
Offset Voltage
Offset Voltage Drift
Input Bias Current
Symbol
REGLINE
REGLOAD
IO
REGTHERMAL
Conditions
Min
Typ
Max
Unit
No load
–20°C ≤ TA ≤ +105°C
10.5
16
15
17
V
mA
mA
IL = 100 µA
IL = 5 mA
VIN = 8.5 V to 16.5 V, VOUT = 8 V
IO = 100 µA to 10 mA
100
310
0.01
0.02
5
0.005
150
350
0.20
0.10
mV
mV
%/V
%/mA
mA
%/W
7.5
PSRR
VDD = 7 V to 17 V, –20°C ≤ TA ≤ +105°C
VOS
∆VOS/∆T
IB
–20°C ≤ TA ≤ +105°C
68
90
5
20
0.5
400
1
mV
µV/°C
µA
µA
V
kΩ
pF
15
5
mV
mV
6
4.5
1.1
55
V/µs
MHz
µs
Degrees
–20°C ≤ TA ≤ +105°C
Input Voltage Range
Input Impedance
Input Capacitance
OUTPUT CHARACTERISTICS
Output Performance (V1, V8, V9, V18)
Output Performance (V2 to V7, V10 to V17)
DYNAMIC PERFORMANCE
Slew Rate
Bandwidth
Settling Time to 0.1%
Phase Margin
1
0
ZIN
CIN
∆VOUT1
∆VOUT1
IL = 20 mA, VDD = 16 V
IL = 5 mA, VDD = 16 V
SR
BW
tS
φo
RL = 10 kΩ, CL = 200 pF
–3 dB, RL = 10 kΩ, CL = 200 pF
1 V, RL = 10 kΩ, CL = 200 pF
RL = 10 kΩ, CL = 200 pF
∆VOUT is the shift from the desired output voltage under the specified current load.
Rev. 0 | Page 3 of 16
4
dB
15
1.1
1.5
VDD
ADD8709
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage (VDD)
Input Voltage
Storage Temperature Range
Operating Temperature Range1
Junction Temperature Range
Lead Temperature Range (Soldering, 60 sec)
ESD Tolerance (HBM)
ESD Tolerance (MM)
Rating
18 V
–0.5 V to VDD
–65°C to +150°C
−40°C to +100°C
–65°C to +150°C
300°C
±2000 V
±150 V
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may
affect device reliability.
Table 3. Package Characteristics
Package Type
LQFP (ST)
1
θJA
74.57
Unit
°C/W
See Application Notes section.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 4 of 16
ADD8709
GND
GND
VOUT18
VOUT17
VOUT16
VOUT15
VOUT14
VOUT13
VDD
GND
VOUT12
VOUT11
48
47
46
45
44
43
42
41
40
39
38
37
1
36
VOUT10
2
35
VOUT9
VOUT8
VOUT7
PIN 1
IDENTIFIER
VDD
3
34
REGOUT
4
33
VIN18
5
32
VDD
VIN17
6
31
GND
VIN16
7
30
VOUT6
VIN15
8
29
VOUT5
VIN14
9
28
VOUT4
VIN13 10
27
VOUT3
VIN12 11
26
VOUT2
VIN11 12
25
VOUT1
ADD8709
13
14
15
16
17
18
19
20
21
22
23
24
VIN10
VIN9
VIN8
VIN7
VIN6
VIN5
VIN4
VIN3
VIN2
VIN1
GND
VDD
TOP VIEW
(Not to Scale)
04715-0-002
REGFB
VDD
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 2. 48-Lead Low Profile Quad Flat Package (ST-48)
Table 4. Pin Function Descriptions
Pin No.
1
Mnemonic
REGFB
Name
Regulator Feedback
2
3
4
GND
VDD
REGOUT
Ground
Supply
Regulator Output
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
VIN18
VIN17
VIN16
VIN15
VIN14
VIN13
VIN12
VIN11
VIN10
VIN9
VIN8
VIN7
VIN6
VIN5
VIN4
VIN3
VIN2
VIN1
GND
VDD
VOUT1
VOUT2
Description
Compares a percentage of the regulator output to the internal voltage reference. Internal
resistors are used to program the desired regulator output voltage.
Ground. Nominally 0 V.
Supply voltage or source voltage. Nominally 16 V.
Provides a regulated output voltage for use as a reference for additional external gamma
channels.
Input
Buffer input.
Ground
Supply
Ground. Nominally 0 V.
Supply voltage. Nominally 16 V.
Output
Buffer output. Designed to have higher sink than source capability.
Rev. 0 | Page 5 of 16
ADD8709
Pin No.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Mnemonic
VOUT3
VOUT4
VOUT5
VOUT6
GND
VDD
VOUT7
VOUT8
VOUT9
VOUT10
VOUT11
VOUT12
GND
VDD
VOUT13
VOUT14
VOUT15
VOUT16
VOUT17
VOUT18
GND
VDD
Name
Description
Output
Buffer output.
Ground
Supply
Ground. Nominally 0 V.
Supply voltage. Nominally 16 V.
Output
Buffer output.
Ground
Supply
Ground. Nominally 0 V.
Supply voltage. Nominally 16 V.
Output
Buffer output.
Output
Buffer output. Designed to have higher source than sink capability.
Ground
Supply
Ground. Nominally 0 V.
Supply voltage. Nominally 16 V.
Rev. 0 | Page 6 of 16
ADD8709
TYPICAL APPLICATIONS CIRCUIT
VFB
GND
VDD
REGIN
VREG
REGFB REGOUT
VOLTAGE
REGULATOR
ADD8709
GAMMA BUFFERS
COLUMN DRIVER
VIN18
VOUT18
18
GAMMA 18
VIN17
VOUT17
17
GAMMA 17
VIN16
VOUT16
16
GAMMA 16
VIN15
VOUT15
15
GAMMA 15
*EXTERNAL RESISTORS
TO SET GAMMA
VOLTAGES
VIN4
VOUT4
4
GAMMA 4
VIN3
VOUT3
3
GAMMA 3
VIN2
VOUT2
2
GAMMA 2
VIN1
GND
Figure 3.
Rev. 0 | Page 7 of 16
GAMMA 1
04715-0-004
VOUT1
1
ADD8709
TYPICAL PERFORMANCE CHARACTERISTICS
30
12
CH1 SOURCE
CH1 SINK
11
9
8
7
6
5
4
3
04715-0-007
2
1
0
0
2
4
6
8
10
12
SUPPLY VOLTAGE (V)
14
16
25
20
15
10
5
0
0.1
18
CH2 SOURCE
CH2 SINK
04712-0-035
OUTPUT VOLTAGE ERROR (mV)
SUPPLY CURRENT (mA)
10
1.0
10
LOAD CURRENT (mA)
100
Figure 7. Output Voltage Error vs. Load Current
Figure 4. Supply Current vs. Supply Voltage
30
11.0
CH3 SOURCE
CH3 SINK
10.8
10.7
10.6
04715-0-008
10.5
0
20
40
60
80
100
20
15
10
5
0
0.1
120
TEMPERATURE (°C)
OUTPUT VOLTAGE ERROR (mV)
10
5
ILOAD = 0mA
–5
–10
–15
–20
–25
ISOURCE = 25mA
–30
–35
–20 –10
ISOURCE = 15mA I
SOURCE = 5mA
0
10
20
30 40 50 60 70
TEMPERATURE (°C)
80
04715-0-009
OUTPUT VOLTAGE ERROR (mV)
CH10 SOURCE
CH10 SINK
ISINK = 5mA
0
100
30
ISINK = 25mA ISINK = 15mA
15
1.0
10
LOAD CURRENT (mA)
Figure 8. Output Voltage Error vs. Load Current
Figure 5. Supply Current vs. Temperature
20
CH9 SOURCE
CH9 SINK
25
20
15
10
5
0
0.1
90 100 110 120
Figure 6. Output Voltage Error vs. Temperature
CH16 SOURCE
CH16 SINK
04712-0-037
10.4
–20
25
04712-0-036
OUTPUT VOLTAGE ERROR (mV)
SUPPLY CURRENT (mA)
10.9
1.0
10
LOAD CURRENT (mA)
Figure 9. Output Voltage Error vs. Load Current
Rev. 0 | Page 8 of 16
100
ADD8709
80
70
CH18 SOURCE
CH18 SINK
60
20
15
10
5
0
0.1
1.0
10
LOAD CURRENT (mA)
50
40
30
20
04712-0-016
NUMBER OF AMPLIFIERS
25
CH17 SOURCE
CH17 SINK
04712-0-038
OUTPUT VOLTAGE ERROR (mV)
30
10
0
–100 –80
100
Figure 10. Output Voltage Error vs. Load Current
–60
–40 –20
0
20
40
60
OUTPUT VOLTAGE ERROR (mV)
80
100
Figure 13. Output Voltage Error/Gamma 10 to 16
80
25
70
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
20
60
50
40
30
20
15
10
0
–25 –21 –17 –13 –9 –5 –1 3
7 11 15
OUTPUT VOLTAGE ERROR (mV)
19
04712-0-015
04712-0-013
5
10
0
–100
23
Figure 11. Output Voltage Error/Gamma 1 and 2
–80
–60
–40 –20
0
20
40
60
OUTPUT VOLTAGE ERROR (mV)
80
100
Figure 14. Output Voltage Error/Gamma 17 and 18
120
15
14
13
OUTPUT VOLTAGE (V)
12
80
60
40
11
10
ILOAD = 0mA
ILOAD = 5mA
ILOAD = 10mA
9
8
7
6
5
4
0
–50 –42 –34 –26 –18 –10 –2 6 14 22 30
OUTPUT VOLTAGE ERROR (mV)
38
04712-0-017
3
20
04712-0-014
NUMBER OF AMPLIFIERS
100
2
1
0
0
46
Figure 12. Output Voltage Error/Gamma 3 to 9
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16 17
INPUT VOLTAGE (V)
Figure 15. Dropout Characteristics
Rev. 0 | Page 9 of 16
ADD8709
1000
14.45
0mA
900
14.40
REGULATOR OUTPUT (V)
700
600
500
400
300
200
5mA
14.35
14.30
10mA
100
0
14.20
–20 –10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
OUTPUT CURRENT (mA)
Figure 16. Dropout Voltage vs. Output Current
0
10
20
30 40 50 60 70
TEMPERATURE (°C)
80
90 100 110
Figure 19. Regulator Output vs. Temperature
800
18
700
650
600
400
INPUT VOLTAGE (V)
17
550
500
5mA
450
400
350
300
250
200
200
0
16
–200
–400
15
100
50
04712-0-019
150
0mA
0
–25 –15 –5
5
15
25 35 45 55 65
TEMPERATURE (°C)
75
85
14
95 105 115
TIME (100µs/DIV)
Figure 20. Regulator Line Transient Response
Figure 17. Dropout Voltage vs. Temperature
14.5
CLOAD = 1µF
–20°C
14.3
LOAD CURRENT (mA)
20
0 °C
14.2
+25°C
14.1
+55°C
14.0
+85°C
13.9
+95°C
0
–20
–40
0.1
13.8
04712-0-020
+105°C
13.7
13.6
0
2
4
6
8
10
12
14
LOAD CURRENT (mA)
16
18
20
5
TIME (100µs/DIV)
Figure 21. Regulator Load Transient Response
Figure 18. Regulator Output vs. ILOAD Over Temperature
Rev. 0 | Page 10 of 16
OUTPUT VOLTAGE CHANGE (mV)
40
14.4
REGULATOR OUTPUT (V)
OUTPUT VOLTAGE CHANGE (mV)
CLOAD = 1µF
10mA
04712-0-022
750
DROPOUT VOLTAGE (mV)
04712-0-021
04712-0-018
14.25
04712-0-023
DROPOUT VOLTAGE (mV)
800
ADD8709
11
10
10V PULSE
120pF
320pF
520pF
1nF
10nF
10
9
7
2kΩ
10kΩ
0
1kΩ
GAIN (dB)
AMPLITUDE (V)
8
GAMMA 10-18
6
5
4
–10
–20
150Ω
3
04712-0-012
1
0
–200
0
200
400
–40
100k
600 800 1000 1200 1400 1600 1800
TIME (ns)
Figure 22. Transient Load Response vs. Capacitive Loading
20
1040pF
1M
10M
FREQUENCY (Hz)
100M
Figure 25. Frequency Response vs. Resistive Loading
10
VDD = 16V
VCOM
540pF
340pF
10
04712-0-032
–30
2
2kΩ
0
100pF
50pF
10kΩ
GAIN (dB)
GAIN (dB)
–10
0
–10
1kΩ
–20
–30
150Ω
1M
10M
FREQUENCY (Hz)
100M
Figure 23. Frequency Response vs. Capacitive Loading
2kΩ
10kΩ
0
–20
150Ω
–30
04712-0-033
GAIN (dB)
1kΩ
–10
–40
100k
1M
10M
FREQUENCY (Hz)
–50
100k
1M
10M
FREQUENCY (Hz)
Figure 26. Frequency Response vs. Resistive Loading
10
GAMMA 1-9
–40
04712-0-034
–30
100k
04712-0-030
–20
100M
Figure 24. Frequency Response vs. Resistive Loading
Rev. 0 | Page 11 of 16
100M
ADD8709
APPLICATION NOTES
MAXIMUM POWER DISSIPATION
Example 1
The maximum safe power dissipation in the ADD8709 package
is limited by the associated rise in junction temperature (TJ)
on the die. At approximately 150°C, the glass transition temperature, the properties of the plastic change. Even temporarily
exceeding this temperature limit may change the stresses that
the package exerts on the die, permanently shifting the parametric performance of the ADD8709. Exceeding a junction
temperature of 175°C for an extended period can result in
changes in the silicon devices, potentially causing failure.
The estimated power consumption of the ADD8709 in extreme
cases is as follows:
OPERATING TEMPERATURE RANGE
VDD × ISYS = 15 V × 15 mA
VOUT × IOUT = (8 V × 5 mA/channel) × 18 channels
VDO × IO = 0.6 V × 5 mA
WMAX = (15 V × 15 mA) + (8 V × 5 mA/channel ×
18 channel) + (0.6 V × 5 mA) = 0.948 W
θJA = 74.57°C/W, TAMB MAX = 45°C
TJ = 45°C + (74.57°C/W) × (0.948 W) = 115.7°C
The maximum junction temperature is as follows:
TJ = TAMB MAX + θJA × WMAX
where:
TAMB MAX = maximum ambient temperature specified on the data
sheet.
θJA = junction-to-ambient thermal resistance, in °C/watt.
WMAX = maximum power dissipated in the device, in watts.
Here, 150°C is the maximum junction temperature that is
guaranteed before the part breaks down, while 125°C is the
maximum process limit. Because TJ is < 150°C and < 125°C,
this example demonstrates a condition where the part should
perform within process limits.
For the ADD8709, WMAX can be calculated with the following
equation:
WMAX = VDD × ISYS + VOUT × IOUT + VDO × IO
where:
VDD × ISYS = nominal system power requirements
VOUT × IOUT = amplifier load power dissipation
VDO × IO = regulator load power dissipation
Rev. 0 | Page 12 of 16
ADD8709
OUTLINE DIMENSIONS
0.75
0.60
0.45
9.00 BSC
SQ
1.60
MAX
37
48
36
1
1.45
1.40
1.35
0.15
0.05
10°
6°
2°
SEATING
PLANE
PIN 1
SEATING
PLANE
7.00
BSC SQ
TOP VIEW
0.20
0.09
(PINS DOWN)
VIEW A
7°
3.5 °
0°
0.08 MAX
COPLANARITY
25
12
13
0.50
BSC
VIEW A
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026BBC
Figure 27. 48-Lead Low Profile Quad Flat Package
(ST-48)
Dimensions shown in millimeters
Rev. 0 | Page 13 of 16
24
0.27
0.22
0.17
ADD8709
ORDERING GUIDE
Model1
ADD8709ASTZ-REEL2
ADD8709ASTZ-REEL72
1
2
Temperature Range
–40°C to +100°C
–40°C to +100°C
Package Description
48-Lead Low Profile Quad Flat Package
48-Lead Low Profile Quad Flat Package
Available in reels only.
Z = Pb-free part.
Rev. 0 | Page 14 of 16
Package Option
ST-48
ST-48
ADD8709
NOTES
Rev. 0 | Page 15 of 16
ADD8709
NOTES
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04715–0–7/04(0)
Rev. 0 | Page 16 of 16