POWERINT LNK406

参考设计报告—使用LinkSwitch®-PH LNK406EG设
标题
计而成的高效率(≥85%)、高功率因数(>0.9) 可控硅调
光的14 WTYP LED驱动器
规格
90 VAC – 265 VAC输入;28 VTYP,0.5 A输出
应用
LED驱动器
作者
应用工程部
文档编号
RDR -194
日期
2010年6月9日
修订版本
1.0
特色概述
• 卓越的性能及最终用户体验
o 兼容可控硅调光器(包括低成本前沿类型调光器)
ƒ 无输出闪烁
ƒ >1000:1的调光范围
o 干净的启动—无输出闪烁
o 快速启动(<300 ms)—无可见延迟
o 产品间具有一致的调光性能
• 极高能效
o 115 VAC时≥85%,230 VAC时≥87%
• 元件数量少、印刷电路板占用面积小的低成本解决方案
o 无需电流检测
o 采用频率抖动技术,使用更小的成本低的EMI滤波元件
• 集成的保护及可靠性能
o 输出开路/输出短路保护,带自动恢复功能
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
•
2010年6月9日
o 输入过压关断可扩展输入故障时的电压耐受范围
o 更大迟滞的自动恢复热关断可同时保护元件和印刷电路板
o 在电压缓慢升高和降落期间不会造成损坏
满足IEC 61000-4-5振铃波、IEC 61000-3-2 C级谐波和EN55015 B传导EMI要求
专利信息
此处介绍的产品和应用(包括产品之外的变压器结构和电路)可能包含一项或多项美国及国外专利,或正在申请的美国或国外专利。
有关Power Integrations专利的完整列表,请参见www.powerint.com。Power Integrations按照在<http://www.powerint.com/ip.htm>
中所述规定,向客户授予特定专利权利的许可。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第2页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
目录
简介.............................................................................................................................5
电源规格 .....................................................................................................................8
电路原理图..................................................................................................................9
电路描述 ...................................................................................................................10
4.1
输入滤波 ............................................................................................................10
4.2
LinkSwitch-PH 初级 ...........................................................................................10
4.3
反馈 ...................................................................................................................11
4.4
输出整流 ............................................................................................................12
4.5
可控硅相位调光控制兼容性................................................................................12
5 PCB 布局 ..................................................................................................................13
6 物料清单 ...................................................................................................................14
7 变压器规格................................................................................................................16
7.1
电气原理图.........................................................................................................16
7.2
电气规格 ............................................................................................................16
7.3
材料 ...................................................................................................................16
7.4
变压器结构图 .....................................................................................................17
7.5
变压器构造.........................................................................................................17
8 变压器设计表格.........................................................................................................18
9 性能数据 ...................................................................................................................21
9.1
功率效率 ............................................................................................................21
9.1.1
28 V ............................................................................................................21
9.1.2
25 V ............................................................................................................21
9.1.3
31 V ............................................................................................................22
9.2
调节 ...................................................................................................................23
9.2.1
输出电压和线电压.......................................................................................23
9.2.2
输入电压和输出电压调节 ............................................................................24
10
热性能 ...................................................................................................................26
10.1 VIN = 115 VAC(U1:无散热片)......................................................................26
10.2 VIN = 230 VAC(U1:无散热片)......................................................................26
11
谐波数据................................................................................................................27
12
波形 .......................................................................................................................29
12.1
输入线电压和电流 ..........................................................................................29
12.2
漏极电压和电流 ..............................................................................................29
12.3
输出电压和纹波电流.......................................................................................30
12.4
输出电压和漏极电流启动特征.........................................................................30
12.5
输出短路期间的输出电流和漏极电压..............................................................31
12.6
开路负载输出电压 ..........................................................................................31
1
2
3
4
第3页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
13
调光.......................................................................................................................32
13.1
输入相位与输出..............................................................................................32
13.2
输出电压和输出电流波形 ...............................................................................33
13.2.1 VIN = 115 VAC / 60 Hz................................................................................33
13.2.2 VIN = 230 VAC / 50Hz.................................................................................34
14
输入浪涌................................................................................................................35
15
传导 EMI ...............................................................................................................36
16
批量生产的数据分布...............................................................................................38
17
版本历史................................................................................................................39
18
附录.......................................................................................................................40
18.1
使用可控硅调光器开关的调光测试 .................................................................40
18.1.1 115 VAC 输入,60 Hz ................................................................................40
18.1.2 230 VAC 输入,50 Hz ................................................................................40
18.2
噪音测试数据 .................................................................................................41
18.2.1 VIN = 115 VAC,满相 .................................................................................41
18.2.2 VIN = 115 VAC,半相 .................................................................................41
18.2.3 VIN = 230 VAC,满相 .................................................................................42
18.2.4 VIN = 230 VAC,半相 .................................................................................42
重要说明:虽然本电路板的设计满足安全隔离要求,但工程原型仍未获得机构认证。因此,必须使用隔离变
压器向原型板提供AC输入,以执行所有测试。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第4页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
1 简介
本文档介绍的是一款高功率因数、可控硅调光的LED驱动器,它可以在90 VAC至265 VAC
的输入电压范围内为LED灯串提供额定电压28 V、额定电流0.5 A的驱动。该LED驱动器采
用了LinkSwitch-PH系列IC中的LNK406EG器件。
LinkSwitch-PH IC可以帮助您设计出具有成本效益且元件数量极少的LED驱动器,不仅能
满足功率因素和谐波限值,同时还能为最终用户带来不同凡响的使用体验。其特性包括超
宽调光范围、无闪烁工作(即使使用的是低成本的AC输入可控硅调光器)以及快速、平滑
的导通。
所使用的拓扑结构是运行于连续导通模式下的隔离反激。输出电流调节完全从初级侧检测,
因此无需使用次级反馈元件。在初级侧也无需检测外部电流,而是在IC内部进行,从而进
一步减少了元件和损耗。内部控制器调整MOSFET占空比以保持输入电流为正弦交流电,
从而确保高功率因数和低谐波电流。
LNK406EG也可提供各种复杂的保护功能,包括环路开环或输出短路条件下自动重新启
动。输入过压可提供增强的抗输入故障和浪涌能力,输出过压在负载断开时可保护电源,
精确的迟滞热关断可确保在所有条件下PCB板平均温度都处于安全范围内。
在任何LED照明装置中,驱动器的性能直接决定了最终客户(用户)对照明的感受,包括
启动时间、调光、闪烁和驱动器之间的一致性。此设计中重点关注的是在115 VAC和230
VAC条件下尽可能多地兼容各种调光器和尽可能大地兼容调光范围。即使是这样,在两种
单输入电压工作范围仍可以实现设计简化,包括不需要调光的或调光器(高质量)调光范
围受限的应用。
本文档包含LED驱动器规格、电路原理图、PCB电路图、物料清单、变压器文档和典型性
能特征。
第5页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
图1—装配后的电路板图片(顶视图)。设计满足PAR38壳体内部结构的PCB外观。
图2—装配后的电路板图片(底视图)。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第6页(共44页)
2010年6月9日
第7页(共44页)
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
2 电源规格
下表标示设计的最低可接受性能。实际性能请参见测量结果部分。
说明
符号
最小值 典型值 最大值
单位
建议
双导线—无P.E.
输入
电压a
频率
VIN
fLINE
90
47
115
50/60
265
64
VAC
Hz
输出
输出电压
输出电流a
VOUT
IOUT
24
0.475
28
0.5
32
0.525
V
A
总输出功率
连续输出功率
POUT
14
VOUT = 28,VIN = 115 VAC,25 °C
W
效率
η
满载
80
%
在POUT 25 °C条件下测得
环境
传导EMI
CISPR 15B / EN55015B
安全
其设计符合IEC950 / UL1950 II类要求
振铃波(100 kHz)
差模(L1-L2)
共模(L1-L2)
功率因数
IEC 61000-4-5,200 A
在VOUT(TYP)、IOUT(TYP)
和115/230 VAC条件下测得
0.9
谐波
环境温度
kV
2.5
EN 61000-3-2 D级
b
TAMB
60
o
C
自然对流,海平面
注释:
a
在使用相位控制(可控硅)调光时,为获得最大的调光范围,LinkSwitch-PH设计的输出电
流随线电压而变化。因此,输出电流规格仅在单输入电压范围条件下确定。在此设计中,
选择115 VAC的线电压。线电压升高,输出电流也将升高;线电压降低,输出电流也随之
降低。如果线电压的变化率为+200%,典型的输出电流变化为+20%。只改变一个电阻的
阻值即可对某一单输入电压范围的标称输出电流进行调整设定。请参阅表1,以了解反馈电
阻值与标称线电压的关系。
b
在LinkSwitch-PH器件上添加一个小散热片可使电源工作于更高的环境温度。例如,如果使
用与板同宽、与电解电容同高的铝散热片,可保证在环境温度为70°C 时器件的温度只有
100 °C。如果输出电流的变化量能够控制的更好,器件温度即使达到115 °C也是可以接受
的。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第8页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
3 电路原理图
图3—电路原理图。
第9页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
4 电路描述
LinkSwitch-PH是一种将控制器和725 V MOSFET集成在一起的器件,用于LED驱动器应
用。LinkSwitch-PH采用单级连续导通模式反激式拓扑结构,提供初级侧调节的恒流输出,
同时使AC输入保持高功率因数。
4.1
输入滤波
保险丝F1在元件发生故障时提供保护,而RV1用来对差模浪涌测试期间可能产生的最大电压
进行箝位。RV1的额定电压为275 VAC,略高于最大指定工作电压265 VAC。二极管桥堆
BR1对AC线电压进行整流,电容C2为初级开关电流提供低阻抗通路(去耦)。为使功率
因数保持在0.9以上,需要确保较低的电容(C1、C2和C11总和)值。
EMI滤波功能由电感L1-L3、C1和有Y1安全要求的C7提供。L1和L2两端的电阻R16和R17
可抑制输入电感、电容和AC输入阻抗之间在传导EMI测量中通常出现的共振。
4.2
LinkSwitch-PH初级
变压器(T1)一端连接到DC总线,另一端连接到LinkSwitch-PH的漏极引脚。在MOSFET的
导通时间内,初级绕组中的电流升高,存储的能量随后在MOSFET关断时间内传送到输
出。选择RM8磁芯,因为它在板上占用的面积很小。由于骨架达不到230 VAC工作条件下
的6.2 mm的安全爬电距离要求,因此使用飞线将次级绕组端接到PCB板中。
为使U1得到峰值输入电压信息,AC输入整流后经由D2对C3充电。然后电流经过R2和
R3,注入U1的V引脚。电阻容差将会导致不同电源之间的V引脚电流有所差异,因此选择
1%误差的电阻可以将这种变化降至最低。器件也会利用V引脚电流来设置输入过压和欠压
保护阈值。欠压保护可确保不同电源在相同的输入电压下启动,过压保护可使整流后的线
电压承受能力(在浪涌和线电压陡升期间)达到内部MOSFET的额定725 BVDSS。电阻R1
为C3提供放电通路,时间常数远大于经整流AC的放电时间,以防止V引脚电流被线电压频
率所调制。
V引脚电流和FB引脚电流在内部用来控制LED平均输出电流。对于相位角调光应用,可在
R引脚(R4)和V引脚上分别使用49.9 kΩ电阻和4 MΩ (R2+R3)电阻,使输入电压和输出电流
保持线性关系,从而获得最大调光范围。电阻R4还设置内部的线电压输入升高、降落和输
入过压保护阈值。
在MOSFET导通期间,由于漏感的影响,二极管D3和VR1将漏极电压箝位到一个安全水
平。在C2上的电压降到反向输出电压(VOR)以下时,需要使用二极管D4来防止反向电流流
经U1。选择肖特基势垒二极管来减少此元件中的损耗并提高效率,也可使用超快速PN型
二极管(UF54002)代替,从而降低成本。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第10页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
二极管D6、C5、R7和R8构成初级偏置供电,能量来自变压器的辅助绕组。电容C4对U1的
BP引脚进行局部去耦,该引脚是内部控制器的供电引脚。在启动期间,与漏极引脚相连的
内部高压电流源将C4充电至约6 V。此时器件开始开关,器件的供电电流再由偏置供电经
过R5提供。二极管D5隔离BP引脚和C5,以防止启动时间由于对C4和C5的充电而延长。
建议使用外部偏置供电(通过D5和R5)以实现最低的器件功耗和最高的效率,尽管这些元
件如果需要的话可以省去。这种自供电能力可提供更好的相位角调光性能,因为在输入导
通相位角很小而导致等效输入电压较低时,IC仍然能够保持正常工作。
电容C4同时用来选择输出功率模式,选择10 µF(低功率模式)可以将器件功耗减至最低,
降低对散热片的要求。
4.3
反馈
偏置绕组电压用来间接地反映输出电压的高低,而无需使用次级侧反馈元件。偏置绕组上
的电压与输出电压成比例(由偏置绕组与次级绕组之间的匝数比决定)的。电阻R6将偏置
电压转换为电流,注入至U1的反馈(FB)引脚。U1中的内部控制电路综合FB引脚电流、V测
引脚电流和漏极电流信息,在2:1的输出电压变化范围内提供恒定的输出电流,同时保持较
高的输入功率因数。
为限制空载时的输出电压,D7、C12、R20、VR3、C13、Q3和R19共同组成输出过压箝
位电路。如果断开输出负载的连接,偏置电压将升高,直至VR3导通,这样会使Q3导通并减
小流入FB引脚的电流。当该电流低于20 µ时,器件进入自动重启动模式,开关被禁止800
ms,使输出电压(和偏置电压)下降。
第11页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
4.4
2010年6月9日
输出整流
变压器次级绕组由D8进行整流,由C8和C10进行滤波。选择肖特基势垒二极管用以提高效
率,所选取的C8和C10的总值可使LED纹波电流等于平均值的40%。如果需要更低纹波的
设计,可提高输出电容值。R15用作小的假负载,可限制空载条件下的输出电压。
4.5
可控硅相位调光控制兼容性
对于用低成本的可控硅前沿相控调光器提供输出调光的要求,我们需要在设计时进行全面
的权衡。
由于LED照明的功耗非常低,整个灯具所消耗的电流要小于调光器内可控硅的维持电流。
这样会因为可控硅触发不一致而产生某些不良情况,比如调光范围受限和/或闪烁。由于
LED灯的阻抗相对较大,因此在可控硅导通时,浪涌电流会对输入电容进行充电,产生很
严重的振荡。这同样会造成类似的不良情况,因为振荡会使可控硅电流降至零并关断。
要克服这些问题,需增加两个电路—有源衰减电路和无源泄放电路。这些电路的缺点是会
增大功耗,进而降低电源的效率。对于非调光应用,可以省略这些元件。
有源衰减电路由元件R9、R10、R11、R12、D1、Q1、C6、VR2、Q2以及R13共同组
成。该电路可以限制可控硅导通时流入C2并对其充电的浪涌电流,实现方式是在导通前1
ms内将R13串联。在大约1 ms后,Q2导通并将R13短路。这样可使R13的功耗保持在低水
平,在限流时可以使用更大的值。电阻R9、R10、R11和C6在可控硅导通后提供1 ms延
迟。晶体管Q1在可控硅不导通时对C6进行放电,VR2将Q2的栅极电压箝位在15 V,R12
用于防止MOSFET发生振荡。
无源泄放电路由C11和R18构成。这样可以使输入电流始终大于可控硅的维持电流,而与
驱动器相应的输入电流将在每个AC半周期内增大,防止每个导通角度的起始阶段出现可控
硅的开关振荡。
这种设计可实现无闪烁调光,并对所有相位角调光器进行了测试,包括欧洲、中国和韩国
生产的调光器,同时包括了前沿和后沿类型不同调光器。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第12页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
5 PCB布局
图4—印刷电路板布局。
第13页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
6 物料清单
参考
项
数量
序号
说明
生产商型号
生产商
1
1
BR1
600 V,2 A,桥式整流器,玻璃钝化
2KBP06M-E4/51
Vishay
2
1
C1
47 nF,275 VAC,薄膜,X2
ECQU2A473ML
Panasonic
3
1
C2
100 nF,630 V,薄膜
ECQ-E6104KF
Panasonic
4
1
C3
1 µF,400 V,电解,(6.3 x 11)
EKMG401ELL1R0MF11D
United Chemi-Con
5
1
C4
10 µF,16 V,电解,通用,(5 x 11)
EKMG160ELL100ME11D
United Chemi-Con
6
1
C5
22 µF,50 V,电解,低ESR,900 mΩ,(5 x 11.5)
ELXZ500ELL220MEB5D
Nippon Chemi-Con
7
1
C6
15 nF,50 V,陶瓷,X7R,0805
ECJ-2VB1H153K
Panasonic
8
1
2.2 nF,陶瓷,Y1
440LD22-R
Vishay
EKZE500ELL331MJ25S
Nippon Chemi-Con
ECQ-E6224KF
Panasonic
08055D105KAT2A
AVX Corporation
ECJ-2YB1H104K
Panasonic
DL4002-13-F
Diodes Inc
9
2
C7
C8
C10
10
1
C11
220 nF,630 V,薄膜
11
1
C12
1 µF,50 V,陶瓷,X7R,0805
12
1
C13
13
1
D1
14
1
D2
100 nF,50 V,陶瓷,X7R,0805
100 V,1 A,整流管,玻璃钝化,DO-213AA
(MELF)
1000 V,1 A,整流管,玻璃钝化,DO-213AA
(MELF)
DL4007-13-F
Diodes Inc
15
1
D3
1,000 V,1 A,超快速恢复,75 ns,DO-41
UF4007-E3
Vishay
16
1
D4
200 V,1 A,超快速恢复,50 ns,DO-41
UF4003-E3
Vishay
17
1
D5
100 V,1 A,快速恢复,150 ns,SMA
RS1B-13-F
Diodes, Inc
18
1
D6
400V,1 A,整流管,快速恢复,MELF (DL-41)
DL4936-13-F
Diodes Inc
19
1
D7
250 V,0.2 A,快速开关,50 ns,SOD-323
BAV21WS-7-F
Diode Inc.
MBRS4201T3G
ON Semiconductor
37213150411
Wickman
不适用
不适用
5012
Keystone
RLB0914-102KL
Bourns
5011
Keystone
FMMT558TA
Zetex Inc
330 µF,50 V,电解,极低ESR,28 mΩ,(10 x 25)
20
1
D8
200 V,4 A,肖特基,SMC,DO-214AB
21
1
3.15 A,250 V,慢,TR5
22
2
F1
FL1
FL2
PCB接线孔,22 AWG
3
L
L1 L2
L3
测试点,白色,直插式安装
25
2
N V-
测试点,黑色,直插式安装
26
1
Q1
PNP,400V 150MA,SOT-23
27
1
Q2
400 V,1.7 A,3.6 Ω,N通道,DPAK
IRFR310TRPBF
Vishay
28
1
Q3
NPN,弱信号BJT,40 V,0.2 A,SOT-23
MMBT3904LT1G
On Semiconductor
29
1
240 kΩ,5%,1/2 W,碳膜
CFR-50JB-240K
Yageo
23
1
24
1000 µH,0.3 A
30
2
R1
R2
R3
2.00 MΩ,1%,1/4 W,厚膜,1206
ERJ-8ENF2004V
Panasonic
31
1
R4
49.9 kΩ,1%,1/8 W,厚膜,0805
ERJ-6ENF4992V
Panasonic
32
1
R5
3 kΩ,5%,1/4 W,厚膜,1206
ERJ-8GEYJ302V
Panasonic
33
1
R6
150 kΩ,1%,1/8 W,厚膜,0805
ERJ-6ENF1503V
Panasonic
34
1
R7
10 kΩ,5%,1/4 W,厚膜,1206
ERJ-8GEYJ103V
Panasonic
35
1
150 Ω,5%,1/8 W,厚膜,0805
ERJ-6GEYJ151V
Panasonic
36
2
R8
R9
R10
750 kΩ,1%,1/4 W,厚膜,1206
ERJ-8ENF7503V
Panasonic
R11
2.4 MΩ,5%,1/8 W,厚膜,0805
ERJ-6GEYJ245V
Panasonic
37
1
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第14页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
38
1
R12
15 Ω,5%,1/8 W,厚膜,0805
ERJ-6GEYJ150V
39
1
R13
130 Ω,5%,1/2 W,碳膜
CFR-50JB-130R
Yageo
40
1
20 kΩ,5%,1/4 W,厚膜,1206
ERJ-8GEYJ203V
Panasonic
Panasonic
41
3
R15
R16
R17
R19
1 kΩ,5%,1/8 W,厚膜,0805
ERJ-6GEYJ102V
Panasonic
42
1
R18
510 Ω,5%,1 W,金属氧化物
RSF100JB-510R
Yageo
ERJ-6GEYJ103V
Panasonic
ERZ-V10D431
Panasonic
43
1
R20
10 kΩ,5%,1/8 W,厚膜,0805
44
1
RV1
275 V,80J,10 mm,径向
45
1
T1
自定义变压器,RM8,12引脚
46
1
U1
LinkSwitch,LNK406EG,eSIP
47
1
V+
测试点,红色,直插式安装
48
1
VR1
200 V,1500W,TVS,GP-20
1.5KE200A-E3/54
Vishay
49
1
VR2
15 V,5%,500 mW,DO-213AA (MELF)
ZMM5245B-7
Diodes Inc
50
1
VR3
39 V,5%,500 mW,DO-213AA (MELF)
ZMM5259B-7
Diodes Inc
第15页(共44页)
SNX-R1523
Santronics USA
LNK406EG
Power Integrations
5010
Keystone
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
7 变压器规格
7.1
电气原理图
图5—变压器电气原理图。
7.2
电气规格
绝缘强度
1秒,60 Hz,从引脚1、2、3和11到FL1和FL2
初级电感量
引脚1-11,所有其他绕组开路,在100 kHz条件下测得,0.4 VRMS
1150 µH,± 20 %
谐振频率
引脚1-11,所有其他绕组开路
750 kHz(最小)
初级漏感
引脚1-11,FL1-FL2短路,在100 kHz条件下测得,0.4 VRMS
7.3
20 µH(最大)
材料
项
[1]
[2]
[3]
[4]
[5]
[6]
[7]
3000 VAC
说明
2
磁芯:RM8/I,3F3,ALG = 319 nH/n
骨架:12引脚,垂直,Philips生产的CSV-RM8-1S-12P或带有安装夹的同等材料,CLI/P-RM8
胶带:聚酯薄膜,3M 1350F-1或同等材料,9 mm宽
导线:漆包线,#31 AWG,可焊接,双涂层
导线:漆包线,#30 AWG,可焊接,双涂层
导线:三层绝缘,Furukawa TEX-E或同等材料,#25 TIW
变压器清漆:Dolph BC-359或同等材料
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第16页(共44页)
2010年6月9日
7.4
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
变压器结构图
引脚侧
3L Tape
W3 - Finish (P2)
W3 - Start (P3)
1L Tape
1L Tape
W2 - Finish (FL2)
W2 - Start (FL1)
1L Tape
W1 - Finish (P11)
W1 - Start (P1)
图6—变压器结构图。
7.5
变压器构造
骨架准备
WD 1(初级)
绝缘层
WD 2(次级)
绝缘层
WD 3(偏置)
增强绕制
总装
将骨架项[2]放在绕线轴上,例如左侧的引脚侧。绕组方向为顺时针方向。
从引脚1开始,分两层缠绕60匝导线项[4]。在引脚11结束。
缠一层胶带项[3]。
留出大约1”的导线项[6],使用细胶带标记为FL1,穿过骨架上次级侧的槽,分两层缠绕
20匝。在最后一匝退出同一个槽,留出大约1”,标记为FL2。
缠一层胶带项[3]。
从引脚3开始,缠绕20匝导线项[5],铺开导线,最后在引脚2结束。
缠三层胶带项[3]以增强缠绕层。
将FL1和FL2剪切到0.75”。打磨磁芯以使电感值达到1.15 mH。将两半磁芯安装固定
好,用清漆均匀的浸渍。使用清漆项[7]浸渍。
第17页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
8 变压器设计表格
ACDC_LinkSwitchPH_042910;修订版1.0;
版权所有 Power
Integrations 2010
LinkSwitch-PH_042910:反激式变压
输入
信息
输出
是
信息
是
单位
器设计表格
输入应用变量
需要调光
VACMIN
V
最小AC输入电压
265
V
最大AC输入电压
50
Hz
AC电网频率
90
VACMAX
265
fL
VO
!!! 信息。在配置调光时,通过单输入电
压范围达到最佳输出电流线电压调节。
28.00
V
LED灯串满载时的典型输出电压
最大预期LED灯串电压。
VO_MAX
30.80
V
VO_MIN
25.20
V
最小预期LED灯串电压。
V
过压保护设定点
V_OVP
33.88
IO
典型满载LED电流
0.50
PO
14.0
W
输出功率
n
0.8
估计工作效率
28
V
偏置电压
VB
28
输入LinkSwitch-PH变量
LinkSwitch-PH
所选器件
电流限流模式
宽电压范围
LNK406
LNK406
红色
输出功率
22.5 W
红色
115倍压/230 V
22.5 W
选择“有限”设置为有限电流限制模
式,或选择“完全”设置为完全电流限
制模式。
ILIMITMIN
1.19
A
最小电流限制
ILIMITMAX
1.36
A
最大电流限制
fS
66000
Hz
开关频率
fSmin
62000
Hz
最小开关频率
fSmax
70000
Hz
最大开关频率
39.9
uA
V引脚电流
IV
RV
4
M-ohm
RV2
1E+12
M-ohm
IFB
158.8
uA
RFB1
157.5
k-ohm
VDS
10
V
V引脚电阻上限
V引脚电阻下限
FB引脚电流(85 uA < IFB < 210 uA)
FB引脚电阻
VD
0.50
V
LinkSwitch-PH导通状态漏极-电源电压
输出绕组二极管正向电压降(对肖特基
二极管取值0.5 V,对PN结二极管取值
0.8 V)
VDB
0.70
V
偏置绕组二极管正向电压降
关键设计参数
KP
0.87
LP
VOR
预期IO(平均)
85.00
初级电感量
1150
uH
85
V
反射输出电压。
0.51
A
预期平均输出电流
KP_VACMAX
1.11
TON_MIN
1.86
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
纹波电流与峰值电流的比例(PF > 0.9
时,0.4 < KP < 0.9)
0.87
在VACMAX时的预期纹波电流比率
us
最高AC输入电压时的最大导通时间
第18页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
输入变压器磁芯/结构变量
磁芯类型
RM8/I
骨架
RM8/I
P/N:
RM8/I_BOBBIN
AE
0.63
cm^2
LE
3.84
cm
AL
3000
nH/T^2
*
磁芯等效截面积
磁芯等效路径长度
无气隙磁芯等效电感量
BW
10
mm
骨架绕线宽度
M
0
mm
安全挡墙宽度(初级至次级爬电距离的
一半)
L
NS
2.00
2
初级绕组层数
20
20
次级绕组匝数
DC输入电压参数
VMIN
127
V
对应于VACMIN的峰值输入电压
VMAX
375
V
对应于VACMAX的峰值输入电压
电流波形参数
对应于VACMIN峰值的最小占空比
DMAX
0.42
IAVG
0.51
A
平均初级电流
IP
0.95
A
峰值初级电流(在最小输入电压
VACMIN下计算)
IRMS
0.31
A
初级RMS电流(在最小输入电压
VACMIN下计算)
LP
1150
uH
NP
60
变压器初级绕组设计参数
初级电感量
初级绕组匝数
偏置绕组匝数
NB
20
ALG
323
BM
2897
nH/T^2
高斯
BP
3506
高斯
峰值磁通密度(BP < 3700)
BAC
1267
高斯
磁芯损耗曲线中的AC磁通密度
(0.5 X 峰值-峰值)
ur
1455
LG
0.22
mm
气隙长度(Lg > 0.1 mm)
带气隙磁芯等效电感量
PO的最大磁通密度,VMIN (BM < 3100)
无气隙磁芯的相对磁导率
20
mm
等效骨架宽度
OD
0.34
mm
初级绕组最大线径(包括绝缘层)
INS
0.06
mm
估计的总绝缘层厚度(= 2 * 膜厚度)
DIA
0.28
mm
AWG
30
AWG
裸线直径
初级绕组的导线规格(如果计算出的线
径在两种标准线径之间,则使用较小线
规的导线)
CM
102
Cmil
以Cmil为单位的裸线等效面积
CMA
330
Cmil/Amp
ISP
2.82
A
峰值次级电流
ISRMS
1.01
A
次级RMS电流
IRIPPLE
0.88
A
CMS
203
Cmil
BWE
初级绕组电流容量(200 < CMA < 600)
变压器次级绕组设计参数(多路输出)
汇总参数
AWGS
输出电容RMS纹波电流
次级绕组裸线最小Cmil数
次级导线规格(舍入到下一个较大的标
准AWG值)
27
AWG
DIAS
0.36
mm
次级绕组裸线最小直径
ODS
0.50
mm
三层绝缘线的次级绕组最大外径
第19页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
电压应力参数
VDRAIN
553
V
假定LED灯串电压达到最大时的估计最
大漏极电压(包括漏感效应)
PIVS
160
V
输出整流器最大反向峰值电压
(在VOVP下计算,不包括漏感尖峰)
PIVB
160
V
偏置整流器最大反向峰值电压
(在VOVP下计算,不包括漏感尖峰)
微调(输入从原型测得的值)
V引脚电阻微调
V引脚电阻值上限
RV1
4.00
M-ohm
RV2
1E+12
M-ohm
VAC1
115.0
V
测试输入电压条件1
VAC2
230.0
V
测试输入电压条件2
IO_VAC1
0.50
A
在VAC1时测得的输出电流
IO_VAC2
RV1(新)
0.50
A
4.00
M-ohm
RV2(新)
V引脚电阻值下限
在VAC2时测得的输出电流
新RV1
新RV2
20911.63
M-ohm
V_OV
319.6
V
触发OV关断的典型AC输入电压
V_UV
66.3
V
超过此值即可使电源启动的典型AC输
入电压
FB引脚电阻微调
FB引脚电阻值上限
RFB1
157
k-ohm
RFB2
1E+12
k-ohm
FB引脚电阻值下限
VB1
25.2
V
测试偏置电压条件1
VB2
30.8
V
测试偏置电压条件2
IO1
0.50
A
在Vb1时测得的输出电流
IO2
RFB1(新)
0.50
A
157.5
k-ohm
新RFB1
RFB2(新)
1.00E+12
k-ohm
新RFB2
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
在Vb2时测得的输出电流
第20页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
9 性能数据
所有测量均在室温下进行
9.1
功率效率
9.1.1 28 V
Hz
VIN
(VAC)
PIN
(W)
VOUT
(V)
IOUT
(mA)
POUT
(W)
60
60
60
60
90
100
115
130
14.62
15.1
15.78
16.34
27.78
27.85
27.99
28.11
439
455
477
497
12.20
12.67
13.35
13.97
Hz
VIN
(VAC)
PIN
(W)
VOUT
(V)
IOUT
(mA)
POUT
(W)
50
50
50
50
50
50
185
200
215
230
245
265
18.31
18.79
19.23
19.67
20.08
20.63
28.47
28.54
28.6
28.67
28.73
28.81
558
571
584
596
607
621
15.89
16.30
16.70
17.09
17.44
17.89
Hz
VIN
(VAC)
PIN
(W)
VOUT
(V)
IOUT
(mA)
POUT
(W)
60
60
60
60
90
100
115
130
13.22
13.67
14.27
14.83
24.95
25.04
25.16
25.28
440
458
481
501
10.98
11.47
12.10
12.67
Hz
VIN
(VAC)
PIN
(W)
VOUT
(V)
IOUT
(mA)
POUT
(W)
50
50
50
50
50
50
185
200
215
230
245
265
16.62
17.05
17.46
17.86
18.24
18.73
25.58
25.64
25.71
25.77
25.82
25.88
561
575
588
600
611
625
14.35
14.74
15.12
15.46
15.78
16.18
效率
(%)
83
84
85
85
效率
(%)
87
87
87
87
87
87
PF
0.98
PF
0.93
9.1.2 25 V
第21页(共44页)
效率
(%)
83
84
85
85
效率
(%)
86
86
87
87
86
86
PF
0.98
PF
0.92
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
9.1.3 31 V
Hz
VIN
(VAC)
PIN
(W)
VOUT
(V)
IOUT
(mA)
POUT
(W)
60
60
60
60
90
100
115
130
16.35
16.89
17.53
18.14
30.82
30.97
31.12
31.25
437
454
476
495
13.47
14.06
14.81
15.47
Hz
VIN
(VAC)
PIN
(W)
VOUT
(V)
IOUT
(mA)
POUT
(W)
50
50
50
50
50
50
185
200
215
230
245
265
20.49
20.91
21.4
21.86
22.34
22.93
31.75
31.8
31.88
31.95
32.02
32.11
560
571
583
595
606
620
17.78
18.16
18.59
19.01
19.40
19.91
效率
(%)
82
83
85
85
效率
(%)
87
87
87
87
87
87
PF
0.98
PF
0.93
88.0
25 V
28 V
32 V
Efficiency (%)
87.0
86.0
85.0
84.0
83.0
82.0
75
100
125
150
175
200
Input Voltage (VAC)
225
250
275
图7—效率随输入电压的变化,室温。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第22页(共44页)
2010年6月9日
9.2
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
调节
9.2.1 输出电压和线电压
650
115 V
230 V
Output Current (mA)
625
600
575
550
525
500
475
450
24
25
26
27
28
29
30
31
32
33
Output Voltage (VDC)
图8—电压和线电压调节,室温。
上面显示的线电压稳压结果是将U1设定为相位角调光模式(以提供非常宽的调光范围)的
设计中的典型值。对于一个给定的线电压范围,可通过改变反馈电阻(R6)的值使输出电流
居中。下表显示用于在特定输入电压下调节平均输出电流的电阻值。
线电压(VAC)
R6的值(kΩ)
100
115
230
147
150
178
表1—在不同标称线电压下使输出电流居中的反馈电阻值。
第23页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
9.2.2 输入电压和输出电压调节
注释:28 V和25 V的数据相同。
535
25 V
28 V
32 V
Output Current (mA)
525
515
505
495
485
475
465
85
90
95
100
105
110
115
120
125
130
135
Input Voltage (VAC)
图9—低线电压调节,室温,满载。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第24页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
630
Output Current (mA)
620
25 V
28 V
32 V
610
600
590
580
570
560
550
175
185
195
205
215
225
235
245
255
265
Input Voltage (VAC)
图10—高线电压调节,室温,满载。
第25页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
275
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
10 热性能
在室温(25 °C)下运行30分钟后采集的图像,满载。表明在50 °C条件下,LinkSwitch-PH的工
作温度为100 °C。在器件旁边增加小型散热片(与板同宽)可将工作温度降低大约25 °C。
10.1 VIN = 115 VAC(U1:无散热片)
图11—顶侧。
图12—底侧。
10.2 VIN = 230 VAC(U1:无散热片)
图13—顶侧。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
图14—底侧。
第26页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
11 谐波数据
100
Class C Limit
RD-194 Harmonic Data at 115 VAC
90
80
Current (mA)
70
60
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic
图15—115 VAC谐波,室温,满载。
第27页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
60
Class C Limit
RD-194 Harmonic Data at 230 VAC
Current (mA)
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic
图16—230 VAC谐波,室温,满载。
VIN = 115 VAC
THD (%)
限制(%)
裕量(%)
21.0
33
12.0
VIN = 230 VAC
THD (%)
27.8
限制(%)
裕量(%)
33
5.2
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第28页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
12 波形
12.1 输入线电压和电流
图17—90 VAC,满载。
上:IIN,0.2 A/格
下:VIN,100 V,10 ms/格
图18—265 VAC,满载。
上:IIN,0.1 A/格
下:VIN,200 V/格,10 ms/格
12.2 漏极电压和电流
图19—90 VAC,满载。
上:IDRAIN,0.5 A/格
下:VDRAIN,100 V,5 µs/格
第29页(共44页)
图20—265 VAC,满载。
上:IDRAIN,0.5 A/格
下:VDRAIN,200 V/格,5 µs/格
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
12.3 输出电压和纹波电流
图21—90 VAC,满载。
上:IRIPPLE,0.2 A/格
下:VOUTPUT 10 V,5 ms/格
图22—265 VAC,满载。
上:IRIPPLE,0.2 A/格
下:VOUTPUT 10 V,5 ms/格
12.4 输出电压和漏极电流启动特征
图23—90 VAC,满载。
上:IDRAIN,0.5 A/格
下:VOUTPUT,5 V,20 ms/格
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
图24—265 VAC,满载。
上:IRIPPLE,0.5 A/格
下:VOUTPUT,5 V,10 ms/格
第30页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
12.5 输出短路期间的输出电流和漏极电压
图25—90 VAC,满载。
上:IOUTPUT,2 A/格
下:VDRAIN,200 V,200 ms/格
图26—265 VAC,满载。
上:IOUPTUT,5 A/格
下:VOUTPUT,200 V,200 ms/格
12.6 开路负载输出电压
图27—输出电压:115 VAC。
VOUT,10 V/格,500 ms/格。
第31页(共44页)
图28—输出电压:230 VAC。
VOUT,10 V/格,500 ms/格
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
13 调光
13.1 输入相位与输出
注释:由于可控硅相位调光器工作范围的限制,调光器最大导通角度被限制在165度。
115 VAC / 60 Hz
相位角(º)
165
98
65
40
16
8
0
230 VAC / 50 Hz
IOUT(mA)
420
220
150
56
9
2
0
相位角(º)
IOUT(mA)
528
264
142
76
58
3
0
160
79
52
41
34
6
0
600
115 V
230 V
LED Current (mA)
500
400
300
200
100
0
0
20
40
60
80
100
120
140
160
180
Phase Angle (°)
图29—输入相位与输出电流。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第32页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
13.2 输出电压和输入电流波形
13.2.1 VIN = 115 VAC / 60 Hz
图30—115 VAC,满相。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
图31—115 VAC,65o相位。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
图32—115 VAC,16o相位。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
图33—115 VAC,8o相位。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
第33页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
13.2.2 VIN = 230 VAC / 50Hz
图34—230 VAC,满相。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
图35—230 VAC,54o相位。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
图36—230 VAC,6o相位。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
图37—230 VAC,5o相位。
上:VOUT,10 V/格
下:IIN,0.1 A/格,5 ms/格
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第34页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
14 输入浪涌
根据IEC61000-4-5,差模和共模输入线200 A振铃波测试在单个测试电源上完成。输入电
压设置为230 VAC / 60 Hz。输出加满载,在每次浪涌测试后验证工作状况。
浪涌水平
(V)
输入电压
(VAC)
2500
2500
2500
2500
2500
2500
230
230
230
230
230
230
注入位置
注入相位
(°)
测试结果
(通过/失败)
L到N
L到N
L到PE
L到PE
N到PE
N到PE
90
90
90
90
90
90
通过
通过
通过
通过
通过
通过
被测电源在所有测试条件下均通过测试。
第35页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
15 传导EMI
注释:蓝色结果表示峰值检测的结果,与准峰值限制线相对应。关于限制的实际裕量(准
峰值测量结果与准峰值限制),请参阅下表。
Power Integrations
21.Apr 10 08:02
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
100
1 PK
CLRWR
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
134.789536006 kHz
41.13
N gnd
1
Quasi Peak
200.175581485 kHz
51.44
N gnd
2
Average
200.175581485 kHz
43.79
N gnd
-9.81
1
Quasi Peak
267.135089486 kHz
44.80
N gnd
-16.40
2
Average
267.135089486 kHz
35.58
N gnd
-15.62
2
Average
332.507282579 kHz
35.10
L1 gnd
-14.28
2
Average
401.705024172 kHz
37.16
N gnd
-10.64
1
Quasi Peak
418.01585899 kHz
46.10
N gnd
-11.38
2
Average
466.367062279 kHz
37.33
N gnd
-9.24
2
Average
536.076911993 kHz
35.42
N gnd
-10.57
1
Quasi Peak
641.227045055 kHz
43.24
N gnd
-12.75
2
Average
667.263434405 kHz
35.08
L1 gnd
-10.91
2
Average
4.97983359306 MHz
38.94
N gnd
-7.05
1
Quasi Peak
6.1984778522 MHz
45.35
N gnd
-14.64
2
Average
13.6042179984 MHz
40.09
L1 gnd
-9.90
1
Quasi Peak
13.8776627802 MHz
49.91
L1 gnd
-10.08
-12.16
图38—传导EMI,最大稳态负载,115 VAC,60 Hz,EN55015 B限制。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第36页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
Power Integrations
21.Apr 10 08:08
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 PK
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
9.272709 kHz
23.48
N gnd
2
Average
134.789536006 kHz
41.52
N gnd
1
Quasi Peak
190.46019728 kHz
47.24
L1 gnd
-16.77
2
Average
200.175581485 kHz
39.24
L1 gnd
-14.35
1
Quasi Peak
264.49018761 kHz
45.98
L1 gnd
-15.30
2
Average
267.135089486 kHz
37.12
N gnd
-14.08
1
Quasi Peak
332.507282579 kHz
41.97
N gnd
-17.41
2
Average
332.507282579 kHz
33.19
N gnd
-16.19
1
Quasi Peak
401.705024172 kHz
42.37
L1 gnd
-15.44
2
Average
401.705024172 kHz
32.83
L1 gnd
-14.98
2
Average
466.367062279 kHz
33.81
N gnd
-12.76
1
Quasi Peak
471.030732902 kHz
44.01
N gnd
-12.47
2
Average
598.084042089 kHz
31.96
N gnd
-14.03
1
Quasi Peak
673.936068749 kHz
42.26
N gnd
-13.73
2
Average
6.07634335085 MHz
40.39
N gnd
-9.60
1
Quasi Peak
6.26046263072 MHz
45.96
N gnd
-14.03
2
Average
13.6042179984 MHz
41.54
L1 gnd
-8.45
1
Quasi Peak
13.7402601784 MHz
49.67
L1 gnd
-10.32
图39—传导EMI,最大稳态负载,230 VAC,60 Hz,EN55015 B限制。
第37页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
16 批量生产的数据分布
所有RD-194在交付之前均通过ATE测试,在线电压为115 VAC和器件温度为50 °C的固定条
件下的输出电流数据如下。这些数据显示不同电源之间的变化非常低(Σ值为8.5 mA),
其中包括器件和外部元件的影响。
Histogram of Average Output Current
Normal
Vin = 115 VAC
Mean
StDev
N
20
0.5
0.008587
83
Frequency
15
10
5
0
0.450
0.465
0.480
0.495
0.510
Iout (A)
0.525
0.540
图40—115 VAC条件下的IOUT生产变化
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第38页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
17 版本历史
日期
作者
修订版本
说明和变更
修订者
2010年6月9日
DK
1.0
初始版本
Apps & Mktg
第39页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
18 附录
18.1 使用可控硅调光器开关的调光测试
18.1.1 115 VAC输入,60 Hz
调光测试数据
类型
国家/地区
生产商
型号
无关闭开关的
最大电流(mA)
受控最小电流(mA)
WS-5005
500
2
0
最小电流(mA)
旋钮式
1
中国台湾
2
美国
Leviton
OB4911
500
4
0
1
美国
Lutron
GLR11-F38875
450
6
0
2
中国台湾
SG Electric
XH004186
490
63
0
滑块式
18.1.2 230 VAC输入,50 Hz
请注意,对于230 VAC工作条件下输出并没有进行归一化(调整反馈电阻值)。在归一化条
件下,~600 mA对应的值与~500 mA对应的值相等。
调光测试数据
类型
国家/地区
生产商
型号
最大电流(mA) 受控最小电流(mA)
无关闭开关的
最小电流(mA)
旋钮式
1
中国台湾
Y-25088A
598
3
0
2
中国台湾
Y-25082A
595
2
0
3
中国台湾
D-2160B
597
4
61
中国
CLIPMEI
593
5
中国
LBR
595
6
中国
KBE
593
7
中国
MANK
MK/TG100001
595
8
中国
SB Electric
BM2
580
4
0
9
中国
EBAHuang
593
5
0
10
中国
Myongbo
596
135
11
中国
TCL
596
75
12
意大利
RTS34DLI
590
75
L2.0
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
4
0
125
10
0
157
第40页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
18.2 噪音测试数据
使用经校准的实验室麦克风在变压器上方25 mm处以开放式方法对被测电源进行测量。
结果显示在使用前沿相位角调光时,电源产生的噪音完全可接受。测得的声级仅稍微高出
背景噪音。
18.2.1 VIN = 115 VAC,满相
+80
+70
+60
+50
+40
d
B
r
+30
+20
A
+10
+0
-10
-20
-30
2k
4k
6k
8k
10k
12k
14k
16k
18k
20k
22k
Hz
图41—2 kHz – 22 kHz。
18.2.2 VIN = 115 VAC,半相
+80
+70
+60
+50
+40
d
B
r
+30
+20
A
+10
+0
-10
-20
-30
2k
4k
6k
8k
10k
12k
14k
16k
18k
20k
22k
Hz
图42—2 kHz – 22 kHz。
第41页(共44页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
2010年6月9日
18.2.3 VIN = 230 VAC,满相
+80
+70
+60
+50
+40
d
B
r
+30
+20
A
+10
+0
-10
-20
-30
2k
4k
6k
8k
10k
12k
14k
16k
18k
20k
22k
Hz
图43—2 kHz – 22 kHz。
18.2.4 VIN = 230 VAC,半相
+80
+70
+60
+50
+40
d
B
r
+30
+20
A
+10
+0
-10
-20
-30
2k
4k
6k
8k
10k
12k
14k
16k
18k
20k
22k
Hz
图44—2 kHz – 22 kHz。
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第42页(共44页)
2010年6月9日
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
有关最新产品信息,请访问:www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse,
StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their
respective companies. © 2010, Power Integrations, Inc.
Power Integrations全球销售支持网络
全球总部
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
中国(上海)
Room 1601 /1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail:
[email protected]
中国(深圳)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Bldg., 2070
Shennan Zhong Rd,
Shenzhen, Guangdong,
China, 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
第43页(共44页)
德国
Rüeckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3910
Fax: +49-89-5527-3920
e-mail:
[email protected]
印度
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 I nd ia
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
意大利
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
日本
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail:
[email protected]
韩国
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail:
[email protected]
新加坡
51 Newton Road
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
台湾
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
欧洲总部
1 st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
技术支持热线
World Wide +1-408-414-9660
技术支持传真
World Wide +1-408-414-9760
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
RDR-194:使用LNK406EG设计的14 W PAR38 LED驱动器
Power Integrations, Inc.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
2010年6月9日
第44页(共44页)
Title
Reference Design Report for a High Efficiency
(≥85%), High Power Factor (>0.9) TRIAC
Dimmable 14 W LED Driver Using
LinkSwitchTM-PH LNK406EG
Specification 90 VAC – 265 VAC Input; 28 VTYP, 0.5 A Output
Application
LED Driver
Author
Applications Engineering Department
Document
Number
RDR-195
Date
May 13, 2011
Revision
1.1
Summary and Features
 Superior performance and end user experience
o TRIAC dimmer compatible (including low cost leading edge type)
 No output flicker
 >1000:1 dimming range
o Clean monotonic start-up – no output blinking
o Fast start-up (<300 ms) – no perceptible delay
o Consistent dimming performance unit to unit
 Highly energy efficient
o ≥85% at 115 VAC, ≥87% at 230 VAC
 Low cost, low component count and small printed circuit board footprint solution
o Regulated output current with no current sensing required
o Frequency jitter for smaller, lower cost EMI filter components
 Integrated protection and reliability features
o Output open circuit / output short-circuit protected with auto-recovery
o Line input overvoltage shutdown extends voltage withstand during line faults.
o Auto-recovering thermal shutdown with large hysteresis protects both components
and printed circuit board
o No damage during brown-out or brown-in conditions
 IEC 61000-4-5 ringwave, IEC 61000-3-2 Class C and EN55015 B conducted EMI compliant
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
Table of Contents
1 2 3 4 Introduction .................................................................................................................5 Power Supply Specification ........................................................................................7 Schematic ...................................................................................................................8 Circuit Description .......................................................................................................9 4.1 Input Filtering .......................................................................................................9 4.2 LinkSwitch-PH Primary ........................................................................................9 4.3 Feedback ...........................................................................................................10 4.4 Output Rectification ...........................................................................................11 4.5 TRIAC Phase Dimming Control Compatibility ....................................................11 5 PCB Layout...............................................................................................................12 6 Bill of Material ...........................................................................................................13 6.1 Electrical ............................................................................................................13 6.2 Mechanical ........................................................................................................14 7 Transformer Specification .........................................................................................15 7.1 Electrical Diagram..............................................................................................15 7.2 Electrical Specifications .....................................................................................15 7.3 Materials ............................................................................................................15 7.4 Transformer Build Diagram ................................................................................16 7.5 Transformer Construction ..................................................................................16 8 Transformer Design Spreadsheet .............................................................................17 9 Performance Data .....................................................................................................20 9.1 Power Efficiency ................................................................................................20 9.1.1 27 V ............................................................................................................20 9.1.2 24 V ............................................................................................................20 9.1.3 30 V ............................................................................................................21 9.2 Regulation .........................................................................................................22 9.2.1 Output Voltage and Line .............................................................................22 9.2.2 Input Voltage and Output Current Regulation .............................................23 10 Thermal Performance............................................................................................25 10.1 VIN = 115 VAC (U1: No Heat Sink) ....................................................................25 10.2 VIN = 230 VAC (U1: No Heat Sink) ....................................................................25 11 Harmonic Data ......................................................................................................26 12 Waveforms ............................................................................................................28 12.1 Input Line Voltage and Current ..........................................................................28 12.2 Drain Voltage and Current .................................................................................28 12.3 Output Voltage and Ripple Current ....................................................................29 12.4 Output Voltage and Drain Current Start-up Profile ............................................29 12.5 Output Current and Drain Voltage During Shorted Output.................................30 12.6 Open Load Output Voltage ................................................................................30 13 Dimming ................................................................................................................31 13.1 Input Phase vs. Output ......................................................................................31 13.2 Output Voltage and Input Current Waveforms ...................................................32 13.2.1 VIN = 115 VAC / 60 Hz ................................................................................32 13.2.2 VIN = 230 VAC / 50Hz .................................................................................33 Page 3 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
14 Line Surge............................................................................................................. 34 15 Conducted EMI ..................................................................................................... 35 16 Revision History .................................................................................................... 37 17 Appendix ............................................................................................................... 38 17.1 Dimming Test with TRIAC Dimmer Switches .................................................... 38 17.1.1 VIN = 115 VAC, 60 Hz ................................................................................. 38 17.1.2 VIN = 230 VAC, 50 Hz ................................................................................. 39 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed using an isolation
transformer to provide the AC input to the prototype board.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
1 Introduction
The document describes a high power factor (PF) TRIAC dimmable LED driver designed
to drive a nominal LED string voltage of 28 V at 0.5 A from an input voltage range of
90 VAC to 265 VAC. The LED driver utilizes the LNK406EG from the LinkSwitch-PH
family of ICs.
LinkSwitch-PH ICs allow the implementation of cost effective and low component count
LED drivers which both meet power factor and harmonics limits and also offer enhanced
end user experience. This includes ultra-wide dimming range, flicker-free operation (even
with low cost with AC line TRIAC dimmers) and fast, clean turn on.
The topology used is an isolated flyback operating in continuous conduction mode.
Output current regulation is sensed entirely from the primary side eliminating the need for
secondary side feedback components. No external current sensing is required on the
primary side either as this is performed inside the IC further reducing components and
losses. The internal controller adjusts the MOSFET duty cycle to maintain a sinusoidal
input current and therefore high power factor and low harmonic currents.
The LNK406EG also provides a sophisticated range of protection features including autorestart for open control loop and output short-circuit conditions. Line overvoltage provides
extended line fault and surge withstand, output overvoltage protects the supply should
the load be disconnected and accurate hysteretic thermal shutdown ensures safe
average PCB temperatures under all conditions.
In any LED luminaire the driver determines many of the performance attributes
experienced by the end user including startup time, dimming, flicker and unit to unit
consistency. For this design a focus was given to compatibility with as wide a range of
dimmers and as large of a dimming range as possible, at both 115 VAC and 230 VAC.
However simplification of the design is possible for both single input voltage operation, no
dimming or operation with a limited range of (higher quality) dimmers.
This document contains the LED driver specification, schematic, PCB diagram, bill of
materials, transformer documentation and typical performance characteristics.
Page 5 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
Figure 1 – Populated Circuit Board Photograph (Top View). PCB Outline Designed to Fit Inside PAR38
Enclosure.
Figure 2 – Populated Circuit Board Photograph (Bottom View).
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage a
Frequency
Output
Output Voltage
Output Current a
Total Output Power
Continuous Output Power
Efficiency
Full Load
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
90
47
115
50/60
265
64
VAC
Hz
2 Wire – no P.E.
VOUT
IOUT
24
0.475
28
0.5
32
0.525
V
A
14
POUT

VOUT = 28, VIN = 115 VAC, 25°C
W
80
%
o
Measured at POUT 25 C
Environmental
Conducted EMI
CISPR 15B / EN55015B
Designed to meet IEC950 / UL1950
Class II
Safety
Ring Wave (100 kHz)
Differential Mode (L1-L2)
Common mode (L1/L2-PE)
2.5
Power Factor
IEC 61000-4-5 , 200 A
Measured at VOUT(TYP), IOUT(TYP)
and 115/230 VAC
0.9
Harmonics c
Ambient Temperature b
kV
EN 61000-3-2 Class D (C)
TAMB
60
o
C
Free convection, sea level
Notes:
a
When configured for phase controlled (TRIAC) dimming, to give widest dimming range,
the output current for a LinkSwitch-PH design intentionally varies with line voltage.
Therefore the output current specification is defined at a single line voltage only. For this
design a line voltage of 115 VAC was selected. At higher line voltages the output current
will increase and reduce with lower line voltages. The typical output current variation is
+20% for a +200% in line voltage. A single resistor value change can be used to center
the nominal output current for a given nominal line voltage. See Table 1 for the feedback
resistor value vs. nominal line voltage.
b
Maximum ambient temperature may be increased by adding a small heat sink to the
LinkSwitch-PH device. For example a strip of aluminum the width of the board and the
height of the existing electrolytic capacitors increases maximum allowable ambient to
70 °C for a device temperature of 100 °C. Higher device temperatures, up to 115 °C, are
allowable providing a reduction in output current tolerance is acceptable.
c
For input power <25 W, Class C compliance is gained when Class D harmonic current
levels are met.
Page 7 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
3 Schematic
Figure 3 – Schematic.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
4 Circuit Description
The LinkSwitch-PH device is a controller and integrated 725 V power MOSFET intended
for use in LED driver applications. The LinkSwitch-PH is configured for use in a singlestage continuous conduction mode flyback topology and provides a primary side
regulated constant current output while maintaining high power factor from the AC input.
4.1 Input Filtering
Fuse F1 provides protection from component failure and RV1 provides a clamp to limit
the maximum voltage during differential line surge events. A 275 VAC rated part was
selected, being slightly above the maximum specified operating voltage of 265 VAC.
Diode bridge BR1 rectifies the AC line voltage with capacitor C2 providing a low
impedance path (decoupling) for the primary switching current. A low value of
capacitance (sum of C1 and C2) is necessary to maintain a power factor of greater than
0.9.
EMI filtering is provided by inductors L1-L3, C1 and Y1 safety rated C8. Resistor R12 and
R13 across L1 and L2 damp any resonances between the input inductors, capacitors and
the AC line impedance which would ordinarily show up on the conducted EMI
measurements.
4.2 LinkSwitch-PH Primary
One side of the transformer (T1) is connected to the DC bus and the other to the DRAIN
(D) pin of the LinkSwitch-PH. During the on-time of the MOSFET current ramps through
the primary storing energy which is then delivered to the output during the MOSFET off
time. An RM8 core size was selected due to its small board area footprint. As the bobbin
did not meet the 6.2 mm safety creepage distance required for 230 VAC operation, flying
leads were used to terminate the secondary winding into the PC board.
To provide peak line voltage information to U1 the incoming rectified AC peak charges
C3 via D1. This is then fed into the VOLTAGE MONITOR (V) pin of U1 as a current via
R2 and R3. The resistor tolerance will cause V pin current variation unit to unit so 1%
resistor types were selected to minimize this variation. The V pin current is also used by
the device to set the line input over-voltage and under voltage protection thresholds.
Undervoltage ensures a defined turn on voltage threshold unit to unit and overvoltage
extends the rectified line voltage withstand (during surges and line swells) to the 725
BVDSS rating of the internal MOSFET. Resistor R1 provides a discharge path for C3 with
a time constant much longer than that of the rectified AC to prevent the V pin current
being modulated at the line frequency.
The V pin current and the FEEDBACK (FB) pin current are used internally to control the
average output LED current. For phase angle dimming applications a 49.9 k resistor is
used on the R pin (R4) and 4 M (R2+R3) on the V pin to provide a linear relationship
between input voltage and the output current and maximizing the dim range. Resistor R4
Page 9 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
also sets the internal line input brown-in, brown-out and input overvoltage protection
thresholds.
During the MOSFET on-time, diode D2 and VR1 clamp the drain voltage to a safe level
due to the effects of leakage inductance. Diode D3 is necessary to prevent reverse
current from flowing through U1 while the voltage across C2 falls to below the reflected
output voltage (VOR).
Diode D5, C5, R7 and R8 generate a primary bias supply from an auxiliary winding on
the transformer. Capacitor C4 provides local decoupling for the BYPASS (BP) pin of U1
which is the supply pin for the internal controller. During start-up C4 is charged to ~6 V
from an internal high-voltage current source tied to the DRAIN pin. This allows the part to
start switching at which point the operating supply current is provided from the bias
supply via R5. Diode D4 isolates the BP pin from C5 to prevent the start-up time
increasing due to charging of both C4 and C5.
The use of an external bias supply (via D4 and R5) is recommended to give the lowest
device dissipation and highest efficiency however these components may be omitted if
desired. This ability to be self powered provides improved phase angle dimming
performance as the IC is able to maintain operation even when the input conduction
phase angle is very small giving a low equivalent input voltage.
Capacitor C4 also selects the output power mode, 10 F was selected (reduced power
mode) to minimize the device dissipation and minimize heat sinking requirements.
4.3 Feedback
The bias winding voltage is used to sense the output voltage indirectly, eliminating
secondary side feedback components. The voltage on the bias winding is proportional to
the output voltage (set by the turns ratio between the bias and secondary windings).
Resistor R6 converts the bias voltage into a current which is fed into the FB pin of U1.
The internal engine within U1 combines the FB pin current, the V pin current, and drain
current information to provide a constant output current over a 2:1 output voltage range
whilst maintaining high input power factor.
To limit the output voltage at no-load an output overvoltage clamp is set by D6, C7, R10,
VR2, C6, Q2 and R9. Should the output load be disconnected then the bias voltage will
increase until VR2 conducts, turning on Q2 and reducing the current into the FB pin.
When this current drops below 20 A the part enters auto-restart and switching is
disabled for 800 ms allowing time for the output (and bias) voltages to fall.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
4.4 Output Rectification
The transformer secondary winding is rectified by D7 and filtered by C9 and C10. An
ultrafast diode was selected for low cost and the combined value of C9 and C10 was
selected to give an LED ripple current equal to 40% of the mean value. For designs
where lower ripple is desirable the output capacitance value can be increased. A small
pre-load is provided by R11 which limits the output voltage under no-load conditions.
4.5 TRIAC Phase Dimming Control Compatibility
The requirement to provide output dimming with low cost, TRIAC based, leading edge
phase dimmers introduced a number of trade offs in the design.
Due to the much lower power consumed by LED based lighting the current drawn by the
overall lamp is below the holding current of the TRIAC within the dimmer. This causes
undesirable behaviors such as limited dim range and/or flickering as the TRIAC fires
inconsistently. The relatively large impedance the LED lamp presents to the line allows
significant ringing to occur due to the inrush current charging the input capacitance when
the TRIAC turns on. This too can cause similar undesirable behavior as the ringing may
cause the TRIAC current to fall to zero and turn off.
To overcome these issues two circuits, the Active Damper and Passive Bleeder were
incorporated. The drawback of these circuits is increased dissipation and therefore
reduced efficiency of the supply. For non-dimming application these components can
simply be omitted.
The Active Damper consists of components R14, R15, Q1, and C11 in conjunction with
R16. This circuit limits the inrush current that flows to charge C2 when the TRIAC turns
on by placing R16 in series for the first 1 ms of the conduction period. After approximately
1 ms, Q1 turns on and shorts R16. This keeps the power dissipation on R16 low and
allows a larger value during current limiting. Resistor R14, R15 and C11 provide the 1 ms
delay after the TRIAC conducts. The SCR selected for Q1 is a low current, low cost
device in a TO-92 package.
The Passive Bleeder circuit is comprised of C12 and R17. This keeps the input current
above the TRIAC holding current while the input current corresponding to the driver
increases during each AC half-cycle preventing the TRIAC from oscillating on and off at
the start of each conduction angle period.
This arrangement provided flicker-free dimming operation with all the phase angle
dimmers tested including units from Europe, China, Korea and both leading and lagging
edge types.
Page 11 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
5 PCB Layout
Figure 4 – Printed Circuit Layout (Dimensions in Inches).
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
6 Bill of Material
6.1
Electrical
Item
Qty
Ref Des
1
1
BR1
2
1
C1
Description
Mfg Part Number
Mfg
600 V, 2 A, Bridge Rectifier, Glass Passivated
2KBP06M-E4/51
Vishay
47 nF, 275 VAC, Film, X2
ECQU2A473ML
Panasonic
3
1
C2
100 nF, 630 V, Film
ECQ-E6104KF
Panasonic
4
1
C3
1 F, 400 V, Electrolytic, (6.3 x 11)
EKMG401ELL1R0MF11D
United Chemi-Con
5
1
C4
10 F, 16 V, Electrolytic, Gen. Purpose, (5 x 11)
EKMG160ELL100ME11D
United Chemi-Con
ELXZ500ELL220MEB5D
Nippon Chemi-Con
ECJ-2YB1H104K
Panasonic
6
1
C5
22 F, 50 V, Electrolytic, Low ESR, 900 m,
(5 x 11.5)
7
1
C6
100 nF, 50 V, Ceramic, X7R, 0805
8
1
C7
1 F, 50 V, Ceramic, X7R, 0805
9
1
C8
2.2 nF, Ceramic, Y1
10
2
C9, C10
11
1
12
1
13
1
08055D105KAT2A
AVX
440LD22-R
Vishay
330 F, 50 V, Electrolytic, Very Low ESR,
28 m, (10 x 25)
EKZE500ELL331MJ25S
Nippon Chemi-Con
C11
470 nF, 50 V, Ceramic, X7R, 0805
GRM21BR71H474KA88L
Murata
C12
220 nF, 630 V, Film
ECQ-E6224KF
Panasonic
D1
1000 V, 1 A, Rectifier, Glass Passivated, DO213AA (MELF)
DL4007-13-F
Diodes, Inc
14
1
D2
1000 V, 1 A, Ultrafast Recovery, 75 ns, DO-41
UF4007-E3
Vishay
15
1
D3
400 V, 1 A, Ultrafast Recovery, 50 ns, DO-41
UF4004-E3
Vishay
16
1
D4
100 V, 1 A, Fast Recovery, 150 ns, SMA
RS1B-13-F
Diodes, Inc
DL4936-13-F
Diodes, Inc
BAV21WS-7-F
Diodes, Inc
17
1
D5
400V, 1 A, Rectifier, Fast Recovery, MELF
(DL-41)
18
1
D6
250 V, 0.2 A, Fast Switching, 50 ns, SOD-323
19
1
D7
100 V, 3 A, Ultrafast Recovery, 25 ns, SMC
20
1
F1
3.15 A, 250 V, Slow, TR5
22
3
L1, L2,
L3
22
1
Q1
23
1
Q2
24
1
R1
25
2
R2, R3
26
1
R4
27
1
28
1
29
30
31
ES3D-13-F
Diodes, Inc
37213150411
Wickman
1000 H, 0.3 A
RLB0914-102KL
Bourns
SCR, 600 V, 1.25 A, TO-92
X0202MA 2BL2
ST Micro
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
MMBT3904LT1G
On Semir
510 k, 5%, 1/2 W, Carbon Film
CFR-50JB-510K
Yageo
2.00 M, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF2004V
Panasonic
49.9 k, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF4992V
Panasonic
R5
3 k, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ302V
Panasonic
R6
150 k, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF1503V
Panasonic
1
R7
10 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ103V
Panasonic
1
R8
150 , 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ151V
Panasonic
1
R9
1 k, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ102V
Panasonic
32
3
R10,
R12, R13
10 k, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ103V
Panasonic
33
1
R11
20 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ203V
Panasonic
34
1
R14, R15
374 k, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF3743V
Panasonic
35
1
R16
130 , 5%, 2 W, Metal Oxide
RSF200JB-130R
Yageo
36
1
R17
510 , 5%, 2 W, Metal Oxide
RSF200JB-510R
Yageo
37
1
RV1
275 V, 80J, 10 mm, RADIAL
ERZ-V10D431
Panasonic
Page 13 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
38
1
T1
Bobbin, RM8 Low Profile, Vertical, 12 pins
Custom Transformer
39
1
U1
LinkSwitch, eSIP
40
1
VR1
200 V, 5 W, 5%, TVS, DO204AC (DO-15)
41
1
VR2
39 V, 5%, 500 mW, DO-213AA (MELF)
6.2
13-May-11
B65812-P1010-D1
SNX-R1523
Epcos
Santronics USA
LNK406EG
Power Integrations
P6KE200ARLG
On Semi
ZMM5259B-7
Diodes, Inc
Mechanical
Item
Qty
Ref
Des
Mfg Part Number
Mfg
42
1
L
Test Point, WHT,THRU-HOLE MOUNT
5012
Keystone
43
1
V+
Test Point, RED,THRU-HOLE MOUNT
5010
Keystone
44
1
V-
Test Point, BLK,THRU-HOLE MOUNT
5011
Keystone
45
1
N
Test Point, BLK,THRU-HOLE MOUNT
5011
Keystone
46
1
FL1
PCB Terminal Hole, #22 AWG
N/A
N/A
47
1
FL2
PCB Terminal Hole, #22 AWG
N/A
N/A
Description
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
7 Transformer Specification
7.1
Electrical Diagram
Figure 5 – Transformer Electrical Diagram.
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage
Inductance
7.3
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
1 second, 60 Hz, from pins 1, 2, 3, 11 to FL1, FL2
Pins 1-11, all other windings open, measured at 100 kHz,
0.4 VRMS
Pins 1-11, all other windings open
Pins 1-11, with FL1-FL2 shorted, measured at 100kHz,
0.4 VRMS
3000 VAC
1150 H, ±20%
750 kHz (Min.)
20 H (Max.)
Materials
2
Description
Core: RM8/I, 3F3, ALG = 319 nH/n
Bobbin: 12 pin vertical, CSV-RM8-1S-12P, Philips or equivalent with mounting clip, CLI/P-RM8
Tape: Polyester film, 3M 1350F-1 or equivalent, 9 mm wide
Wire: Magnet, #31 AWG, solderable double coated
Wire: Magnet, #30 AWG, solderable double coated
Wire: Triple Insulated, Furukawa TEX-E or Equivalent, #25 TIW
Transformer Varnish: Dolph BC-359 or equivalent
Page 15 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
7.4
13-May-11
Transformer Build Diagram
Pins Side
3L Tape
W3 - Finish (P2)
W3 - Start (P3)
1L Tape
1L Tape
W2 - Finish (FL2)
W2 - Start (FL1)
1L Tape
W1 - Finish (P11)
W1 - Start (P1)
Figure 6 – Transformer Build Diagram.
7.5
Transformer Construction
Bobbin
Preparation
WD 1 (Primary)
Insulation
WD 2
(Secondary)
Insulation
WD 3 (Bias)
Finish Wrap
Final Assembly
Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding
direction is the clockwise direction.
Starting at pin 1, wind 60 turns of wire item [4] in two layers. Finish at pin 11.
Apply one layer of tape item [3].
Leave about 1” of wire item [6], use small tape to mark as FL1, enter into slot of
secondary side of bobbin, wind 20 turns in two layers. At the last turn exit the same
slot, leave about 1”, and mark as FL2.
Apply one layer of tape item [3].
Starting at pin 3, wind 20 turns of wire item [5], spreading the wire, finish at pin 2.
Apply three layers of tape item [3] for finish wrap.
Cut FL1 and FL2 to 0.75”.Grind core to get 1.15 mH inductance value. Assemble
and secure core halves. Dip impregnate using varnish item [7].
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
8 Transformer Design Spreadsheet
ACDC_LinkSwitchPH_042910; Rev.1.0;
Copyright Power
Integrations 2010
INPUT
INFO
OUTPUT
Info
YES
UNIT
LinkSwitch-PH_042910: Flyback
Transformer Design Spreadsheet
ENTER APPLICATION VARIABLES
Dimming required
YES
VACMIN
VACMAX
265
fL
VO
!!! Info. When configured for dimming,
best output current line regulation is
achieved over a single input voltage
range.
90
V
Minimum AC Input Voltage
265
V
Maximum AC input voltage
50
Hz
AC Mains Frequency
V
Typical output voltage of LED string at full
load
28.00
VO_MAX
30.80
V
Maximum expected LED string Voltage.
VO_MIN
25.20
V
Minimum expected LED string Voltage.
V_OVP
33.88
V
Over-voltage protection setpoint
IO
0.50
Typical full load LED current
PO
14.0
n
VB
W
Output Power
V
Bias Voltage
0.8
28
28
Estimated efficiency of operation
ENTER LinkSwitch-PH VARIABLES
LinkSwitch-PH
LNK406
Chosen Device
Current Limit Mode
Universal
LNK406
RED
Power Out
22.5W
RED
115 Doubled/230V
22.5W
Select "RED" for reduced Current Limit
mode or "FULL" for Full current limit
mode
Minimum current limit
ILIMITMIN
1.19
A
ILIMITMAX
1.36
A
Maximum current limit
fS
66000
Hz
Switching Frequency
fSmin
62000
Hz
Minimum Switching Frequency
fSmax
70000
Hz
Maximum Switching Frequency
V pin current
IV
39.9
uA
RV
4
M-ohms
Upper V pin resistor
RV2
1E+12
M-ohms
Lower V pin resistor
IFB
158.8
uA
RFB1
157.5
k-ohms
VDS
10
V
VD
0.50
V
VDB
0.70
V
FB pin current (85 uA < IFB < 210 uA)
FB pin resistor
LinkSwitch-PH on-state Drain to Source
Voltage
Output Winding Diode Forward Voltage
Drop (0.5 V for Schottky and 0.8 V for PN
diode)
Bias Winding Diode Forward Voltage
Drop
Key Design Parameters
KP
0.87
LP
VOR
Expected IO
(average)
Page 17 of 40
85.00
Ripple to Peak Current Ratio (For PF >
0.9, 0.4 < KP < 0.9)
0.87
1150
uH
85
V
Reflected Output Voltage.
Primary Inductance
0.51
A
Expected Average Output Current
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
KP_VACMAX
TON_MIN
13-May-11
1.11
Expected ripple current ratio at VACMAX
1.86
Minimum on time at maximum AC input
voltage
us
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
RM8/I
Bobbin
RM8/I
RM8/I_BOBBIN
*
AE
0.63
P/N:
cm^2
LE
3.84
cm
AL
3000
nH/T^2
BW
10
mm
Bobbin Physical Winding Width
M
0
mm
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
L
NS
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
2.00
2
Number of Primary Layers
20
20
Number of Secondary Turns
DC INPUT VOLTAGE PARAMETERS
VMIN
127
V
Peak input voltage at VACMIN
VMAX
375
V
Peak input voltage at VACMAX
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
0.42
IAVG
0.51
A
Average Primary Current
Minimum duty cycle at peak of VACMIN
IP
0.95
A
Peak Primary Current (calculated at
minimum input voltage VACMIN)
IRMS
0.31
A
Primary RMS Current (calculated at
minimum input voltage VACMIN)
LP
1150
uH
NP
60
TRANSFORMER PRIMARY DESIGN PARAMETERS
NB
20
ALG
323
Primary Inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
nH/T^2
Gapped Core Effective Inductance
BM
2897
Gauss
Maximum Flux Density at PO, VMIN
(BM<3100)
BP
3506
Gauss
Peak Flux Density (BP<3700)
BAC
1267
Gauss
AC Flux Density for Core Loss Curves
(0.5 X Peak to Peak)
ur
1455
LG
0.22
mm
20
mm
Effective Bobbin Width
BWE
Relative Permeability of Ungapped Core
Gap Length (Lg > 0.1 mm)
OD
0.34
mm
Maximum Primary Wire Diameter
including insulation
INS
0.06
mm
Estimated Total Insulation Thickness (= 2
* film thickness)
DIA
0.28
mm
Bare conductor diameter
AWG
30
AWG
Primary Wire Gauge (Rounded to next
smaller standard AWG value)
CM
102
Cmils
Bare conductor effective area in circular
mils
CMA
330
Cmils/Amp
Primary Winding Current Capacity (200 <
CMA < 600)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
2.82
A
Peak Secondary Current
ISRMS
1.01
A
Secondary RMS Current
IRIPPLE
0.88
A
Output Capacitor RMS Ripple Current
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
CMS
203
Cmils
Secondary Bare Conductor minimum
circular mils
AWGS
27
AWG
Secondary Wire Gauge (Rounded up to
next larger standard AWG value)
DIAS
0.36
mm
Secondary Minimum Bare Conductor
Diameter
ODS
0.50
mm
Secondary Maximum Outside Diameter
for Triple Insulated Wire
VDRAIN
553
V
Estimated Maximum Drain Voltage
assuming maximum LED string voltage
(Includes Effect of Leakage Inductance)
PIVS
160
V
Output Rectifier Maximum Peak Inverse
Voltage (calculated at VOVP, excludes
leakage inductance spike)
PIVB
160
V
Bias Rectifier Maximum Peak Inverse
Voltage (calculated at VOVP, excludes
leakage inductance spike)
VOLTAGE STRESS PARAMETERS
FINE TUNING (Enter measured values from prototype)
V pin Resistor Fine Tuning
RV1
4.00
M-ohms
Upper V Pin Resistor Value
RV2
1E+12
M-ohms
Lower V Pin Resistor Value
VAC1
115.0
V
VAC2
230.0
V
Test Input Voltage Condition2
IO_VAC1
0.50
A
Measured Output Current at VAC1
Measured Output Current at VAC2
Test Input Voltage Condition1
IO_VAC2
0.50
A
RV1 (new)
4.00
M-ohms
New RV1
RV2 (new)
20911.63
M-ohms
New RV2
V_OV
319.6
V
Typical AC input voltage at which OV
shutdown will be triggered
V_UV
66.3
V
Typical AC input voltage beyond which
power supply can startup
FB pin resistor Fine Tuning
RFB1
157
k-ohms
Upper FB Pin Resistor Value
RFB2
1E+12
k-ohms
Lower FB Pin Resistor Value
VB1
25.2
V
Test Bias Voltage Condition1
VB2
30.8
V
Test Bias Voltage Condition2
IO1
0.50
A
Measured Output Current at Vb1
IO2
0.50
A
Measured Output Current at Vb2
RFB1 (new)
157.5
k-ohms
New RFB1
RFB2(new)
1.00E+12
k-ohms
New RFB2
Page 19 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
9 Performance Data
All measurements performed at room temperature
9.1
Power Efficiency
9.1.1 27 V
Hz
60
60
60
60
Hz
50
50
50
50
50
VIN
(VAC)
90
100
115
130
VIN
(VAC)
195
210
230
245
265
PIN
(W)
15
15.4
15.9
16.4
PIN
(W)
18.3
18.7
19.3
19.6
20.1
VOUT
(V)
26.9
26.9
27
27
VOUT
(V)
27.2
27.2
27.2
27.3
27.3
IOUT
(mA)
0.46
0.48
0.5
0.52
IOUT
(mA)
0.58
0.59
0.61
0.62
0.63
POUT
(W)
12.37
12.91
13.50
14.04
POUT
(W)
15.78
16.05
16.59
16.93
17.20
Efficiency
(%)
82
84
85
86
Efficiency
(%)
86
86
86
86
86
VIN
(VAC)
90
100
115
130
VIN
(VAC)
195
210
230
245
265
PIN
(W)
13.1
13.5
13.9
14.4
PIN
(W)
16.2
16.6
17.2
17.6
18.1
VOUT
(V)
23.6
23.7
23.8
23.8
VOUT
(V)
24
24.1
24.1
24.2
24.23
IOUT
(mA)
0.46
0.48
0.5
0.52
IOUT
(mA)
0.58
0.59
0.61
0.62
0.64
POUT
(W)
10.86
11.38
11.90
12.38
POUT
(W)
13.92
14.22
14.70
15.00
15.51
Efficiency
(%)
83
84
86
86
Efficiency
(%)
86
86
85
85
86
PF
0.98
PF
0.93
9.1.2 24 V
Hz
60
60
60
60
Hz
50
50
50
50
50
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
PF
0.98
PF
0.92
Page 20 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
9.1.3 30 V
VIN
(VAC)
90
100
115
130
VIN
(VAC)
195
210
230
245
265
Hz
60
60
60
60
Hz
50
50
50
50
50
PIN
(W)
16.8
17.2
17.7
18.2
PIN
(W)
20.2
20.6
21.2
21.5
22.1
VOUT
(V)
29.6
29.7
29.7
29.8
VOUT
(V)
30
30
30.1
30.1
30.1
IOUT
(mA)
0.47
0.49
0.5
0.522
IOUT
(mA)
0.58
0.59
0.61
0.62
0.63
POUT
(W)
13.91
14.55
14.85
15.56
POUT
(W)
17.40
17.70
18.36
18.66
18.96
Efficiency
(%)
83
85
84
85
Efficiency
(%)
86%
86%
87%
87%
86%
PF
0.98
PF
0.93
87.0
86.5
86.0
Efficiency (%)
85.5
85.0
84.5
24 V
27 V
30 V
84.0
83.5
83.0
82.5
82.0
80
95
110
125
140
155
170
185
200
215
230
245
260
Input Voltage (VAC)
Figure 7– Efficiency vs. Input Voltage, Room Temperature.
Page 21 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
275
RDR-195 14 W PAR38 LED Driver Using LNK406EG
9.2
13-May-11
Regulation
9.2.1 Output Voltage and Line
0.7
115 VAC
230 VAC
Output Current (A)
0.65
0.6
0.55
0.5
0.45
0.4
23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30 30.5
Output Voltage (V)
Figure 8 – Voltage and Line Regulation, Room Temperature.
The line regulation result shown above is typical for a design where the phase angle
dimming mode of U1 is selected (to provide a very wide dimming range). For a given line
voltage the output current can be centered by changing the value of the FEEDBACK
resistor (R6). The table below shows the resistor values to adjust the mean output current
at specific input voltages,
Line Voltage
(VAC)
100
115
230
Value of R6 (kΩ)
147
150
178
Table 1 – Feedback Resistor Value to Center Output Current at Different Nominal Line Voltages.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
9.2.2 Input Voltage and Output Current Regulation
Note: 24 V and 27 V data identical at low-line input, and 27 V and 30 V data identical at
high-line input.
0.53
24 V
27 V
30 V
0.52
Output Current (A)
0.51
0.5
0.49
0.48
0.47
0.46
0.45
85
90
95
100
105
110
115
120
125
130
Input Voltage (VAC)
Figure 9 – Low Line Regulation, Room Temperature, Full Load.
Page 23 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
135
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
0.65
24 V
27 V
30 V
0.64
Output Current (A)
0.63
0.62
0.61
0.6
0.59
0.58
0.57
175
185
195
205
215
225
235
245
255
265
275
Input Voltage (VAC)
Figure 10 – High-Line Regulation, Room Temperature, Full Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
10 Thermal Performance
Images captured after running for 30 minutes at room temperature (25 °C), full load. This
indicates an operating temperature of 100 °C at 50 °C for the LinkSwitch-PH. The
addition of a small heat sink (width of board) to the device reduces the operating
temperature by ~25 °C.
10.1 VIN = 115 VAC (U1: No Heat Sink)
Figure 11 – Top Side.
Figure 12 – Bottom Side.
10.2 VIN = 230 VAC (U1: No Heat Sink)
Figure 13 – Top Side.
Page 25 of 40
Figure 14 – Bottom Side.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
11 Harmonic Data
Per IEC 61000-3-2 (2005) for Class C compliance for an active input power <25 W
requires meeting Class D limits. Where Figures 15 and 16 show Class D limits these are
intended to show the limits for Class C compliance (Class D limits).
100
Class D Limit
RD-195 Harmonic Data at 115 VAC
90
80
Current (mA)
70
60
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic
Figure 15 – 115 VAC Harmonic, Room Temperature, Full Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
60
Class D Limit
RD-195 Harmonic Data at 230 VAC
Current (mA)
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic
Figure 16 – 230 VAC Harmonic, Room Temperature, Full Load.
THD (%)
21.0
THD (%)
27.8
Page 27 of 40
VIN =115 VAC
Limit (%)
Margin (%)
33
12.0
VIN = 230 VAC
Limit (%)
Margin (%)
33
5.2
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
12 Waveforms
12.1 Input Line Voltage and Current
Figure 17 – 90 VAC, Full Load.
Upper: IIN, 0.2 A / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 18 – 265 VAC, Full Load.
Upper: IIN, 0.1 A / div.
Lower: VIN, 200 V / div., 10 ms / div.
12.2 Drain Voltage and Current
Figure 19 – 90 VAC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 100 V, 5 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 20 – 265 VAC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VDRAIN, 200 V / div., 5 s / div.
Page 28 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
12.3 Output Voltage and Ripple Current
Figure 21 – 90 VAC, Full Load.
Upper: IRIPPLE, 0.2 A / div.
Lower: VOUT, 10 V, 5 ms / div.
Figure 22 – 265 VAC, Full Load.
Upper: IRIPPLE, 0.2 A / div.
Lower: VOUT, 10 V, 5 ms / div.
12.4 Output Voltage and Drain Current Start-up Profile
Figure 23 – 90 VAC, Full Load.
Upper: IDRAIN, 0.5 A / div.
Lower: VOUT, 5 V, 20 ms / div.
Page 29 of 40
Figure 24 – 265 VAC, Full Load.
Upper: IRIPPLE, 0.5 A / div.
Lower: VOUT, 5 V, 10 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
12.5 Output Current and Drain Voltage During Shorted Output
Figure 25 – 90 VAC, Full Load.
Upper: IOUT, 2 A / div.
Lower: VDRAIN, 200 V, 200 ms / div.
Figure 26 – 265 VAC, Full Load.
Upper: IOUT, 5 A / div.
Lower: VOUT, 200 V, 200 ms / div.
12.6 Open Load Output Voltage
Figure 27 – Output Voltage: 115 VAC.
VOUT, 10 V / div., 500 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 28 – Output Voltage: 230 VAC.
VOUT, 10 V / div., 500 ms / div.
Page 30 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13 Dimming
13.1 Input Phase vs. Output
Note: Due to operation of TRIAC based phase dimmers maximum conduction angle was
limited to 165 ºC.
115 VAC / 60 Hz
Phase Angle
(º)
167
98
67
46
39
15
9
7
0
IOUT
(mA)
485
250
130
67
37
3
1
0.5
0
230 VAC / 50 Hz
Phase Angle
(º)
167
95
59
36
27
11
7
5
5
IOUT
(mA)
580
310
140
60
32
7
4
3
1
600
115 VAC
230 VAC
LED Current (mA)
500
400
300
200
100
0
0
20
40
60
80
100
120
140
160
Phase Angle (º)
Figure 29 – Input Phase vs. Output Current.
Page 31 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
180
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
13.2 Output Voltage and Input Current Waveforms
13.2.1 VIN = 115 VAC / 60 Hz
Figure 30 – 115 VAC, Full Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Figure 31 – 115 VAC, 65o Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Figure 32 – 115 VAC, 16 o Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Figure 33 – 115 VAC, 8o Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13.2.2 VIN = 230 VAC / 50Hz
Figure 34 – 230 VAC, Full Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Figure 35 – 230 VAC, 54o Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Figure 36 – 230 VAC, 6o Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Figure 37 – 230 VAC, 5o Phase.
Upper: VOUT, 10 V / div.
Lower: IIN, 0.1 A / div., 5 ms / div.
Page 33 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
14 Line Surge
Differential and common input line 200 A ring wave testing was completed on a single
test unit to IEC61000-4-5. Input voltage was set at 230 VAC / 60 Hz. Output was loaded
at full load and operation was verified following each surge event.
Surge Level
(V)
2500
2500
2500
2500
2500
2500
Input Voltage
(VAC)
230
230
230
230
230
230
Injection
Location
L to N
L to N
L to PE
L to PE
N to PE
N to PE
Injection Phase
(°)
90
90
90
90
90
90
Test Result
(Pass/Fail)
Pass
Pass
Pass
Pass
Pass
Pass
Unit passes under all test conditions.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
15 Conducted EMI
Note: Blue results represents peak detector vs. quasi peak limit line. For actual margin to
limit (quasi peak measurement vs. quasi peak limit) please refer to the table.
Power Integrations
21.Apr 10 08:02
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
100
1 PK
CLRWR
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
134.789536006 kHz
41.13
N gnd
1
Quasi Peak
200.175581485 kHz
51.44
N gnd
2
Average
200.175581485 kHz
43.79
N gnd
-9.81
1
Quasi Peak
267.135089486 kHz
44.80
N gnd
-16.40
2
Average
267.135089486 kHz
35.58
N gnd
-15.62
2
Average
332.507282579 kHz
35.10
L1 gnd
-14.28
2
Average
401.705024172 kHz
37.16
N gnd
-10.64
1
Quasi Peak
418.01585899 kHz
46.10
N gnd
-11.38
2
Average
466.367062279 kHz
37.33
N gnd
-9.24
2
Average
536.076911993 kHz
35.42
N gnd
-10.57
1
Quasi Peak
641.227045055 kHz
43.24
N gnd
-12.75
2
Average
667.263434405 kHz
35.08
L1 gnd
-10.91
2
Average
4.97983359306 MHz
38.94
N gnd
-7.05
1
Quasi Peak
6.1984778522 MHz
45.35
N gnd
-14.64
2
Average
13.6042179984 MHz
40.09
L1 gnd
-9.90
1
Quasi Peak
13.8776627802 MHz
49.91
L1 gnd
-10.08
-12.16
Figure 38 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55015 B Limits.
Page 35 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
Power Integrations
21.Apr 10 08:08
RBW
MT
13-May-11
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 PK
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
9.272709 kHz
23.48
N gnd
2
Average
134.789536006 kHz
41.52
N gnd
1
Quasi Peak
190.46019728 kHz
47.24
L1 gnd
-16.77
2
Average
200.175581485 kHz
39.24
L1 gnd
-14.35
1
Quasi Peak
264.49018761 kHz
45.98
L1 gnd
-15.30
2
Average
267.135089486 kHz
37.12
N gnd
-14.08
1
Quasi Peak
332.507282579 kHz
41.97
N gnd
-17.41
2
Average
332.507282579 kHz
33.19
N gnd
-16.19
1
Quasi Peak
401.705024172 kHz
42.37
L1 gnd
-15.44
2
Average
401.705024172 kHz
32.83
L1 gnd
-14.98
2
Average
466.367062279 kHz
33.81
N gnd
-12.76
1
Quasi Peak
471.030732902 kHz
44.01
N gnd
-12.47
2
Average
598.084042089 kHz
31.96
N gnd
-14.03
1
Quasi Peak
673.936068749 kHz
42.26
N gnd
-13.73
2
Average
6.07634335085 MHz
40.39
N gnd
-9.60
1
Quasi Peak
6.26046263072 MHz
45.96
N gnd
-14.03
2
Average
13.6042179984 MHz
41.54
L1 gnd
-8.45
1
Quasi Peak
13.7402601784 MHz
49.67
L1 gnd
-10.32
Figure 39 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015 B Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 36 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
16 Revision History
Date
14-Dec-10
13-May-11
Page 37 of 40
Author
DK
DK
Revision
1.0
1.1
Description & changes
Initial Release
Corrected D7 mfg part number
Reviewed
Apps & Mktg
Apps & Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
17 Appendix
17.1 Dimming Test with TRIAC Dimmer Switches
17.1.1 VIN = 115 VAC, 60 Hz
Style Country Manufacturer
Model
Number
Dimming Test Data
Min. Current
Max.
without
Compatibility
Current
Off Switch
Notes
(mA)
(mA)
Rotary
1
Taiwan
2
Taiwan
3
4
WS-5005
458
0
Diing Chung
DC-306
480
0
Japan
Toshiba
WE0905
450
0
Japan
Panasonic
WN575149
418
0
Increase preload,
R7 = 5 K,
R11 = 10 K
Increase preload,
R7 = 5 K,
R11 = 10 K
Increase preload,
R7 = 5 K,
R11 = 10 K
Slider
1
USA
Lutron
TGLV-600PR
420
42
2
USA
Skylark
S-600PR
422
0
3
USA
Leviton
6615-POW
460
87
4
USA
Cooper
S106P
451
0
5
Japan
Panasonic
WT7615
423
0
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Increase preload,
R7 = 5K,
R11 = 10 K
Page 38 of 40
13-May-11
RDR-195 14 W PAR38 LED Driver Using LNK406EG
17.1.2 VIN = 230 VAC, 50 Hz
Note output was not normalized (value of feedback resistor adjusted) for 230 VAC
operation. When normalized a value of ~600 mA equates to a value of ~500 mA.
Style Country Manufacturer
Rated Power
(if marked)
Model
Number
Dimming Test Data
Min.Current
Max.
without
Compatibility
Current
Off Switch
Notes
(mA)
(mA)
Rotary
1
Taiwan
Diing Chung
DG-306
578
0
2
China
TCL
630 W
Not marked
600
132
3
China
Sang Bo Lang
300 W
Not marked
600
128
4
China
EBAHuang
Not marked
575
0
5
China
SB Electric
Not marked
559
0
6
China
Myongbo
Not marked
600
76
7
China
KBE
Not marked
575
0
8
China
CLIPMEI
Not marked
600
55
9
China
MANK
200 W
Not marked
600
160
10
German
11
German
Rev
300 W
Not marked
567
0
Busch
600 W
2250
577
73
12
German
MERTEN
400 W
572499
591
58
13
German
Busch
420 W (trailing edge)
6513
577
110
14
German
Berker
2875
568
88
15
Korea
Anam
Not marked
594
175
16
Korea
Shin Sung
500 W
Not marked
599
143
17
Korea
Jin Heoung
500 W
Fantasia
593
170
18
Korea
Shin Sung
700 W
Not marked
600
120
19
Italy
RELCO
300 W
RH34LED PT
560
0
20
Italy
RELCO
160 W
RM34DMA
594
112
21
Italy
RELCO
500 W
RTM34LED DAXS
478
50
22
Italy
RELCO
500 W
RM34DMA
600
112
23
Italy
RELCO
300 W
RTS34.43RLI
600
0
24
Italy
RELCO
500 W
RT34DSL
600
112
Page 39 of 40
600 W
650 W
Increase preload,
R7 = 5 K,
R11 = 10 K
Increase preload,
R7 = 5 K,
R11 = 10 K
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
RDR-195 14 W PAR38 LED Driver Using LNK406EG
13-May-11
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.
Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
th
#1, 14 Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
th
Rm A, B & C 4 Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]t.com
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 40 of 40
Design Example Report
Title
14 W PWM-Analog Dimmable LED Driver Using
LinkSwitchTM-PH LNK406EG
Specification 90 VAC – 265 VAC Input; 28 V, 500 mA Output
Application
LED Driver
Author
Applications Engineering Department
Document
Number
DER-263
Date
November 17, 2011
Revision
1.1
Summary and Features
• High efficiency, power factor corrected
o >87% at 230 VAC and >86% at 115 VAC
o >0.9 PF, meets EN61000-3-2 Class C
• 0-10 V analog dimming
o >1000:1 dimming range
• Low cost, low component count and small printed circuit board footprint
o No current sensing required
o Frequency jitter for smaller, lower cost EMI filter components
• Integrated protection and reliability features
o Output open circuit / output short-circuit protected with auto-recovery
o Line input overvoltage shutdown extends voltage withstand during line faults.
o Auto-recovering thermal shutdown with large hysteresis protects both components
and printed circuit board
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
Table of Contents
1
2
3
4
5
Introduction ................................................................................................................. 4
Power Supply Specification ........................................................................................ 6
Schematic ................................................................................................................... 7
PCB Layout ................................................................................................................ 8
Circuit Description ...................................................................................................... 9
5.1
PWM-Analog Dimming ........................................................................................ 9
5.2
Analog-PWM Converter..................................................................................... 11
5.3
Active Load Circuit ............................................................................................ 12
6 Bill of Materials ......................................................................................................... 13
7 Transformer Specification ......................................................................................... 15
7.1
Electrical Diagram ............................................................................................. 15
7.2
Electrical Specifications ..................................................................................... 15
7.3
Materials ............................................................................................................ 15
7.4
Transformer Build Diagram ............................................................................... 16
7.5
Transformer Construction .................................................................................. 16
8 Transformer Design Spreadsheet............................................................................. 17
9 Performance Data .................................................................................................... 20
9.1
Efficiency – Full Brightness ............................................................................... 20
9.2
Line and Load Regulation – Full Brightness ...................................................... 21
9.3
Power Factor – Full Brightness ......................................................................... 22
9.4
A-THD – Full Brightness .................................................................................... 23
9.5
115 VAC Dimming Characteristic ...................................................................... 24
9.5.1
Output Current vs. Control Voltage ............................................................ 24
9.5.2
Dimming Ratio vs. Control Voltage ............................................................ 25
9.6
230 VAC Dimming Characteristic ...................................................................... 26
9.6.1
Output Current vs. Control Voltage ............................................................ 26
9.6.2
Dimming Ratio vs. Control Voltage ............................................................ 27
9.7
Harmonics – Full Brightness.............................................................................. 28
9.7.1
8 LED Load ................................................................................................ 28
9.7.2
9 LED Load ................................................................................................ 30
9.7.3
10 LED Load .............................................................................................. 32
9.8
Test Data ........................................................................................................... 34
9.8.1
Efficiency, Regulation, Power Factor, and THD - Non-Dimming ................ 34
9.8.2
115 VAC Dimming Test Data ..................................................................... 35
9.8.3
230 VAC, 50 Hz Dimming Test Data .......................................................... 36
10
Waveforms ............................................................................................................ 37
10.1 Input Line Current.............................................................................................. 37
10.2 Drain Voltage and Current Normal Operation.................................................... 38
10.3 Drain Voltage and Current Start-up Operation .................................................. 39
10.4 Output Current and Output Voltage ................................................................... 40
10.5 Output Current and Voltage at Power-up, Power-down .................................... 41
10.6 Output Short ...................................................................................................... 42
10.7 Open Load/LED Condition................................................................................. 42
11
Thermals ............................................................................................................... 43
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
11.1 115 VAC Thermal Measurements......................................................................43
11.2 230 VAC Thermal Measurements......................................................................44
12
Conducted EMI .....................................................................................................45
12.1 Conducted EMI Test Setup................................................................................45
12.2 115 VAC, 60 Hz Conducted EMI Measurements ...............................................45
12.3 230 VAC, 60 Hz Conducted EMI Measurements ...............................................46
13
Revision History ....................................................................................................47
Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed using an isolation
transformer to provide the AC input to the prototype board.
Page 3 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
1 Introduction
The document describes a high power-factor secondary referenced, analog dimmable
LED driver. The circuit is designed to drive a nominal LED string voltage of 28 V at 500
mA from an input voltage range of 90 VAC to 265 VAC. The LED driver utilizes the
LNK406EG from the LinkSwitch-PH family of ICs.
Analog dimming is controlled by an external secondary referenced analog control signal
of 0-10 V. 0 volts correspond to minimum light output and 10 V corresponds to maximum
brightness. The analog controlled signal is transferred to the primary-side and controls
the feedback current IFB of LNK406EG which in turn controls the output power/light output
of the driver while maintaining high power factor and low THD.
An active load circuit and control are also included to extend dimming ratio beyond
1000:1 but may be omitted if extended dimming operation is not required.
This document contains the LED driver specification, schematic, PCB diagram, bill of
materials, conducted EMI measurements, thermal measurements, transformer
documentation and typical performance characteristics.
Figure 1 – Top View.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
Figure 2 – Bottom Side.
Page 5 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
Power Factor
Output
Voltage
Current
Ripple
Power
Dimming Range
Efficiency
115 VAC
230 VAC
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
PF
90
115 / 230
60 / 50
265
VAC
Hz
DC Input Only.
28
500
60
14
35
V
mA
%
W
± 5%
VOUT
IOUT
0.92
28
IRIPPLE
POUT
1000:1
η115
η230
IO(PK-PK) / IO
VIN(TYP)
86
%
VOUT = 28 V
87
%
VOUT = 28 V
°C
Class C specifies Class D
Limits when PIN <25 W
May be increased with
larger heat sink
Environmental
Conducted EMI
Meets EN55015B
Harmonic Currents
Temperature
EN 61000-3-2 Class D (C)
TAMB
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
40
Page 6 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
3 Schematic
Figure 3 – Schematic.
Page 7 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
4 PCB Layout
Figure 4 – PCB Showing Top, Bottom Traces and Dimensions in Inches [mm].
Figure 5 – PCB Bottom Side.
Figure 6 – PCB Top Side.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
5 Circuit Description
The LinkSwitch-PH device is a controller and integrated 725 V MOSFET intended for use
in LED driver applications. The LinkSwitch-PH is configured for use in a single-stage
continuous conduction mode flyback topology and provides a primary-side regulated
constant current output while maintaining high power factor from the AC input. Controlling
the IFB current with an external control signal regulates the output power and thus the
output current to the LED Load.
5.1
PWM-Analog Dimming
Figure 7 – PWM-Analog Dimming.
Dimming is controlled by an external analog secondary reference control signal of 0-10 V
magnitude. 0 V corresponds to full dimming or minimum light output and 10 V
corresponds to maximum brightness. Resistor RF and CF (Figure 7) form a simple low
pass filter to provide noise filtering of the incoming control signal. The PWM generator
block converts the analog signal to PWM. Conversion to PWM preserves the integrity of
the analog control signal information when it is transferred from the secondary to the
primary-side.
If 0 V to 10 V dimming is not required and a PWM source is already present, for example
from a micro controller, then the PWM generator block may be omitted and U2A driven
directly.
Optocoupler U2 is switched on and off with a duty cycle proportional to the control
voltage.
Diode D1 prevents C6 from pulling down the FB pin during start-up condition. Resistors
R6 and R12 sets the IFB current at maximum brightness. The equation for operating IFB
with U2 open (maximum brightness) is
Page 9 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
I FB =
17-Nov-11
VBIAS − VFB VR4 − VFB
+
R6 + R12
R10
During full dimming, transistor U2 is fully on and voltage across C6 falls to VFB + 0.6 V
approximately 3 V. Resistor R11 is then selected based on the following relationship:
R11 =
3V × R6
;
VBIAS( FD) − 3V
where VBIAS(FD) is the minimum bias voltage at full dimming.
PWM filter capacitor C6 is chosen to be greater than:
5
f PWM × R11
Resistor R10 provides a stable current of approximately 20 µA into the FB pin from the
bias winding through VR4 biased by R7. This prevents the FB pin current from entering
into auto-restart region (i.e. IFB <20 µA) thus allowing operation in deep dimming mode
operation. However, during short-circuit condition the VR4 bias voltage will collapse and
allows IFB current to fall below 20 µA thus enabling auto-restart protection mode. Resistor
R10 also guarantees that the unit starts-up normally while the PWM filter capacitor C6
charges up and causes delay for the feedback current to cross the auto-restart region
from the bias supply during initial start-up.
Want More?
Use your smartphone and free
software from www.neoreader.com
(or any other free QR Code Reader
from your smartphone’s App Store)
and you will be connected to related
content
on our website.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 48
17-Nov-11
5.2
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
Analog-PWM Converter
Figure 8 – Analog Signal to PWM Converter.
The PWM converter uses 2 comparator circuits implemented using LM393. The first
comparator circuit is a relaxation oscillator that produces a nearly triangular waveform at
the inverting input. The frequency of the sawtooth and the PWM output at pin 7 is given
by the following relation
1
FPWM ≈
2 × ln( 2) × R 21 × C 22
where R21 = R22 = R23 = R24.
The approximation was used to simplify the formula and ignore the small effect of the
pull-up resistor R20. Resistor R20 would not be necessary if U3 is an op-amp with an
output that saturates to its rail voltage. The oscillating frequency for this design is
approximately 150 Hz.
The second comparator circuitry compares the triangular waveform with the scaled
analog input. The minimum control signal is scaled to VCC/3 and maximum control signal
is scaled to approximately 2×(VCC/3) to produce a 0-100% duty cycle. The scaling is
done by resistors R26-R28.
Page 11 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
5.3
17-Nov-11
Active Load Circuit
Figure 9 – Active Load Circuit.
The active load circuit is designed such that:
1. At full dimming, the active load circuit dissipates the minimum output power when IFB
is at minimum (IFB ~20 µA) thereby reducing the LED load current.
2. Without dimming, or full brightness, the active load is inactive. VAL (active load control
voltage) is at its minimum value and set such that Q1 is off. This disconnects the
active load from the output and does not affect the full load efficiency of the converter
The emitter follower configuration formed by Q1, R13, R14, D10 and D9 draws a current
proportional to VAL once VAL exceeds 1.8 V threshold. Resistor R14 sets the ratio
between VAL and desired offset current. Resistor R13 is used to proportion the power
dissipated between Q1 and R13 and thus enable the use of a lower power rating
transistor.
The network formed by R32-R35 and U4 is configured as an inverting amplifier to satisfy
relationship between control signal and VAL as shown on the figure above.
Resistor R30, R31, and Q2 comprise the pull-up circuit and ensure that if the analog
control signal is not present, the active load circuit is not connected to the output.
The active load circuit is optional for designs where a reduced dimming range is
acceptable.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
6 Bill of Materials
Item
Qty
Part Ref
1
1
BR1
Description
2
1
C1
47 nF, 275 VAC, Film, X2
ECQU2A473ML
Panasonic
3
1
C2
ECQ-E6104KF
Panasonic
4
1
C3
100 nF, 630 V, Film
1 µF, 400 V, Electrolytic, (6.3 x 11)
EKMG401ELL1R0MF11D
United Chemi-Con
5
1
C4
ECJ-3YB1E106M
Panasonic
6
1
C5
ELXZ500ELL220MEB5D
Nippon Chemi-Con
7
1
C6
KME50VB10RM5X11LL
Nippon Chemi-Con
8
1
C7
440LD10-R
Vishay
9
2
C8 C10
EKZE500ELL331MJ25S
Nippon Chemi-Con
10
1
C9
1 nF, Ceramic, Y1
330 µF, 50 V, Electrolytic, Very Low ESR, 28 mΩ,
(10 x 25)
1000 pF, 630 V, Ceramic, X7R, 1206
11
1
C13
100 nF, 25 V, Ceramic, X7R, 0805
12
2
C14 C20
08055C102KAT2A
AVX
13
1
C21
100 nF, 25 V, Ceramic, X7R, 1206
ECJ-3VB1E104K
Panasonic
14
1
C22
Panasonic
1
GRM31MF51H225ZA01L
Murata
16
4
C23
D1 D5
D9 D10
47 nF, 50 V, Ceramic, X7R, 0805
2.2 µF, 50 V, Ceramic, Y5V, 1206
ECJ-2YB1H473K
15
LL4148-13
Diodes, Inc.
17
1
D2
DL4007-13-F
Diodes, Inc.
18
1
19
1
20
21
800 V, 1 A, Bridge Rectifier, SMD, DFS
10 µF, 25 V, Ceramic, X5R, 1206
22 µF, 50 V, Electrolytic, Low ESR, 900 mΩ,
(5 x 11.5)
10 µF, 50 V, Electrolytic, Gen. Purpose, (5 x 11)
1 nF, 50 V, Ceramic, X7R, 0805
75 V, 0.15 A, Fast Switching, 4 ns, MELF
Mfg Part Number
Mfg
DF08S
Diodes, Inc.
ECJ-3FB2J102K
Panasonic
ECJ-2VB1E104K
Panasonic
D3
1000 V, 1 A, Rectifier, Glass Passivated, DO213AA (MELF)
600 V, 1 A, Ultrafast Recovery, 35 ns, SMB Case
MURS160T3G
On Semi
D4
200 V, 2 A, Ultrafast Recovery, 20 ns, DO-214AA
ES2D
Diodes, Inc.
1
D6
DIODE ULTRA FAST, SW, 200 V, 1 A, SMA
1
D8
200 V, 4 A, Schottky, SMC, DO-214AB
22
1
F1
3.15 A, 250V, Slow, RST
23
2
J1 J2
24
3
L1 L2 L3
25
1
Q1
NPN, Power BJT, 70 V, 1 A, TO-92
ZTX692B
Zetex
26
1
Q2
PNP, Small Signal BJT, 40 V, 0.2 A, SOT-23
MMBT3906LT1G
On Semi
27
2
Q3 Q4
On Semi
2
R2 R3
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
2.00 MΩ, 1%, 1/4 W, Thick Film, 1206
MMBT3904LT1G
28
ERJ-8ENF2004V
Panasonic
29
1
R4
24.9 kΩ, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF2492V
Panasonic
30
1
R5
3 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ302V
Panasonic
31
1
R6
24 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ243V
Panasonic
32
1
R7
10 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ103V
Panasonic
33
1
R8
150 Ω, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ151V
Panasonic
34
2
R9 R15
390 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ394V
Panasonic
35
1
R10
174 kΩ, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF1743V
Panasonic
36
1
R11
3.6 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ362V
Panasonic
37
1
R12
150 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ154V
Panasonic
38
1
R13
130 Ω, 5%, 1 W, Metal Oxide
RSF100JB-130R
Yageo
39
1
R14
200 Ω, 5%, 1 W, Metal Oxide
RSF100JB-200R
Yageo
40
2
R16 R17
4.7 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ472V
Panasonic
41
2
R18 R40
1.5 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ152V
Panasonic
42
1
R19
1 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ102V
Panasonic
43
2
4.3 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ432V
Panasonic
44
4
R20 R35
R21 R22
R23 R24
100 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ104V
Panasonic
Page 13 of 48
PCB Terminal Hole, 30 AWG
1 mH, 0.30 A, Ferrite Core
US1D-13-F
Diodes, Inc.
MBRS4201T3G
ON Semi
507-1181
Belfuse
N/A
N/A
CTCH895F-102K
CTParts
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
45
2
R25 R31
10 kΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ103V
46
1
R26
154 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1543V
Panasonic
47
1
R27
22.1 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF2212V
Panasonic
48
1
R28
47.5 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF4752V
Panasonic
49
1
R29
3.3 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ332V
Panasonic
50
1
R30
1 MΩ, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ105V
Panasonic
51
1
R32
80.6 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF8062V
Panasonic
52
1
R33
12.4 kΩ, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1242V
Panasonic
100 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ104V
Panasonic
1 kΩ, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ102V
Panasonic
1 MΩ, 1%, 1/4 W, Metal Film
MFR-25FBF-1M00
Yageo
275 V, 23 J, 7 mm, RADIAL
V275LA4P
Littlefuse
53
1
Panasonic
54
3
55
1
R34
R36 R37
R38
R39
56
1
RV1
57
1
T1
Bobbin, RM8, Vertical, 12 pins
RM8/12/1
Schwartzpunkt
58
1
U1
LinkSwitch-PH, eSIP
LNK406EG
Power Integrations
59
1
U2
Optocoupler, 35 V, CTR 80-160%, 4-DIP
LTV-817A
Liteon
60
1
U3
Dual Diff Comparator, 8-SOIC
LM393D
National
61
1
U4
1.24 V Shunt Reg IC
LMV431ACZ
National Semi
62
1
VR3
36 V, 5%, 500 mW, DO-213AA (MELF)
ZMM5258B-7
Diodes, Inc.
63
1
VR4
16 V, 5%, 1 W, DO-41
1N4745A-T
Diodes, Inc.
64
1
VR5
6.2 V, 5%, 150 mW, SOD-323
MAZS0620ML
Panasonic
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
7 Transformer Specification
7.1
Electrical Diagram
Figure 10 – Transformer Electrical Diagram.
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage
Inductance
7.3
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
1 second, 60 Hz, from pins 1, 2, 3, 11 to FL1, FL2
Pins 1-11, all other windings open, measured at 100 kHz,
0.4 VRMS
Pins 1-11, all other windings open
Pins 1-11, with FL1-FL2 shorted, measured at 100 kHz,
0.4 VRMS
3000 VAC
1195 µH, ±10%
750 kHz (Min.)
20 µH (Max.)
Materials
Description
Core: RM8/I, 3F3
Bobbin: 12 pin vertical, CSV-RM8-1S-12P Philips or equivalent with mounting clip, CLI/P-RM8
Tape: Polyester film, 3M 1350F-1 or equivalent, 9 mm wide
Wire: Magnet, #31 AWG, solderable double coated
Wire: Magnet, #30 AWG, solderable double coated
Wire: Triple Insulated, Furukawa TEX-E or Equivalent, #25 TIW
Transformer Varnish: Dolph BC-359 or equivalent
Page 15 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
7.4
17-Nov-11
Transformer Build Diagram
Pins Side
Figure 11 – Transformer Build Diagram.
7.5
Transformer Construction
Bobbin
Preparation
WD 1 (Primary)
Insulation
WD 2
(Secondary)
Insulation
WD 3 (Bias)
Finish Wrap
Final Assembly
Place the bobbin item [2] on the mandrel such that pin side on the left side.
Winding direction is the clockwise direction.
Starting at pin 1, wind 60 turns of wire item [4] in two layers. Finish at pin 11.
Apply one layer of tape item [3].
Leave about 1” of wire item [6], use small tape to mark as FL1, enter into slot of
secondary side of bobbin, wind 20 turns in two layers. At the last turn exit the same
slot, leave about 1”, and mark as FL2.
Apply one layer of tape item [3].
Starting at pin 3, wind 20 turns of wire item [5], spreading the wire, finish at pin 2.
Apply three layers of tape item [3] for finish wrap.
Cut FL1 and FL2 to 0.75”.Grind core to get 1.15 mH inductance value. Assemble
and secure core halves. Dip impregnate using varnish item [7].
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
8 Transformer Design Spreadsheet
ACDC_LinkSwitchPH_032511; Rev.1.3;
INPUT
Copyright Power
Integrations 2011
ENTER APPLICATION VARIABLES
Dimming required
VACMIN
VACMAX
fL
VO
VO_MAX
VO_MIN
V_OVP
IO
INFO
NO
OUTPUT
UNIT
NO
90
265
50
28.00
30.80
25.20
33.88
0.50
V
V
Hz
V
V
V
V
A
PO
14.0
W
n
0.84
VB
25
ENTER LinkSwitch-PH VARIABLES
LinkSwitch-PH
LNK416
0.84
25
V
Chosen Device
Current Limit Mode
Universal
LNK416
RED
ILIMITMIN
ILIMITMAX
fS
fSmin
fSmax
IV
RV
RV2
IFB
RFB1
VDS
Power
Out
10W
RED
1.19
1.38
66000
62000
70000
38.7
3.909
1.402
142.2
154.7
A
A
Hz
Hz
Hz
uA
M-ohms
M-ohms
uA
k-ohms
10
V
VD
0.50
V
VDB
Key Design Parameters
0.70
V
KP
0.88
0.88
LP
1195
VOR
85.00
85
Expected IO (average)
0.49
KP_VACMAX
1.11
TON_MIN
1.90
PCLAMP
0.11
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
RM8/I
RM8/I
Bobbin
RM8/I_BOBBIN
AE
0.63
LE
3.84
AL
3000
BW
8.6
M
L
NS
Page 17 of 48
0
2.00
20
2
20
uH
V
A
us
W
P/N:
cm^2
cm
nH/T^2
mm
mm
LinkSwitch-PH_032511: Flyback
Transformer Design Spreadsheet
Select 'YES' option if dimming is required.
Otherwise select 'NO'.
Minimum AC Input Voltage
Maximum AC input voltage
AC Mains Frequency
Typical output voltage of LED string at full load
Maximum expected LED string Voltage.
Minimum expected LED string Voltage.
Over-voltage protection setpoint
Typical full load LED current
!!! For Universal Input reduce Continuous
Output Power PO_CONT below 10W (or use
larger LinkSwitch-PH)
Estimated efficiency of operation
Bias Voltage
115 Doubled/230V
4.5W
Select "RED" for reduced Current Limit mode
or "FULL" for Full current limit mode
Minimum current limit
Maximum current limit
Switching Frequency
Minimum Switching Frequency
Maximum Switching Frequency
V pin current
Upper V pin resistor
Lower V pin resistor
FB pin current (85 uA < IFB < 210 uA)
FB pin resistor
LinkSwitch-PH on-state Drain to Source
Voltage
Output Winding Diode Forward Voltage Drop
(0.5 V for Schottky and 0.8 V for PN diode)
Bias Winding Diode Forward Voltage Drop
Ripple to Peak Current Ratio (For PF > 0.9, 0.4
< KP < 0.9)
Primary Inductance
Reflected Output Voltage.
Expected Average Output Current
Expected ripple current ratio at VACMAX
Minimum on time at maximum AC input voltage
Estimated dissipation in primary clamp
*
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Number of Primary Layers
Number of Secondary Turns
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
IAVG
127
375
V
V
0.42
0.18
A
IP
0.91
A
IRMS
0.30
A
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
NB
ALG
1195
60
18
336
uH
17-Nov-11
Peak input voltage at VACMIN
Peak input voltage at VACMAX
Minimum duty cycle at peak of VACMIN
Average Primary Current
Peak Primary Current (calculated at minimum
input voltage VACMIN)
Primary RMS Current (calculated at minimum
input voltage VACMIN)
Primary Inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
nH/T^2
Gapped Core Effective Inductance
Maximum Flux Density at PO, VMIN
BM
2901
Gauss
(BM<3100)
BP
3511
Gauss
Peak Flux Density (BP<3700)
AC Flux Density for Core Loss Curves (0.5 X
BAC
1277
Gauss
Peak to Peak)
ur
1455
Relative Permeability of Ungapped Core
LG
0.21
mm
Gap Length (Lg > 0.1 mm)
BWE
17.2
mm
Effective Bobbin Width
Maximum Primary Wire Diameter including
OD
0.29
mm
insulation
Estimated Total Insulation Thickness (= 2 * film
INS
0.05
mm
thickness)
DIA
0.24
mm
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller
AWG
31
AWG
standard AWG value)
CM
81
Cmils
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA
CMA
272
Cmils/Amp
< 600)
LP_TOL
10
Tolerance of primary inductance
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)
Lumped parameters
ISP
2.72
A
Peak Secondary Current
ISRMS
0.98
A
Secondary RMS Current
IRIPPLE
0.84
A
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular
CMS
196
Cmils
mils
Secondary Wire Gauge (Rounded up to next
AWGS
27
AWG
larger standard AWG value)
DIAS
0.36
mm
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for
ODS
0.43
mm
Triple Insulated Wire
VOLTAGE STRESS PARAMETERS
Estimated Maximum Drain Voltage assuming
VDRAIN
553
V
maximum LED string voltage (Includes Effect
of Leakage Inductance)
Output Rectifier Maximum Peak Inverse
PIVS
160
V
Voltage (calculated at VOVP, excludes leakage
inductance spike)
Bias Rectifier Maximum Peak Inverse Voltage
PIVB
144
V
(calculated at VOVP, excludes leakage
inductance spike)
FINE TUNING (Enter measured values from prototype)
V Pin Resistor Fine Tuning
RV1
3.9
3.90
M-ohms
Upper V Pin Resistor Value
RV2
1.33
1.33
M-ohms
Lower V Pin Resistor Value
VAC1
115
115.0
V
Test Input Voltage Condition1
VAC2
230
230.0
V
Test Input Voltage Condition2
IO_VAC1
0.486
0.49
A
Measured Output Current at VAC1
IO_VAC2
0.49
0.49
A
Measured Output Current at VAC2
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
RV1 (new)
RV2 (new)
3.95
1.09
M-ohms
M-ohms
V_OV
322.9
V
V_UV
73.2
V
155
1E+012
22.5
27.5
0.50
0.50
154.7
1.00E+12
k-ohms
k-ohms
V
V
A
A
k-ohms
k-ohms
FB Pin Resistor Fine Tuning
RFB1
RFB2
VB1
VB2
IO1
IO2
RFB1 (new)
RFB2(new)
Page 19 of 48
New RV1
New RV2
Typical AC input voltage at which OV
shutdown will be triggered
Typical AC input voltage beyond which power
supply can startup
Upper FB Pin Resistor Value
Lower FB Pin Resistor Value
Test Bias Voltage Condition1
Test Bias Voltage Condition2
Measured Output Current at Vb1
Measured Output Current at Vb2
New RFB1
New RFB2
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
9 Performance Data
All measurements performed at room temperature and using strings of LEDs for the load.
9.1
Efficiency – Full Brightness
88.0
87.5
87.0
Efficiency (%)
86.5
86.0
85.5
85.0
84.5
8 LED
9 LED
84.0
10 LED
83.5
70
90
110
130
150
170
190
210
230
250
270
290
Input Voltage (VAC)
Figure 12 – Efficiency at Full Brightness.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 48
17-Nov-11
9.2
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
Line and Load Regulation – Full Brightness
510
8 LED
505
9 LED
10 LED
Output Current (mA)
500
495
490
485
480
475
470
465
70
90
110
130
150
170
190
210
230
250
270
Input Voltage (VAC)
Figure 13 – Line and load Regulation.
Page 21 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
290
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.3
17-Nov-11
Power Factor – Full Brightness
1.00
8 LED
0.99
9 LED
10 LED
Power Factor
0.98
0.97
0.96
0.95
0.94
0.93
0.92
70
90
110
130
150
170
190
210
230
250
270
290
Input Voltage (VAC)
Figure 14 – Power Factor at Full Brightness.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 48
17-Nov-11
9.4
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
A-THD – Full Brightness
34
31
A-THD (%)
28
25
22
19
16
8 LED
9 LED
13
10 LED
10
70
90
110
130
150
170
190
210
230
250
270
Input Voltage (VAC)
Figure 15 – Total Harmonic Distortion.
Page 23 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
290
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.5
17-Nov-11
115 VAC Dimming Characteristic
9.5.1 Output Current vs. Control Voltage
600
Output Current (mA)
500
400
300
200
100
0
0
1
2
3
4
5
6
7
8
9
10
Control Voltage (VDC)
Figure 16 – 115 VAC Output Current vs. Control Voltage (9 LED Load).
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.5.2 Dimming Ratio vs. Control Voltage
1000000
Dimming Ratio
100000
10000
1000
100
10
1
0
1
2
3
4
5
6
7
8
9
Control Voltage (VDC)
Figure 17 – 115 VAC Dimming Ratio vs. Control Voltage (9 LED Load).
Page 25 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
10
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.6
17-Nov-11
230 VAC Dimming Characteristic
9.6.1 Output Current vs. Control Voltage
600
Output Current (mA)
500
400
300
200
100
0
0
1
2
3
4
5
6
7
8
9
10
Control Voltage (VDC)
Figure 18 – 230 VAC Output Current vs. Control Voltage (9 LED Load).
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.6.2 Dimming Ratio vs. Control Voltage
10000
Dimming Ratio
1000
100
10
1
0
1
2
3
4
5
6
7
8
9
Control Voltage (VDC)
Figure 19 – 230 VAC Dimming Ratio vs. Control Voltage (9 LED Load).
Page 27 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
10
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
9.7 Harmonics – Full Brightness
The design met the limits for Class C equipment for an active input power of <25 W. In
this case IEC61000-3-2 specifies that harmonic currents shall not exceed the limits of
Class D equipment1. Therefore the limits shown in the charts below are Class D limits
which must not be exceeded to meet Class C compliance.
9.7.1 8 LED Load
120
Class C limit
115 VAC Harmonics, 8 LED Load
Harmonic Content (mA)
100
80
60
40
20
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (N)
Figure 20 – 115 VAC Harmonics, 8 LED Load.
1
IEC6000-3-2 Section 7.3, table 2, column 2.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
60
Class C limit
230 VAC Harmonics, 8 LED Load
Harmonic Content (mA)
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (N)
Figure 21 – 230 VAC Harmonics, 8 LED Load.
Page 29 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
9.7.2 9 LED Load
120
Class C limit
115 VAC Harmonics, 9 LED Load
Harmonic Content (mA)
100
80
60
40
20
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (N)
Figure 22 – 115 VAC Harmonics, 9 LED Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
60
Class C limit
230 VAC Harmonics, 9 LED Load
Harmonic Content (mA)
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (N)
Figure 23 – 230 VAC Harmonics, 9 LED Load.
Page 31 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
9.7.3 10 LED Load
140
Class C limit
115 VAC Harmonics, 10 LED Load
Harmonic Content (mA)
120
100
80
60
40
20
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (N)
Figure 24 – 115 VAC Harmonics, 10 LED Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
70
Class C limit
230 VAC Harmonics, 10 LED Load
Harmonic Content (mA)
60
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (N)
Figure 25 – 230 VAC Harmonics 10 LED Load.
Page 33 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.8
17-Nov-11
Test Data
9.8.1 Efficiency, Regulation, Power Factor, and THD - Non-Dimming
Input
VAC
(VRMS)
Input Measurement
Freq
(Hz)
VIN
(VRMS)
IIN
(mARMS)
PIN
(W)
PF
Load Measurement
%ATHD
VOUT
(VDC)
IOUT
(mADC)
POUT
(W)
Calculation
PCAL
(W)
Efficiency
(%)
Loss
(W)
Regulation
(%)
90
60
90.01
162.64
14.43
0.986
16.02
24.55
497
12.26
12.20
84.96
2.17
-0.60
100
60
99.98
146.84
14.41
0.982
18.56
24.51
499
12.31
12.23
85.42
2.10
-0.20
115
60
115.02
128.00
14.37
0.976
21.34
24.49
502
12.36
12.29
86.02
2.01
0.40
132
60
132.04
112.13
14.35
0.969
24.2
24.47
505
12.41
12.36
86.49
1.94
1.00
180
50
180.05
82.88
14.25
0.955
28.88
24.43
505
12.41
12.34
87.11
1.84
1.00
230
50
230.14
64.61
14.00
0.941
30.76
24.39
497
12.20
12.12
87.16
1.80
-0.60
240
50
240.10
61.83
13.93
0.939
30.85
24.37
495
12.13
12.06
87.07
1.80
-1.00
265
50
265.12
55.79
13.76
0.930
30.95
24.33
489
11.95
11.90
86.87
1.81
-2.20
Table 1 – 8 LED Load Measurement Data.
Input
VAC
(VRMS)
Input Measurement
Freq
(Hz)
VIN
(VRMS)
IIN
(mARMS)
PIN
(W)
PF
Load Measurement
%ATHD
VOUT
(VDC)
IOUT
(mADC)
POUT
(W)
Calculation
PCAL
(W)
Efficiency
(%)
Loss
(W)
Regulation
(%)
90
60
90.01
179.01
15.91
0.987
14.86
27.36
489
13.44
13.38
84.48
2.47
-2.20
100
60
99.98
161.04
15.83
0.983
17.61
27.35
490
13.47
13.40
85.12
2.36
-2.00
115
60
115.02
140.41
15.78
0.977
20.73
27.34
492
13.51
13.45
85.63
2.27
-1.60
132
60
132.04
122.87
15.74
0.970
23.71
27.34
494
13.56
13.51
86.14
2.18
-1.20
180
50
180.05
91.11
15.69
0.956
28.72
27.33
496
13.63
13.56
86.88
2.06
-0.80
230
50
230.15
71.09
15.45
0.944
30.58
27.30
489
13.42
13.35
86.88
2.03
-2.20
240
50
240.11
67.92
15.36
0.942
30.71
27.28
486
13.33
13.26
86.80
2.03
-2.80
265
50
265.13
61.14
15.14
0.934
30.96
27.25
479
13.12
13.05
86.65
2.02
-4.20
Table 2 – 9 LED Load Measurement Data.
Input
Input Measurement
VAC
(VRMS)
Freq
(Hz)
VIN
(VRMS)
IIN
(mARMS)
PIN
(W)
PF
Load Measurement
Calculation
%ATHD
VOUT
(VDC)
IOUT
(mADC)
POUT
(W)
PCAL
(W)
Efficiency
(%)
Loss
(W)
Regulation
(%)
-4.22
90
60
90.00
195.02
17.354
0.989
14.02
30.31
479
14.57
14.52
83.96
2.78
100
60
99.97
175.41
17.260
0.984
16.92
30.29
480
14.60
14.55
84.59
2.66
-3.96
115
60
115.01
152.62
17.161
0.978
20.42
30.28
482
14.63
14.58
85.25
2.53
-3.70
132
60
132.03
133.52
17.121
0.971
23.39
30.28
484
14.69
14.64
85.80
2.43
-3.28
180
50
180.04
99.53
17.166
0.958
28.36
30.28
489
14.87
14.81
86.62
2.30
-2.20
230
50
230.14
77.57
16.896
0.947
30.36
30.25
482
14.64
14.58
86.65
2.26
-3.58
240
50
240.10
74.05
16.787
0.944
30.55
30.23
479
14.54
14.48
86.61
2.25
-4.18
265
50
265.12
66.52
16.530
0.937
30.99
30.19
472
14.30
14.24
86.51
2.23
-5.66
Table 3 – 10 LED Load Measurement Data.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
9.8.2 115 VAC Dimming Test Data
VDIM
(VDC)
10
VIN
(VRMS)
115.02
Input Measurement
IIN
PIN
PF
(mARMS)
(W)
140.35
15.77 0.977
9.5
115.02
140.24
15.76
0.977
20.8
27.36
492.000
13.51
13.46
85.74
2.25
9
115.03
111.41
12.42
0.969
24.7
26.93
391.000
10.57
10.53
85.12
1.85
%ATHD
20.8
Load Measurement
VOUT
IOUT
POUT
(VDC)
(mADC)
(W)
27.38 492.000 13.52
PCAL
(W)
13.47
Calculation
Efficiency
(%)
85.74
Loss
(W)
2.25
8.5
115.04
86.62
9.60
0.964
26.6
26.50
304.000
8.07
8.06
84.05
1.53
8
115.04
67.20
7.42
0.959
27.5
26.07
232.200
6.06
6.05
81.73
1.36
7.5
115.05
36.64
4.09
0.971
17.2
25.22
118.500
2.99
2.99
73.05
1.10
7
115.05
27.70
3.07
0.964
14.7
24.80
80.600
2.00
2.00
65.10
1.07
6.5
115.05
23.20
2.55
0.956
13.1
24.50
59.600
1.46
1.46
57.23
1.09
6
115.05
19.85
2.16
0.944
12.8
24.18
41.500
1.00
1.00
46.57
1.15
5.5
115.06
18.13
1.95
0.934
12.8
23.95
30.900
0.74
0.74
38.04
1.21
5
115.05
16.70
1.78
0.924
12.9
23.68
20.820
0.49
0.49
27.77
1.28
4.5
115.06
15.86
1.67
0.917
12.9
23.44
14.110
0.33
0.33
19.78
1.34
4
115.06
15.11
1.58
0.909
13.2
23.11
7.410
0.17
0.17
10.82
1.41
3.5
115.06
14.49
1.50
0.902
13.4
22.56
2.152
0.05
0.05
3.23
1.46
3
115.06
13.94
1.44
0.895
13.6
21.34
0.179
0.00
0.00
0.26
1.43
2.5
115.06
13.36
1.36
0.886
14.0
19.26
0.018
0.00
0.00
0.02
1.36
2
115.06
13.28
1.35
0.885
13.9
18.33
0.007
0.00
0.00
0.01
1.35
1.5
115.06
13.30
1.35
0.886
13.8
17.43
0.005
0.00
0.00
0.01
1.35
1
115.06
13.29
1.35
0.886
13.8
16.65
0.003
0.00
0.00
0.00
1.35
0.5
115.06
13.30
1.36
0.886
13.7
16.39
0.003
0.00
0.00
0.00
1.36
0.1
115.06
13.29
1.35
0.886
13.7
16.38
0.003
0.00
0.00
0.00
1.35
Table 4 – 115 VAC, 60 Hz Dimming Measurements.
Page 35 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
9.8.3 230 VAC, 50 Hz Dimming Test Data
Input Measurement
IIN
PIN
PF
(mARMS)
(W)
71.13
15.46 0.944
Load Measurement
VOUT
IOUT
POUT
(VDC)
(mADC)
(W)
27.38 488.000 13.43
VIN
(VRMS)
230.14
9.5
230.14
71.09
15.45
0.944
30.6
27.36
488.000
13.42
13.35
86.86
2.03
9
230.14
59.15
12.77
0.938
31.0
27.01
405.000
10.99
10.94
86.05
1.78
%ATHD
30.6
PCAL
(W)
13.36
Calculation
Efficiency
(%)
86.87
VDIM
(VDC)
10
Loss
(W)
2.03
8.5
230.14
45.22
9.64
0.926
31.0
26.51
305.000
8.11
8.09
84.13
1.53
8
230.14
39.95
8.47
0.921
30.1
26.29
264.900
6.98
6.96
82.46
1.49
7.5
230.15
26.76
5.49
0.892
24.2
25.57
163.600
4.19
4.18
76.28
1.30
7
230.15
22.72
4.53
0.867
21.9
25.32
126.400
3.20
3.20
70.61
1.33
6.5
230.15
20.38
3.95
0.843
21.0
25.09
103.300
2.59
2.59
65.52
1.36
6
230.15
18.51
3.48
0.816
20.7
24.86
82.900
2.06
2.06
59.25
1.42
5.5
230.15
17.30
3.16
0.795
20.9
24.67
68.400
1.69
1.69
53.41
1.47
5
230.15
16.45
2.94
0.777
21.3
24.52
57.100
1.40
1.40
47.64
1.54
4.5
230.14
15.79
2.77
0.762
21.7
24.36
47.700
1.16
1.16
41.96
1.61
4
230.13
15.24
2.62
0.748
22.1
24.19
38.900
0.94
0.94
35.87
1.68
3.5
230.13
14.83
2.52
0.737
22.6
24.05
32.100
0.77
0.77
30.67
1.75
3
230.13
14.41
2.41
0.726
23.2
23.84
24.470
0.58
0.58
24.26
1.82
2.5
230.13
14.07
2.32
0.717
23.8
23.63
17.920
0.42
0.42
18.28
1.90
2
230.14
13.78
2.25
0.708
24.3
23.39
11.970
0.28
0.28
12.47
1.97
1.5
230.14
13.56
2.19
0.701
24.8
23.10
6.900
0.16
0.16
7.32
2.03
1
230.14
13.41
2.15
0.696
25.1
22.75
3.210
0.07
0.07
3.40
2.08
0.5
230.14
13.38
2.14
0.695
25.2
22.31
1.112
0.02
0.02
1.16
2.12
0
230.14
13.34
2.13
0.694
25.2
21.60
0.256
0.01
0.01
0.26
2.12
Table 5 – 230 VAC, 50 Hz Dimming Measurements.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 36 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
10 Waveforms
10.1 Input Line Current
Figure 26 – 90 VAC 60 Hz, Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 27 – 115 VAC 60 Hz, Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 28 – 230 VAC 50 Hz, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 29 – 265 VAC 50 Hz, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Page 37 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
10.2 Drain Voltage and Current Normal Operation
Figure 30 – 90 VAC 60 Hz, Full Load.
Upper: IDRAIN, 200 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 31 – 90 VAC 60 Hz, Full Load.
Upper: IDRAIN, 200 mA / div.
Lower: VDRAIN, 100 V, 5 µs / div.
Figure 32 – 265 VAC 50 Hz, Full Load.
Upper: IDRAIN, 200 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 33 – 265 VAC 50 Hz, Full Load.
Upper: IDRAIN, 200 mA / div.
Lower: VDRAIN, 100 V, 5 µs / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
10.3 Drain Voltage and Current Start-up Operation
Figure 34 – 265 VAC 50 Hz, Full Load Start-Up.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Page 39 of 48
Figure 35 – 265 VAC 50 Hz, Full Load Start-Up.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 0.5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
10.4 Output Current and Output Voltage
Figure 36 – 90 VAC 60 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Figure 37 – 115 VAC 60 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Figure 38 – 230 VAC 50 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Figure 39 – 265 VAC 50 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 40 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
10.5 Output Current and Voltage at Power-up, Power-down
Figure 40 – 90 VAC 60 Hz, Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 500 ms / div.
Figure 41 – 90 VAC 60 Hz, Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 500 ms / div.
Figure 42 – 265 VAC 50 Hz, Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 500 ms / div.
Figure 43 – 265 VAC 50 Hz, Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 500 ms / div.
Page 41 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
10.6 Output Short
Figure 44 – 265 VAC 60 Hz, Output Short.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 500 ms / div.
Figure 45 – 265 VAC 60 Hz, Output Short.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 20 ms / div.
10.7 Open Load/LED Condition
Figure 46 – 265 VAC 60 Hz, Open Load.
CH1: VDRAIN, 100 V / div.
CH4: VOUT, 10 V, 1 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 47 – 265 VAC 60 Hz, Open Load Start-Up.
CH1: VDRAIN, 100 V / div.
CH4: VOUT, 10 V, 1 s / div.
Page 42 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
11 Thermals
The following measurements were taken at room temperature and using 9 LED Load,
approximately 14 W output power.
11.1 115 VAC Thermal Measurements
Figure 48 – 115 VAC, 60 Hz Top-Side Thermal Image.
Figure 49 – 115 VAC, 60 Hz Bottom-Side Thermal Image.
Page 43 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
11.2 230 VAC Thermal Measurements
Figure 50 – 230 VAC, 50 Hz Top-Side Thermal Image.
Figure 51 – 230 VAC, 50 Hz Bottom-Side Thermal Image.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 44 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
12 Conducted EMI
12.1 Conducted EMI Test Setup
The unit was tested using 9 strings of LED load (~27 V VOUT) with input voltage of 115
VAC and 230 VAC, 60 Hz line frequency, and at room temperature.
12.2 115 VAC, 60 Hz Conducted EMI Measurements
Power Integrations
05.Jul 11 18:14
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
120
EN55015Q
110
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 52 – Conducted EMI, 9 LED Load, 115 VAC, 60 Hz, EN55015B Limits.
Page 45 of 48
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
12.3 230 VAC, 60 Hz Conducted EMI Measurements
Power Integrations
05.Jul 11 17:37
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
120
EN55015Q
110
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 53 – Conducted EMI, 9 LED Load, 230 VAC, 60 Hz, EN55015B Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 46 of 48
17-Nov-11
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
13 Revision History
Date
09-Sep-11
17-Nov-11
Page 47 of 48
Author
CA
KM
Revision
1.0
1.1
Description and Changes
Initial Release
Updated Harmonics text on
page 6 and 28
Reviewed
Apps & Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-263 14 W PWM-Analog Dimmable LED Driver Using LNK406EG
17-Nov-11
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power
Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 48 of 48
设计范例报告
使用LinkSwitchTM-PH LNK406EG设计的高效率
标题
(≥85%)、高功率因数(>0.9) 15 W T8隔离式LED
驱动器
规格
90 VAC – 265 VAC输入;50 V,0.3 A输出
应用
T8灯LED驱动器
作者
应用工程部
文档编号
DER-256
日期
2010年10月7日
修订版本
1.2
特色概述
•
•
•
•
•
超薄设计,元件高度<10 mm
o 允许将驱动板置于LED后面,使T8替换灯泡发光均匀
卓越的性能及最终用户体验
o 单晶片启动—无输出闪烁
o 快速启动(<200 ms) —无可觉察的延迟
极高能效
o ≥86%,115 VAC;≥87%,230 VAC
元件数量少、印刷电路板占用面积小的低成本解决方案
o 无需电流检测
o 采用频率抖动技术,可降低EMI滤波元件的数量及尺寸
集成的保护及可靠性能
o 使用自动重启动实现输出开路/输出短路保护
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
•
2010年10月7日
o 输入过压关断可扩展输入故障时的电压耐受范围
o 更大迟滞的自动恢复热关断可同时保护元件和印刷电路板
o 在电压缓慢升高和降落期间不会造成损坏
满足IEC 61000-3-2 C级谐波和EN55015 B传导EMI要求
专利信息
此处介绍的产品和应用(包括产品之外的变压器结构和电路)可能包含一项或多项美国及国外专利,或正在申请的美国或国外专利。
有关Power Integrations专利的完整列表,请参见www.powerint.com。Power Integrations按照在<http://www.powerint.com/ip.htm>中所
述规定,向客户授予特定专利权利的许可。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第2页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
目录
1
2
3
4
简介...............................................................................................................................4
电源规格........................................................................................................................6
电路原理图....................................................................................................................7
电路描述........................................................................................................................9
4.1
输入 EMI 滤波和保护 .............................................................................................9
4.2
LinkSwitch-PH 初级 ...............................................................................................9
4.2.1
偏置绕组和输出 OVP 检测 .......................................................................... 10
4.3
输出电压检测 ...................................................................................................... 10
4.4
输出整流 ............................................................................................................. 10
5 PCB 布局.................................................................................................................... 11
6 物料清单..................................................................................................................... 13
7 变压器规格................................................................................................................. 15
7.1
电气原理图.......................................................................................................... 15
7.2
电气规格 ............................................................................................................. 15
7.3
材料..................................................................................................................... 15
7.4
变压器结构图 ...................................................................................................... 16
7.5
变压器构造.......................................................................................................... 16
8 变压器设计表格.......................................................................................................... 17
9 性能数据..................................................................................................................... 21
9.1
效率与输入.......................................................................................................... 21
9.2
恒流与输入.......................................................................................................... 23
9.3
功率因数与输入,满载 ....................................................................................... 24
10
热性能..................................................................................................................... 26
11
谐波数据................................................................................................................. 28
12
波形 ........................................................................................................................ 30
12.1 输入线电压和电流............................................................................................... 30
12.2 漏极电压和电流 .................................................................................................. 30
12.3 输出电压和纹波电流 ........................................................................................... 31
12.4 漏极电压和电流启动特征.................................................................................... 31
12.5 输出短路时的输出电流和漏极电压 ..................................................................... 32
12.6 开路负载输出电压............................................................................................... 32
13
传导 EMI................................................................................................................. 33
14
辐射 EMI................................................................................................................. 35
15
版本历史................................................................................................................. 37
重要说明:虽然本电路板的设计满足安全隔离要求,但工程原型仍未获得机构认证。因此,必须使用隔离变
压器向原型板提供AC输入,以执行所有测试。
第3页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
1 简介
本文档介绍的是一款功率因数校正LED驱动器,它可以在90 VAC至265 VAC的输入电压范
围内为LED灯串提供额定电压50 V、额定电流0.3 A的驱动。该LED驱动器采用了Power
Integrations的LinkSwitch-PH系列IC中的LNK406EG器件。
LinkSwitch-PH IC可以帮助您设计出具有成本效益且元件数量极少的LED驱动器,不仅能满
足功率因素和谐波限值,同时还能为最终用户带来不同凡响的使用体验。其特性包括超宽
调光范围(本样板未采用)、无闪烁工作(即使使用的是低成本的AC输入可控硅调光器)
以及快速、平滑的开启上电过程。
所使用的拓扑结构是运行于连续导通模式下的隔离反激。输出电流调节完全从初级侧检测,
因此无需配备次级反馈元件。在初级侧也无需检测外部电流,而是在IC内部进行,从而进
一步减少了元件和损耗。内部控制器调整MOSFET占空比以保持输入电流为正弦交流电,
从而确保高功率因数和低谐波电流。
LNK406EG也可提供各种复杂的保护功能,包括环路开环或输出短路条件下自动重新启
动。输入过压可帮助电源改善对输入电压故障和浪涌的耐受能力,输出过压可避免在负载
断开时可能对电源造成的损坏,精确的迟滞热关断可确保在所有条件下PCB板平均温度都
处于安全范围内。
此设计的主要目标是超薄和高效率。这样有助于使驱动器板适应T8灯管内LED负载板后的
空间,并将工作时的温升保持在可接受的范围以内。为此,必须认真选择元件和安装方
法,但这相比于方案的更换更加简单,因为初级侧调节的LinkSwitch-PH设计所需的元件数
量很少。
本文档包含LED驱动器规格、电路原理图、PCB电路图、物料清单、变压器文件和典型性
能特征。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第4页(共38页)
第5页(共38页)
图3—元件高度(10 mm)。
图2—装配后的电路板图片(底视图),电路板尺寸为260.44 mm x 19.53 mm。
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
图1—装配后的电路板图片(顶视图)。
2010年10月7日
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
2 电源规格
下表给出的是设计的最低可接受指标。实际性能在后续的测试结果部分给出。
说明
符号
最小值
典型值
最大值
单位
建议
输入
电压
频率
VIN
fLINE
90
47
115/230
50/60
265
64
VAC
Hz
双导线—无P.E.
输出
输出电压
输出电流
VOUT
IOUT
45
50
0.3
55
V
A
总输出功率
连续输出功率
POUT
15
W
效率
η
满载
85
%
在115 / 230 VAC条件下测得
环境
传导EMI
符合CISPR 15B / EN55015B
辐射EMI
FCC B级 / EN55015
安全
其设计符合IEC950 / UL1950 II类要求
谐波
EN 61000-3-2 C级和D级
电路板尺寸
环境温度
在VOUT(TYP)、IOUT(TYP)和
115 VAC / 230 VAC条件下测得
0.9
功率因数
260.44 x 19.53 x 13 (10)
TAMB
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
40
mm
o
C
设计适应T8灯管中LED负载板后的
空间。包括PCB和负载突出部位的
总高度为13 mm,PCB的元件最大
高度为10 mm
自然对流,海平面
第6页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
3 电路原理图
第7页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
图4—电路原理图。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第8页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
4 电路描述
LinkSwitch-PH器件由集成控制器以及725 V功率MOSFET构成,用于LED驱动器应用。
LinkSwitch-PH配置为应用于单级连续导通模式反激式拓扑结构,提供初级侧调节的恒流隔
离输出,同时使AC输入保持高功率因数。
4.1
输入EMI滤波和保护
保险丝F1可以在元件发生严重故障时提供保护,而RV1 (MOV)可提供箝位以限制元件在差
模浪涌期间的最大电压应力。MOV的使用在此设计中非常关键,因为输入电容的容值很
低。由于电容值很低,在设定的差模浪涌发生时会使得整流总线电压(C2两端)显著升
高。所选器件的额定电压为275 VAC,略高于最大指定工作电压265 VAC。二极管桥堆
BR1对AC线电压进行整流,电容C2为初级开关电流提供低阻抗通路(去耦)。为使功率因
数保持在0.9以上,需要确保较低的电容(C1、C2和C3总和)值。
EMI滤波功能由电感L1、L2、L3和L4以及C1和有Y1安全要求的C8提供。L2、L3和L4两端
的电阻R1、R2和R3可抑制输入电感、电容和AC输入阻抗之间在传导EMI升高时可能出现
的任何共振。
4.2
LinkSwitch-PH初级
二极管D1和C3检测峰值AC线电压。此电压通过R5、R6和R7转换为电流并注入V引脚。
器件也会利用此电流来设置输入过压/欠压保护阈值。V引脚电流和FB引脚电流在内部用来
控制平均输出LED电流。LinkSwitch的非调光模式通过R引脚上的24.9 kΩ电阻进行选择。
在非调光配置下,LinkSwitch-PH在整个输入电压范围内对电源进行优化,保证在整个输入
电压范围内保持恒定的输出电流。电阻R8还用于设置内部参考,以选择输入电压渐升和渐
降过程以及输入过压保护的工作阈值。电阻R7进一步提供线电压补偿,在此设计中线电压
调节率达到±3%。
反激式变压器一端连接到DC总线,另一端由U1中的集成的725 V功率MOSFET驱动。在功
率MOSFET打开期间,初级电流升高,将能量存储在变压器中。这些能量在功率MOSFET
关闭时传递到次级绕组。为减小高度,使用EER25磁芯;同时使用带有飞线的三层绝缘次
级绕组以满足安全间距要求。
由于功率MOSFET关闭时漏极会出现漏感电压尖峰,二极管D2、R17、C12和R18将漏极
电压加以箝位,保证漏极电压在安全范围以内。当初级绕组两端的电压(VOR 或反激电
压)超过C2两端的电压和瞬态AC正弦波时,需要借助D3防止LinkSwitch-PH器件上产生反
向电流。
第9页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
4.2.1 偏置绕组和输出OVP检测
二极管D5、C5、R13和R11利用变压器的反馈绕组产生直流电压。此电压通过D4和R9向
U1的旁路引脚供应工作电流。电容C4对旁路引脚进行局部去耦。在启动期间,内部连接至
漏极引脚的高压恒流源对此电容充电至约6 V。在充电后,存储的能量用于为U1供电,直到
输出达到稳定状态。
二极管D6、R16、C7、R14、VR2、C6、R12和Q1提供负载开路保护功能。如果断开输
出负载,输出电压将会升高,导致偏置电压上升,C7上的电压也随之升高。使用单独的二
极管和低值电容(D6和C7)对偏置绕组进行整流是为了缩短触发OV之前的延时,从而限
制最大输出电压。一旦C7上的电压超过VR2设置的阈值(约为33 V),Q1将会偏置,使
进入FB引脚的电流降到自动重新启动阈值以下。一旦进入自动重新启动模式,开关将交替
停止和开启,确保输出电压在重新连接负载之前一直处在可接受的限制内。这样可以避免
在生产测试时负载断开的情况下可能出现的过高电压对电容C9和C10造成的损坏。
4.3
输出电压检测
与输出电压成比例的电流通过R10从初级偏置供电注入至反馈引脚。此电流与V引脚电流一
起用于确保平均输出电流在输入和输出电压发生变化时保持恒定。
4.4
输出整流
二极管D7对次级绕组进行整流,电容C9和C10对输出进行滤波。用作假负载的 R15,可限
制空载情况下的输出电压。电感L5用于降低辐射EMI。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第10页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
5 PCB布局
PCB设计确保驱动器板可直接安装于LED负载PCB后,且适合T8灯管内部的结构。这样的
要求需要进行一些特殊考量。
•
•
•
1 mm的PCB厚度
o 此选择增加元件的可用高度。
SMD元件方向
o 由于板形细长,因此在处理时灵活性非常高。为了防止元件被机械应力损坏,
所有SMD元件在板上的方向均为元件长边与板长边成90度角。
SMD元件仅布置在PCB顶面
o PCB底面未放置任何SMD元件,这样可降低板整体高度—LinkSwitch-PH解
决方案的元件数量少,很容易达到此要求。
第11页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
图5—印刷电路板布局(顶部)。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
2010年10月7日
图6—印刷电路板布局(底部)。
第12页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
6 物料清单
项
数量
参考描述
1
1
BR1
2
1
3
说明
值
600 V,1 A,桥式整流器,玻璃钝化
DB106S
C1
47 nF,275 VAC,薄膜,X2
47 nF
1
C2
100 nF,400 V,薄膜
100 nF
4
1
C3
1 µF,400 V,电解,(6.3 x 11)
1 µF
5
1
C4
100 µF,25 V,电解,低ESR,130 mΩ,(6.3 x 11)
100 µF
6
1
C5
22 µF,50 V,电解,低ESR,900 mΩ,(5 x 11.5)
22 µF
7
2
C6 C11
100 nF,50 V,陶瓷,X7R,0805
100 nF
8
1
C7
1.0 µF,50 V,陶瓷,X7R,1206
1.0 µF
9
1
C8
2.2 nF,陶瓷,Y1
2.2 nF
10
2
C9 C10
100 µF,63,电解,低ESR,255 mΩ,(10 x 12.5)
100 µF
11
1
C12
1 nF,1 kV,圆盘状陶瓷
1 nF
12
2
D1 D6
1000 V,1 A,整流器,DO-41
1N4007
13
2
D2 D5
1000 V,1 A,快速恢复,500 ns,DO-41
FR107
14
1
D3
200 V,1 A,超快速恢复,50 ns,DO-41
MUR120
15
1
D4
75 V,0.15 A,快速开关,DO-35
LL4148
16
1
D7
600 V,1 A,超快速恢复,75 ns,DO-41
MUR160
17
1
F1
3.15 A,250 V,慢
3.15 A
18
1
L1
4 mH,0.2 A,T13,U10000,35匝
4 mH
19
3
L2 L3 L4
1000 µH,0.18 A,8 x 10 mm
1000 µH
20
1
L5
300 µH,1 A,T8,U10000,10匝
300 µH
21
1
Q1
NPN,60 V 1000 MA,SOT-23
FMMT491
22
3
R1 R2 R3
4.7 kΩ,5%,1/4 W,碳膜
4.7 kΩ
23
1
R4
240 kΩ,5%,1/4 W,金属膜,1206
240 kΩ
24
1
R5
1.8 MΩ,1%,1/4 W,金属膜,1206
1.8 MΩ
25
1
R6
1.6 MΩ,1%,1/4 W,金属膜,1206
1.6 MΩ
26
1
R7
1.8 MΩ,1%,1/8 W,金属膜,0805
1.8 MΩ
27
1
R8
24.9 kΩ,1%,1/4 W,金属膜
24.9 kΩ
28
1
R9
6.2 kΩ,5%,1/8 W,金属膜,0805
6.2 kΩ
29
1
R10
130 kΩ,1%,1/8 W,金属膜,0805
130 kΩ
30
1
R11
20 kΩ,5%,1/8 W,金属膜,0805
20 kΩ
31
1
R12
1 kΩ,5%,1/8 W,金属膜,0805
1 kΩ
32
1
R13
150 Ω,5%,1/8 W,碳膜
150 Ω
33
1
R14
10 kΩ,5%,1/8 W,金属膜,0805
10 kΩ
34
1
R15
56 kΩ,5%,1/4 W,金属膜,1206
56 kΩ
35
1
R16
100 Ω,5%,1/8 W,金属膜,0805
100 Ω
36
1
R17
100 Ω,5%,1/4 W,金属膜,1206
100 Ω
第13页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
37
1
R18
82 kΩ,5%,1/2 W,碳膜
82 kΩ
38
1
RV1
275 V,80J,10 mm,径向
10D431
39
1
T1
EER25,特有的超薄外形,5 + 5
EER2510
40
1
U1
LinkSwitch-PH,LNK406EG,eSIP
LNK406EG
41
1
VR2
33 V,5%,500 mW,DO-213AA (MELF)
ZMM5257B
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第14页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
7 变压器规格
7.1
电气原理图
图7—变压器电气原理图。
7.2
电气规格
绝缘强度
1秒,60 Hz,从引脚3、4、5、6、7到R+和GND
初级电感量
引脚4-5,所有其他绕组开路,在100 kHz条件下测得,0.4 VRMS
0.8 mH ±10%
初级漏感
引脚4-5,R+和GND短路,在100 kHz条件下测得,0.4 VRMS
20 µH ±10%
7.3
3000 VAC
材料
项
[1]
[2]
[3]
[4]
[5]
说明
磁芯:PC40 EER25或同等材料。
骨架:10引脚,垂直。
漆包线:#30 AWG。
漆包线:#29 AWG T.I.W。
胶带:3M 1298聚酯薄膜,4 mm宽。
第15页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
7.4
2010年10月7日
变压器结构图
引脚侧
3L Tape
W4 - Finish (P4)
W4 - Finish (P3)
3L Tape
W3 - Start (R+)
W3 - Finish (GND)
Core Connect to GND
1L Tape
W2 - Finish (P7)
W2 - Start (P6)
1L Tape
W1 - End (P3)
W1 - Start (P5)
图8—变压器结构图。
7.5
变压器构造
骨架准备
将骨架项[2]放在心轴上,例如左侧的引脚侧。绕组方向为顺时针方向。
WD 1
从引脚5开始,从左到右分两层缠绕27匝#30 AWG项[3]。在引脚3结束。
绝缘层
缠一层胶带[5]作为绝缘层。
WD 2
从引脚6开始,从左到右缠绕15匝#30 AWG [3]导线。在引脚7结束。留出足够长度的浮动导线
以连接磁芯。
绝缘层
缠一层胶带[5]作为绝缘层。
WD 3
从导线项[4]的R+(飞线)开始,分三层缠绕30匝。在GND(飞线)结束。
绝缘层
缠一层胶带[5]作为绝缘层。
WD 4
从引脚3开始,从左到右分两层缠绕26匝#30 AWG [3]导线。在引脚4结束。
绝缘层
缠三层胶带[5]作为绝缘层。
总装
除去WD2的浮动导线上的绝缘层,连接到磁芯,使用胶带扎好并浸漆。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第16页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
8 变压器设计表格
ACDC_LinkSwitchPH_061010;修订版1.1;
版权所有 Power
Integrations 2010
输入
信息
输出
单位
LinkSwitch-PH_061010:反激式变压器设计表格
输入应用变量
需要调光
无
无
VACMIN
VACMAX
fL
VO
VO_MAX
VO_MIN
V_OVP
IO
PO
n
VB
90
265
90
265
50
50.00
55.00
45.00
60.50
如果需要调光则选择“是”。否则,选择“否”。
V
V
Hz
V
V
V
V
0.30
15.0
0.8
20
0.80
20
W
V
最小AC输入电压
最大AC输入电压
AC电网频率
LED灯串满载时的典型输出电压
最大预期LED灯串电压。
最小预期LED灯串电压。
过压保护设定点
典型满载LED电流
输出功率
估计工作效率
偏置电压
输入LinkSwitch-PH变量
LinkSwitch-PH
所选器件
电流限流模式
ILIMITMIN
ILIMITMAX
fS
fSmin
fSmax
IV
RV
RV2
IFB
RFB1
VDS
LNK406
LNK406
完全
输出功率
宽电压范围
22.5 W
完全
1.48
1.69
66000
62000
70000
38.7
3.909
1.402
130.0
130.8
10
130.00
A
A
Hz
Hz
Hz
uA
M-ohm
M-ohm
uA
k-ohm
V
VD
0.50
V
VDB
0.70
V
115倍压/230 V
22.5 W
选择“有限”设置为有限电流限制模式,或选择
“完全”设置为完全电流限制模式。
最小电流限制
最大电流限制
开关频率
最小开关频率
最大开关频率
V引脚电流
V引脚电阻上限
V引脚电阻下限
FB引脚电流(85 uA < IFB < 210 uA)
FB引脚电阻
LinkSwitch-PH导通状态漏极—电源电压
输出绕组二极管正向电压降(对肖特基二极管取值
0.5 V,对PN结二极管取值0.8 V)
偏置绕组二极管正向电压降
关键设计参数
KP
1.05
1.05
LP
VOR
预期IO(平均)
90.00
809
90
0.29
KP_VACMAX
信息
TON_MIN
PCLAMP
uH
V
A
1.28
1.62
0.11
us
W
纹波电流与峰值电流的比例(PF > 0.9时,
0.4 < KP < 0.9)
初级电感量
反射输出电压。
预期平均输出电流
!!! 信息。较高线电压的PF可能会低于0.9。降低KP
以获得更高的PF
最高AC输入电压时的最大导通时间
初级箝位的估计损耗
输入变压器磁芯/结构变量
磁芯类型
骨架
AE
LE
第17页(共38页)
EER251
0
EER2510
不适用
0.5400
3.6000
0.54
3.6
P/N:
cm^2
cm
不适用
磁芯等效截面积
磁芯等效路径长度
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
AL
BW
M
L
NS
4.2
4.00
30
2010年10月7日
不适用
4.2
0
4
30
nH/T^2
mm
mm
127
375
V
V
对应于VACMIN的峰值输入电压
对应于VACMAX的峰值输入电压
0.42
0.18
1.04
0.31
A
A
A
对应于VACMIN峰值的最小占空比
平均初级电流
峰值初级电流(在最小输入电压VACMIN下计算)
初级RMS电流(在最小输入电压VACMIN下计算)
无气隙磁芯等效电感量
骨架绕线宽度
安全挡墙宽度(初级至次级爬电距离的一半)
初级绕组层数
次级绕组匝数
DC输入电压参数
VMIN
VMAX
电流波形参数
DMAX
IAVG
IP
IRMS
变压器初级绕组设计参数
LP
NP
NB
ALG
BM
BP
BAC
ur
LG
BWE
OD
INS
DIA
不适用
809
53
12
283
2917
3530
1459
不适用
不适用
16.8
0.31
0.05
0.26
uH
nH/T^2
高斯
高斯
高斯
mm
mm
mm
mm
mm
AWG
30
AWG
CM
CMA
LP_TOL
102
325
10
Cmil
Cmil/Amp
1.86
0.60
0.52
120
29
0.29
0.14
A
A
A
Cmil
AWG
mm
mm
VDRAIN
563
V
PIVS
271
V
PIVB
110
V
3.91
1.40
115.0
230.0
0.30
M-ohm
M-ohm
V
V
A
初级电感量
初级绕组匝数
偏置绕组匝数
带气隙磁芯等效电感量
PO的最大磁通密度,VMIN (BM < 3100)
峰值磁通密度(BP < 3700)
磁芯损耗曲线中的AC磁通密度(0.5 X 峰值-峰值)
无气隙磁芯的相对磁导率
不适用
等效骨架宽度
初级绕组最大线径(包括绝缘层)
估计的总绝缘层厚度(= 2 * 膜厚度)
裸线直径
初级绕组的导线规格(如果计算出的线径在两种标
准线径之间,则使用较小线规的导线)
以Cmil为单位的裸线等效面积
初级绕组电流容量(200 < CMA < 600)
初级电感量容差
变压器次级绕组设计参数(多路输出)
汇总参数
ISP
ISRMS
IRIPPLE
CMS
AWGS
DIAS
ODS
峰值次级电流
次级RMS电流
输出电容RMS纹波电流
次级绕组裸线最小Cmil数
次级导线规格(舍入到下一个较大的标准AWG值)
次级绕组裸线最小直径
三层绝缘线的次级绕组最大外径
电压应力参数
假定LED灯串电压达到最大时的估计最大漏极电压
(包括漏感效应)
输出整流器最大反向峰值电压(在VOVP下计算,
不包括漏感尖峰)
偏置整流器最大反向峰值电压(在VOVP下计算,
不包括漏感尖峰)
微调(输入从原型测得的值)
V引脚电阻微调
RV1
RV2
VAC1
VAC2
IO_VAC1
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
V引脚电阻值上限
V引脚电阻值下限
测试输入电压条件1
测试输入电压条件2
在VAC1时测得的输出电流
第18页(共38页)
2010年10月7日
IO_VAC2
RV1(新)
RV2(新)
V_OV
V_UV
第19页(共38页)
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
0.30
3.91
1.40
318.3
70.8
A
M-ohm
M-ohm
V
V
在VAC2时测得的输出电流
新RV1
新RV2
触发OV关断的典型AC输入电压
超过此值即可使电源启动的典型AC输入电压
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
FB引脚电阻微调
RFB1
RFB2
VB1
VB2
IO1
IO2
RFB1(新)
RFB2(新)
131
1E+012
18.0
22.0
0.30
0.30
130.8
1.00E+12
k-ohm
k-ohm
V
V
A
A
k-ohm
k-ohm
FB引脚电阻值上限
FB引脚电阻值下限
测试偏置电压条件1
测试偏置电压条件2
在Vb1时测得的输出电流
在Vb2时测得的输出电流
新RFB1
新RFB2
注:以下实际值分别为:RV1 = 3.4 MΩ,RV2 = 1.8 MΩ。在230 VAC条件下测得的PF为0.9。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第20页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
9 性能数据
所有测量均在室温下进行。使用Yokogawa WT210功率表测量输入功率和输出功率。
9.1
效率与输入
VIN
(VAC)
PIN
(W)
VO
(V)
IO
(A)
PO
(W)
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
265
16.63
16.97
17.30
17.57
17.72
17.78
17.81
17.78
17.68
17.55
17.39
17.23
17.04
16.83
16.62
16.39
16.12
15.71
49.53
49.54
49.77
49.87
49.93
49.96
49.97
49.96
49.92
49.87
49.8
49.74
49.68
49.6
49.52
49.53
49.33
49.17
0.286
0.293
0.300
0.305
0.308
0.310
0.311
0.311
0.310
0.308
0.306
0.304
0.301
0.298
0.294
0.290
0.286
0.279
14.17
14.52
14.93
15.21
15.38
15.49
15.54
15.54
15.48
15.36
15.24
15.12
14.95
14.78
14.56
14.36
14.11
13.72
第21页(共38页)
效率
(%)
85.18
85.53
86.31
86.57
86.79
87.11
87.26
87.39
87.53
87.52
87.63
87.76
87.76
87.82
87.60
87.64
87.52
87.32
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
88.0
Efficiency (%)
87.5
87.0
86.5
86.0
85.5
85.0
85
100
115
130
145
160
175
190
205
220
235
250
265
280
Input Voltage (VAC)
图9—效率随输入电压的变化,室温。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第22页(共38页)
2010年10月7日
9.2
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
恒流与输入
0.33
Output Current (A)
0.32
0.31
0.30
0.29
0.28
0.27
0.26
85
100
115
130
145
160
175
190
205
220
235
250
265
Input Voltage (VAC)
图10—输出电流随输入电压的变化,室温。
第23页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
280
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
9.3
2010年10月7日
功率因数与输入,满载
VIN
(VAC)
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
265
PIN
(W)
16.63
16.97
17.30
17.57
17.72
17.78
17.81
17.78
17.68
17.55
17.39
17.23
17.04
16.83
16.62
16.39
16.12
15.71
VO
(V)
49.53
49.54
49.77
49.87
49.93
49.96
49.97
49.96
49.92
49.87
49.8
49.74
49.68
49.6
49.52
49.53
49.33
49.17
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
IO
(A)
0.286
0.293
0.300
0.305
0.308
0.310
0.311
0.311
0.310
0.308
0.306
0.304
0.301
0.298
0.294
0.290
0.286
0.279
PO
(W)
14.17
14.52
14.93
15.21
15.38
15.49
15.54
15.54
15.48
15.36
15.24
15.12
14.95
14.78
14.56
14.36
14.11
13.72
PF
0.9796
0.9745
0.9715
0.9687
0.966
0.9638
0.9615
0.9592
0.9571
0.955
0.9528
0.9505
0.9484
0.9459
0.9431
0.9401
0.9362
0.9279
第24页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
0.99
0.98
Power Factor
0.97
0.96
0.95
0.94
0.93
0.92
85
100
115
130
145
160
175
190
205
220
235
250
265
Input Voltage (VAC)
图11—功率因数随输入电压的变化,室温,满载。
第25页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
280
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
10 热性能
在室温(25 °C)下运行30分钟后采集的图像,满载(50 V, 0.3 A)。这表示LinkSwitch-PH (U1)
在40 °C的外部板环境下工作温度为大约80 °C。U1是板上温度最高的元件,因此它可通过内
部热关断为整个系统提供热保护。由于底侧没有任何元件,因此下面的所有数据都是顶侧
的数据。
图12—115 VAC EMI和整流器。
图13—230 VAC EMI和整流器。
图14—115 VAC主开关和变压器。
图15—230 VAC主开关和变压器。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第26页(共38页)
2010年10月7日
图16—115 VAC输出整流器。
第27页(共38页)
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
图17—230 VAC输出整流器。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
11 谐波数据
此设计通过了IEC61000-3-2 C级要求。
70
Class C Limit
DER-256 Harmonic Data at 115 VAC
60
Current (mA)
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic
图18—115 VAC谐波,室温,满载。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第28页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
70
Class C Limit
DER-256 Harmonic Data at 230 VAC
60
Current (mA)
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic
图19—230 VAC谐波,室温,满载。
第29页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
12 波形
12.1 输入线电压和电流
图20—90 VAC,满载。
上:IIN,0.2 A/格
下:VIN,100 V,8 ms/格
图21—265 VAC,满载。
上:IIN,0.1 A/格
下:VIN,500 V/格,8 ms/格
12.2 漏极电压和电流
图22—90 VAC,满载。
上:IDRAIN,0.5 A/格
下:VDRAIN,100 V,5 µs/格
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
图23—265 VAC,满载。
上:IDRAIN,0.5 A/格
下:VDRAIN,200 V/格,5 µs/格
第30页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
12.3 输出电压和纹波电流
图24—90 VAC,满载。
上:IRIPPLE,0.1 A/格
下:VOUTPUT 10 V,5 ms/格
图25—265 VAC,满载。
上:IRIPPLE,0.1 A/格
下:VOUTPUT 10 V,5 ms/格
12.4 漏极电压和电流启动特征
`
图26—90 VAC,满载。
上:IDRAIN,0.5 A/格
下:VOUTPUT,20 V,40 ms/格
第31页(共38页)
图27—265 VAC,满载。
上:IRIPPLE,0.5 A/格
下:VOUTPUT,20 V,40 ms/格
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
12.5 输出短路时的输出电流和漏极电压
图28—90 VAC,满载。
上:IOUTPUT,1 A/格
下:VDRAIN,100 V,200 ms/格
图29—265 VAC,满载。
上:IOUTPUT,2 A/格
下:VDRAIN,200 V,200 ms/格
12.6 开路负载输出电压
图30—输出电压:115 VAC。
VOUT,20 V/格,500 ms/格。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
图31—输出电压:230 VAC。
VOUT,20 V/格,500 ms/格
第32页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
13 传导EMI
进行测量时,电源满载工作,且板放置在10 mm外,并与AC接地线上连接的金属板成
90度角。
dBµV
120
EN55015Q
110
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
1 PK
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
图32—传导EMI,最大稳态负载,115 VAC,60 Hz
第33页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
dBµV
100 kHz
120
EN55015Q
110
LIMIT CHECK
1 MHz
PASS
2010年10月7日
10 MHz
SGL
1 PK
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
图33—传导EMI,最大稳态负载,230 VAC,50 Hz。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第34页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
14 辐射EMI
注:关于余量的大小请参见表格中的数据—蓝线表示峰值测量的数值,但限制线为准峰
值。RFI测试数据适用于整个系统,测量时样板安装于铝壳的T8 LED灯管内,且输出达到
最大稳态负载。
第35页(共38页)
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
图34—115 V / 60 Hz,水平。
图35—115 V / 60 Hz,垂直。
图36—230 V / 50 Hz,水平。
图37—230 V / 50 Hz,垂直。
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
第36页(共38页)
2010年10月7日
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
15 版本历史
日期
2010年10月7日
第37页(共38页)
作者
KM
修订版本
1.2
说明和变更
修订者
初始版本
Apps & Mktg
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
DER-256:使用LNK406EG设计的15 W T8 LED驱动器
2010年10月7日
有关最新产品信息,请访问:www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse,
StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their
respective companies. © 2010, Power Integrations, Inc.
Power Integrations全球销售支持网络
全球总部
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
中国(上海)
Room 1601 /1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail:
[email protected]
中国(深圳)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Bldg., 2070
Shennan Zhong Rd,
Shenzhen, Guangdong,
China, 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
德国
Rüeckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3910
Fax: +49-89-5527-3920
e-mail:
[email protected]
印度
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 I nd ia
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
意大利
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
Power Integrations
电话:+1 408 414 9200 传真:+1 408 414 9201
www.powerint.com
日本
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokohama,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail:
[email protected]
韩国
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail:
[email protected]
新加坡
51 Newton Road
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
台湾
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
欧洲总部
1 st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
技术支持热线
World Wide +1-408-414-9660
技术支持传真
World Wide +1-408-414-9760
第38页(共38页)
Design Example Report
Title
15.3 W, Isolated, Dimmable, Power Factor
Corrected LED Driver Using LinkSwitchTM-PH
LNK406EG
Specification
185 VAC – 265 VAC Input
36 V, 425 mA Output
Application
LED Driver for PAR30 / PAR38
Author
Application Engineering Department
Document
Number
DER-314
Date
January 26, 2012
Revision
1.0
Summary and Features
 High efficiency, ≥87% at 230 VAC
 Low cost
 Single-stage converter
 Single sided PCB
 Low component count
 Enhanced user experience
 Flicker free, fast monotonic start-up (<300 ms) – no perceptible delay
 Broad dimmer compatibility

Flicker-free

Tested with common types from Australia, China, Korea and Germany
 Integrated protection and reliability features
 Output open circuit / output short-circuit protected with auto-recovery
 Line input overvoltage shutdown extends voltage withstand during line faults
 Auto-recovering thermal shutdown with large hysteresis protects both components and
printed circuit board
 IEC 61000-4-5 ring wave, IEC 61000-3-2 C and EN55015 B conducted EMI compliant
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
Table of Contents
1 2 3 4 Introduction .................................................................................................................5 Power Supply Specification ........................................................................................7 Schematic ...................................................................................................................8 Circuit Description .......................................................................................................9 4.1 Input Filtering .......................................................................................................9 4.2 LinkSwitch-PH Primary ........................................................................................9 4.3 Feedback ...........................................................................................................10 4.4 Temperature Fold Back Circuit ..........................................................................10 4.5 Output Rectification ...........................................................................................11 4.6 Disconnected Load Protection ...........................................................................11 4.7 TRIAC Phase Dimming Control Compatibility ....................................................11 5 PCB Layout...............................................................................................................13 6 Bill of Materials .........................................................................................................15 7 Transformer Specification .........................................................................................16 7.1 Electrical Diagram..............................................................................................16 7.2 Electrical Specifications .....................................................................................16 7.3 Materials ............................................................................................................16 7.4 Transformer Build Diagram ................................................................................17 7.5 Transformer Construction ..................................................................................17 8 Transformer Design Spreadsheet .............................................................................18 9 Performance Data .....................................................................................................21 9.1 Efficiency ...........................................................................................................21 9.2 Line and Load Regulation ..................................................................................22 9.3 Power Factor .....................................................................................................23 9.4 A-THD................................................................................................................24 9.5 Harmonic Currents.............................................................................................25 9.5.1 35 V LED Load ...........................................................................................25 9.5.3 36 V LED Load ...........................................................................................26 9.5.4 37 V LED Load ...........................................................................................27 9.6 Test Data ...........................................................................................................28 9.6.1 Test Data, 35 V LED Load ..........................................................................28 9.6.2 Test Data, 36 V LED Load ..........................................................................28 9.6.3 Test Data, 37 V LED Load ..........................................................................28 9.6.4 230 VAC 50 Hz, 35 V LED Load Harmonics Data ......................................29 9.6.5 230 VAC 50 Hz, 36 V LED Load Harmonics Data ......................................30 9.6.6 230 VAC 50 Hz, 37 V LED Load Harmonics Data ......................................31 10 Dimming Performance Data......................................................................................32 10.1 Performance with Clipsal Brand (Australian market) Dimmers ..........................32 10.2 Performance with China Dimmers .....................................................................33 10.3 Performance with Korean Dimmers ...................................................................34 10.4 Performance with German Dimmers..................................................................35 11 Thermal Performance ...............................................................................................36 11.1 Non-Dimming VIN = 185 VAC, 50 Hz, 36 V LED Load .......................................36 11.2 Non-Dimming VIN = 265 VAC, 50 Hz, 36 V LED Load .......................................36 Page 3 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11.3 Dimming VIN = 230 VAC, 50 Hz, 90º Conduction Angle, 36 V LED Load .......... 37 11.4 Thermal Fold Back ............................................................................................ 38 Non-Dimming Waveforms ............................................................................................ 39 11.5 Input Voltage and Input Current Waveforms ..................................................... 39 11.6 Output Current and Output Voltage at Normal Operation .................................. 40 11.7 Output Current/Voltage Rise and Fall ................................................................ 41 11.8 Input Voltage and Output Current Waveform at Start-up ................................... 42 11.9 Drain Voltage and Current at Normal Operation................................................ 43 11.10 Drain Voltage and Current at Start-up ........................................................... 44 11.11 Output Short Condition .................................................................................. 45 11.12 Output Diode PIV ........................................................................................... 46 12 Dimming Waveforms ................................................................................................ 47 12.1 Input Voltage and Input Current Waveforms – CLIPSAL 32E450LM ................ 47 12.2 Output Current Waveforms – CLIPSAL 32E450LM ........................................... 48 12.3 Input Voltage and Input Current Waveforms – CLIPSAL 32E450TM ................ 49 12.4 Output Current Waveforms – CLIPSAL 32E450TM .......................................... 50 13 Conducted EMI ......................................................................................................... 51 13.1 Test Set-up ........................................................................................................ 51 13.2 Test Result ........................................................................................................ 52 14 Line Surge ................................................................................................................ 53 15 Revision History........................................................................................................ 55 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed using an isolation
transformer to provide the AC input to the prototype board.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
1 Introduction
The document describes an isolated high power factor (PF) TRIAC dimmable LED driver
designed to drive a nominal LED string voltage of 36 V at 425 mA from an input voltage
range of 185 VAC to 265 VAC. The LED driver utilizes the LNK406EG from the
LinkSwitch-PH family of ICs.
Key goals for this design were:
 Lowest cost
 Small size
 Efficiency
 Demonstration of (optional) thermal fold back (output current reduces above
temperature threshold)
The topology used is a single-stage power factor corrected flyback that meets high
efficiency, high power factor, low THD, isolation, low component count, and stringent
space requirements for this design.
High power factor and low THD is achieved by employing the LinkSwitch-PH IC which
also provides a sophisticated range of protection features including auto-restart for open
control loop and output short-circuit conditions. Line overvoltage provides extended line
fault and surge withstand, and accurate hysteretic thermal shutdown that ensures safe
average PCB temperatures under all conditions.
This document contains the LED driver specification, schematic, PCB diagram, bill of
materials, transformer documentation and typical performance characteristics.
Figure 1 – Populated Circuit Board Photograph.
Page 5 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
Figure 2 – Populated Circuit Board Photograph (Top View).
Figure 3 – Populated Circuit Board Photograph (Bottom View).
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
Output
Output Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
Full Load
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
185
230
50
265
VAC
Hz
2 Wire – no P.E.
VOUT
IOUT
36
425
V
mA
POUT
15.3
W

86
%
VOUT = 36, VIN = 230 VAC, 25 °C
o
Measured at POUT 25 C
Environmental
Conducted EMI
CISPR 15B / EN55015B
Safety
Ring Wave (100 kHz)
Differential Mode (L1-L2)
Common mode (L1/L2-PE)
Isolated
2.5
kV
Differential Surge (1.2/50 s)
500
V
Power Factor
0.9
Harmonic Currents
Ambient Temperature
Page 7 of 56
Measured at VOUT(TYP), IOUT(TYP)
and 230 VAC, 50 Hz
Class C specifies Class D Limits
when PIN <25 W
EN 61000-3-2 Class D (C)
TAMB
50
o
C
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
3 Schematic
Figure 4 – Schematic.
The following components were not populated
 500 V to 1 kV differential surge withstand: VR1
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
4 Circuit Description
The LinkSwitch-PH device is a controller with an integrated 725 V power MOSFET for
use in LED driver applications. The LinkSwitch-PH is configured for use in a single-stage
flyback topology which provides a primary side regulated constant current output while
maintaining high power factor from the AC input.
4.1 Input Filtering
Fuse F1 provides protection from component failure. A relatively high current rating was
selected to prevent failure during 1 kV differential (1.2 s /50 s) line surge, at 500 V a
lower rated device may be substituted. Varistor RV1 provides a clamp to limit the
maximum voltage during differential line surge events. A 275 VAC rated part was
selected, being slightly above the maximum specified operating voltage of 265 VAC.
Diode bridge BR1 rectifies the AC line voltage with capacitor C4 providing a low
impedance path (decoupling) for the primary switching current. Capacitor C2 and
differential choke L3 are used for additional differential filtering of noise associated with
SCR Q1 switching. A low value of capacitance (sum of C4 and C2) is necessary to
maintain a power factor of greater than 0.9.
EMI filtering is provided by inductors L1, L2, and L3, and capacitors C4, C2, and C10.
Resistor R4 and R5 across L1 and L2 damp any LC resonances due to the filter
components and the AC line impedance which would otherwise cause increased
conducted EMI measurements.
4.2 LinkSwitch-PH Primary
One side of the transformer (T1) is connected to the DC bus and the other to the DRAIN
(D) pin of the LinkSwitch-PH via blocking diode D4. During the on-time of the power
MOSFET, current ramps through the primary, storing energy which is then delivered to
the output during the power MOSFET off-time. An RM8 core size was selected. This
meets the power processing and size requirements of the design. One advantage of the
low component count is the ability to use larger core sizes for increased efficiency whilst
still meeting the size constraint.
To provide peak line voltage information to U1 the incoming rectified AC peak charges
C6 via D2. This is then fed into the VOLTAGE MONITOR (V) pin of U1 as a current via
R10, R11, R12 and R13. Resistor R9 provides a discharge path for C6 with a time
constant much longer than that of the rectified AC to prevent the V pin current being
modulated at the line frequency (which would degrade power factor).
To extend the dimming range R13 disables the line brown-out function of the V pin by
supplying a current >IUV- into the V pin. The current is determined by the BYPASS (BP)
pin, V pin voltages and the value of R13 and is ~30 A for this design.
The line overvoltage shutdown function extends the rectified line voltage withstand
(during surges and line swells) to the 725 BVDSS rating of the internal power MOSFET.
Page 9 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
The V pin current and the FEEDBACK (FB) pin current are used internally to control the
average output LED current. For phase angle dimming applications a 49.9 k resistor is
used on the REFERENCE (R) pin (R14) and 4 M (R10+R11+R12+R13) on the V pin to
provide a linear relationship between input voltage and the output current. This
maximizes the dimming range when used with TRIAC dimmers. The value of R14 is used
to select between two values of internal line input brown-in and brown-out thresholds.
During the power MOSFET off-time, D3, R15, and C7 clamp the drain voltage to a safe
level due to the effects of leakage inductance. Diode D4 is necessary to prevent reverse
current from flowing through U1 while the voltage across C5 (rectified input AC) falls to
below the reflected output voltage (parameter VOR in the design spreadsheet).
Diode D6, C9, and R20 generate a primary bias supply from an auxiliary winding on the
transformer. Capacitor C5 is used to minimize the loop on the bias winding circuit for
reduced EMI. Resistor R20 provides filtering so that the bias voltage tracks the output
voltage closely (to maintain constant output current with changes in LED voltage).
Capacitor C8 provides local decoupling for the BP pin of U1 which is the supply pin for
the internal controller. During start-up, C8 is charged to ~6 V from an internal highvoltage current source connected to the D pin. Once charged U1 starts switching at
which point the operating supply current is provided from the bias supply via R17.
The use of an external bias supply (via D5 and R17) is recommended to give the lowest
device dissipation and highest efficiency however these components may be omitted if
desired. The ability to be self-powered provides improved phase angle dimming
performance as the IC is able to maintain operation even when the input conduction
phase angle is very small (the equivalent to a low AC input voltage).
Capacitor C8 also selects the output power mode, 10 F was selected (reduced power
mode) to minimize the device dissipation and minimize heat sinking requirements.
4.3 Feedback
The bias winding voltage is used to sense the output voltage indirectly, eliminating
secondary side feedback components. The voltage on the bias winding is proportional to
the output voltage (set by the turn ratio between the bias and secondary windings).
Resistors R18 and R21 converts the bias voltage into a current which is fed into the FB
pin of U1. The internal engine within U1 combines the FB pin current, the V pin current,
and internal drain current information to provide a constant output current whilst
maintaining high input power factor.
4.4 Temperature Fold Back Circuit
The board also caters for an optional temperature compensation circuit that can enable
LinkSwitch-PH to operate with temperature compensation to increase the maximum
operating ambient temperature of a given LED driver by reducing the output power
linearly as the driver temperature increases.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
Zener diode VR4 and the voltage across the node of resistor R22 and thermistor (NTC)
RT1 dictate the start of temperature fold back. As the monitored temperature rises, so
does the base voltage of Q2. Once this exceeds the voltage of VR4 plus a VBE drop, Q2
is biased on. Further increases in temperature will start diverting current from the FB pin,
which will cause a reduction in output current / power.
Resistor R22 can be adjusted to vary the temperature trip point at which output power
reduction starts desired.
The circuit is ideal for applications in extending the operating ambient temperature of a
given LinkSwitch-PH LED driver, or protecting the LED array from excess temperature
when installed incorrectly by the end user.
4.5 Output Rectification
The transformer secondary winding is rectified by D7 and filtered by C11. Capacitor C11
was selected to give an LED ripple current equal to ~±30% of the mean value. For
designs where higher ripple is acceptable, the output capacitance value can be reduced
(and for lower ripple increased).
4.6 Disconnected Load Protection
In case of open (disconnected) load fault, Zener diode VR3 will fail short circuit and the
unit will enter auto-restart condition. This is a non-recovering protection scheme, for selfrecovering protection the bias voltage rise can be sensed via a Zener diode connected
from C9 to the base of Q2. The value would be selected to be above the maximum bias
voltage when driving the maximum LED load voltage. For this design 39 V or 43 V would
be a suitable starting value.
4.7 TRIAC Phase Dimming Control Compatibility
The requirement to provide output dimming with low cost, TRIAC based, leading edge
phase dimmers introduced a number of tradeoffs in the design.
Due to the much lower power consumed by LED based lighting the current drawn by the
lamp can fall below the holding current of the TRIAC within the dimmer. This causes
undesirable behavior such as the lamp turning off before the end of the dimmer control
range and/or flickering as the TRIAC fires inconsistently. The relatively large impedance
the LED lamp presents to the line allows significant ringing to occur due to the inrush
current charging the input capacitance when the TRIAC turns on. This too can cause
similar undesirable behavior as the ringing may cause the TRIAC current to fall to zero.
To overcome these issues, active damper and passive bleeder circuits were added. The
drawback of these circuits is increased dissipation and therefore reduced efficiency of the
supply. For non-dimming applications these components can simply be omitted.
Page 11 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
The Active Damper consists of components R6, R7, Q1, C3 and R8. This circuit limits the
inrush current that flows to charge C4 when the TRIAC turns on by placing R8 in series
for the first 1 ms of the conduction period. After approximately 1 ms, Q1 turns on and
shorts R8. This keeps the power dissipation on R8 low and allows a larger value to be
used for more effective during current limiting. Resistor R6, R7 and C3 provide the 1 ms
delay after the TRIAC conducts. The SCR selected for Q1 is a low current, low cost
device in a TO-92 package.
The passive bleeder circuit is comprised of C1 and parallel combination of R1, and R2.
This keeps the input current above the TRIAC holding current while the driver input
current increases during each AC half-cycle preventing the TRIAC switch from oscillating
at the start (and end) of each conduction angle period.
This arrangement provided flicker-free dimming operation with phase angle dimmers from
Australia, Europe, China, Korea, both leading-edge and lagging-edge types.
Want More?
Use your smartphone to get
related content on our website.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
5 PCB Layout
Figure 5 – PCB Layout and Outline.
Figure 6 – Top Side.
Page 13 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
Figure 7 – Bottom Side.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
6 Bill of Materials
Item
Qty
Ref Des
1
1
BR1
Description
2
1
C1
220 nF, 275 VAC, Film, X2
3
1
C2
10 nF, 1 kV, Disc Ceramic, X7R
4
1
C3
470 nF, 50 V, Ceramic, Y5G, 0603
100 nF, 400 V, Film
ECQ-E4104KF
Panasonic
2.2 nF, 630 V, Ceramic, X7R, 1206
ECJ-3FBJ222K
Panasonic
1000 V, 0.8 A, Bridge Rectifier, MBS-1, 4-SOIC
Mfg Part Number
Mfg
B10S-G
Comchip
LE224-M
OKAYA ELECT
SV01AC103KAR
AVX
C1608Y5V1H474Z
TDK
5
1
C4
6
2
C5 C7
7
1
C6
2.2 F, 400 V, Electrolytic, (6.3 x 11)
TAB2GM2R2E110
Ltec
8
1
C8
10 F, 16 V, Ceramic, X7R, 1206
C3216X7R1C106M
TDK
9
1
C9
22 F, 50 V, Electrolytic, (5 x 11.5)
ELXZ500ELL220MEB5D
Nippon Chemi-Con
10
1
C10
680 pF, Ceramic, Y1
11
1
C11
560 F, 50 V, Electrolytic,(12.5 x 25)
12
2
D1 D5
13
1
D2
14
2
D3 D4
75 V, 0.15 A, Switching, SOD-323
400 V, 1 A, Diode Sup Fast 1 A PWRDI 123
Diode Ultrafast, SW 600 V, 1 A, SMA
440LT68-R
Vishay
UPW1H561MHD
Nichicon
BAV16WS-7-F
Diodes, Inc.
DFLU1400-7
Diodes, Inc.
US1J-13-F
Diodes, Inc.
15
1
D6
250 V, 0.2 A, Fast Switching, 50 ns, SOD-323
16
1
D7
400 V, 3 A, SMC, DO-214AB
17
1
F1
5 A, 250 V, Fast, Microfuse, Axial
0263005.MXL
Littlefuse
18
1
JP1
0 R, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEY0R00V
Panasonic
19
2
L1 L2
20
1
L3
2.2 mH, 0.16 A, Ferrite Core
21
1
Q1
SCR, 600 V, 1.25 A, TO-92
22
1
Q2
NPN, Small Signal BJT, 40 V, 0.2 A, SOT-23
23
2
R1 R2
1.0 k, 5%, 2 W, Metal Oxide
24
2
R4 R5
25
2
R6 R7
26
1
R8
100 , 5%, 2 W, Metal Oxide
RSMF2JT100R
Stackpole
27
1
R9
510 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ514V
Panasonic
28
2
R10 R12
1.3 M, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF1304V
Panasonic
29
1
R11
1.3 M, 5%, 1/8 W, Carbon Film
30
1
R13
31
1
32
1
33
1
34
35
1000 H, 0.18 A, 7 x 10.5 mm
BAV21WS-7-F
Diodes, Inc.
ER3G-TP
Micro Commercial
SBC2-102-181
Tokin
CTSCH875DF-222K
CT Parts
X0202MA 2BL2
ST Micro
MMBT3904LT1G
On Semi
RSMF2JT1K00
Stackpole
4.7 k, 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ472V
Panasonic
374 k, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF3743V
Panasonic
CFR-12JB-1M3
Yageo
100 k, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF1003V
Panasonic
R14
49.9 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF4992V
Panasonic
R15
200 k, 5%, 1/2 W, Carbon Film
CFR-50JB-200K
Yageo
R17
8.2 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ822V
Panasonic
1
R18
187 k, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF1873V
Panasonic
2
R19 R23
20 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ203V
Panasonic
36
1
R20
39 , 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ390V
Panasonic
37
1
R21
10 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF1002V
Panasonic
38
1
R22
3.48 k, 1%, 1/8 W, Thick Film, 0805
ERJ-6ENF3481V
Panasonic
39
1
RT1
NTC Thermistor, 100 k, 0.00014 A
NTSA0WF104EE1B0
Murata
40
1
RV1
275 V, 23 J, 7 mm, RADIAL
V275LA4P
Littlefuse
41
1
T1
Bobbin, RM8, Vertical, 12 pins
RM8/12/1
Schwartzpunkt
42
1
U1
LinkSwitch-PH, eSIP
LNK406EG
Power Integrations
43
1
VR1
350 V, 400 W, 5%, DO214AC (SMA)
SMAJ350A
Littlefuse
44
1
VR3
43 V, 5 W, 5%, DO204AC (DO-15)
P6KE43AG
On Semi
45
1
VR4
10 V, 5%, 150 mW, SSMINI-2
DZ2S100M0L
Panasonic
Page 15 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
7 Transformer Specification
7.1
Electrical Diagram
Figure 8 – Transformer Electrical Diagram.
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage
Inductance
7.3
1 second, 60 Hz, from pins 1, 10, 3, 11 to FL1, FL2
Pins 1-3, all other windings open, measured at 100
kHz, 0.4 VRMS
Pins 1-3, all other windings open
Pins 1-3, with FL1-FL2 shorted, measured at 
100 kHz, 0.4 VRMS
3000 VAC
1.15 mH ±2%
750 kHz (Min.)
20 H ±7%
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Description
Core: RM8/I, 3F3.
Bobbin, 12 pin vertical, CSV-RM8-1S-12P from Philips or equivalent
With mounting clip, CLI/P-RM8.
Tape, Polyester film, 3M 1350F-1 or equivalent, 9 mm wide.
Wire: Magnet, 31 AWG, solderable double coated.
Wire: Magnet, 27 AWG, solderable double coated.
Wire: Triple Insulated, Furukawa TEX-E or Equivalent, 23 TIW.
Transformer Varnish, Dolph BC-359 or equivalent.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 56
26-Jan-12
7.4
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
Transformer Build Diagram
Figure 9 – Transformer Build Diagram.
7.5
Transformer Construction
Bobbin
Preparation
WDG 1 (Primary)
Insulation
WDG 2
(Secondary)
Insulation
WDG 3 (Bias)
Finish Wrap
Final Assembly
Page 17 of 56
Place the bobbin item [2] on the mandrel such that pin side on the left side.
Winding direction is the clockwise direction.
Starting at pin 3, wind 60 turns of wire item [4] in two layers. Apply one layer of
tape item [3] between 1st and 2nd layer. Finish at pin 1.
Apply one layer of tape item [3].
Leave about 1” of wire item [6], use small tape to mark as FL1, enter into slot of
secondary side of bobbin, wind 20 turns in two layers. At the last turn exit the same
slot, leave about 1”, and mark as FL2.
Apply one layer of tape item [3].
Starting at pin 10, wind 17 turns of wire item [5], spreading the wire, and finish at
pin 11.
Apply three layers of tape item [3] for finish wrap.
Cut FL1 and FL2 to 0.75”. Grind core to get 1.15 mH inductance.
Assemble and secure core halves. Dip impregnate using varnish item [7].
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
8 Transformer Design Spreadsheet
ACDC_LinkSwitch-PH_032511;
Rev.1.3; Copyright Power
INPUT
Integrations 2011
ENTER APPLICATION VARIABLES
Dimming required
YES
VACMIN
VACMAX
fL
185
265
VO
INFO
Info
OUTPUT
UNIT
YES
185
265
50
36.00
V
V
Hz
V
VO_MAX
39.60
V
VO_MIN
32.40
V
V_OVP
IO
0.43
PO
n
0.87
VB
30
ENTER LinkSwitch-PH VARIABLES
LinkSwitch-PH
LNK406
Chosen Device
43.56
V
A
W
Current Limit Mode
15.5
0.87
30
LNK406
RED
Power Out
V
Universal
10W
RED
ILIMITMIN
ILIMITMAX
fS
fSmin
fSmax
IV
RV
RV2
1.19
1.38
66000
62000
70000
80.6
4
1E+012
A
A
Hz
Hz
Hz
uA
M-ohms
M-ohms
169.8
uA
RFB1
159.0
k-ohms
VDS
10
V
IFB
169.84
VD
0.50
V
VDB
0.70
V
LinkSwitch-PH_032511:
Flyback Transformer Design
Spreadsheet
!!! Info. When configured for
dimming, best output current line
regulation is achieved over a
single input voltage range.
Minimum AC Input Voltage
Maximum AC input voltage
AC Mains Frequency
Typical output voltage of LED
string at full load
Maximum expected LED string
Voltage.
Minimum expected LED string
Voltage.
Over-voltage protection setpoint
Typical full load LED current
Output Power
Estimated efficiency of operation
Bias Voltage
115 Doubled/230V
4.5W
Select "RED" for reduced Current
Limit mode or "FULL" for Full
current limit mode
Minimum current limit
Maximum current limit
Switching Frequency
Minimum Switching Frequency
Maximum Switching Frequency
V pin current
Upper V pin resistor
Lower V pin resistor
FB pin current (85 uA < IFB < 210
uA)
FB pin resistor
LinkSwitch-PH on-state Drain to
Source Voltage
Output Winding Diode Forward
Voltage Drop (0.5 V for Schottky
and 0.8 V for PN diode)
Bias Winding Diode Forward
Voltage Drop
Key Design Parameters
KP
LP
VOR
Expected IO (average)
KP_VACMAX
1.24
1.24
109.50
1159
109.5
0.42
Info
TON_MIN
1.28
1.97
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
uH
V
A
us
Ripple to Peak Current Ratio (For
PF > 0.9, 0.4 < KP < 0.9)
Primary Inductance
Reflected Output Voltage.
Expected Average Output Current
!!! Info. PF at high line may be
less than 0.9. Decrease KP for
higher PF
Minimum on time at maximum AC
input voltage
Page 18 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
PCLAMP
0.13
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
RM8/I
RM8/I
RM8/I_
Bobbin
BOBBI
N
W
P/N:
AE
0.63
cm^2
LE
3.84
cm
AL
3000
nH/T^2
BW
8.6
mm
M
0
mm
L
2.00
NS
20
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
CURRENT WAVEFORM SHAPE PARAMETERS
2
20
262
375
V
V
DMAX
0.26
IAVG
0.11
A
IP
0.95
A
IRMS
0.24
A
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
NP
NB
1159
60
17
uH
ALG
322
nH/T^2
BM
2906
Gauss
BP
3516
Gauss
BAC
1453
Gauss
ur
1455
LG
BWE
0.22
17.2
mm
mm
OD
0.29
mm
INS
0.05
mm
DIA
0.24
mm
AWG
31
AWG
CM
81
Cmils
CMA
341
Cmils/Amp
LP_TOL
10
10
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)
Lumped parameters
Page 19 of 56
Estimated dissipation in primary
clamp
*
Core Effective Cross Sectional
Area
Core Effective Path Length
Ungapped Core Effective
Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the
Primary to Secondary Creepage
Distance)
Number of Primary Layers
Number of Secondary Turns
Peak input voltage at VACMIN
Peak input voltage at VACMAX
Minimum duty cycle at peak of
VACMIN
Average Primary Current
Peak Primary Current (calculated
at minimum input voltage
VACMIN)
Primary RMS Current (calculated
at minimum input voltage
VACMIN)
Primary Inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
Gapped Core Effective
Inductance
Maximum Flux Density at PO,
VMIN (BM<3100)
Peak Flux Density (BP<3700)
AC Flux Density for Core Loss
Curves (0.5 X Peak to Peak)
Relative Permeability of
Ungapped Core
Gap Length (Lg > 0.1 mm)
Effective Bobbin Width
Maximum Primary Wire Diameter
including insulation
Estimated Total Insulation
Thickness (= 2 * film thickness)
Bare conductor diameter
Primary Wire Gauge (Rounded to
next smaller standard AWG
value)
Bare conductor effective area in
circular mils
Primary Winding Current Capacity
(200 < CMA < 600)
Tolerance of primary inductance
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
ISP
ISRMS
2.84
1.05
A
A
IRIPPLE
0.96
A
CMS
211
Cmils
AWGS
26
AWG
DIAS
0.41
mm
ODS
0.43
mm
VDRAIN
599
V
PIVS
168
V
PIVB
141
V
4.00
1.00E+12
115.0
230.0
M-ohms
M-ohms
V
V
IO_VAC1
0.43
A
IO_VAC2
0.43
A
RV1 (new)
RV2 (new)
4.00
20911.63
M-ohms
M-ohms
V_OV
319.6
V
V_UV
66.3
V
159
1E+012
27.0
33.0
0.43
0.43
159.0
1.00E+12
k-ohms
k-ohms
V
V
A
A
k-ohms
k-ohms
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple
Current
Secondary Bare Conductor
minimum circular mils
Secondary Wire Gauge (Rounded
up to next larger standard AWG
value)
Secondary Minimum Bare
Conductor Diameter
Secondary Maximum Outside
Diameter for Triple Insulated Wire
VOLTAGE STRESS PARAMETERS
FINE TUNING (Enter measured values from prototype)
V pin Resistor Fine Tuning
RV1
RV2
VAC1
VAC2
FB pin resistor Fine Tuning
RFB1
RFB2
VB1
VB2
IO1
IO2
RFB1 (new)
RFB2(new)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Estimated Maximum Drain
Voltage assuming maximum LED
string voltage (Includes Effect of
Leakage Inductance)
Output Rectifier Maximum Peak
Inverse Voltage (calculated at
VOVP, excludes leakage
inductance spike)
Bias Rectifier Maximum Peak
Inverse Voltage (calculated at
VOVP, excludes leakage
inductance spike)
Upper V Pin Resistor Value
Lower V Pin Resistor Value
Test Input Voltage Condition1
Test Input Voltage Condition2
Measured Output Current at
VAC1
Measured Output Current at
VAC2
New RV1
New RV2
Typical AC input voltage at which
OV shutdown will be triggered
Typical AC input voltage beyond
which power supply can startup
Upper FB Pin Resistor Value
Lower FB Pin Resistor Value
Test Bias Voltage Condition1
Test Bias Voltage Condition2
Measured Output Current at Vb1
Measured Output Current at Vb2
New RFB1
New RFB2
Page 20 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9 Performance Data
All measurements performed at room temperature using an LED load. The following data
were measured using 3 sets of loads to represent a voltage of 35 V ~ 37 V. The table in
Section 9.6 shows complete test data values.
9.1
Efficiency
87.4
~35 V
~36 V
87.3
~37 V
Efficiency (%)
87.2
87.1
87.0
86.9
86.8
180
190
200
210
220
230
240
250
260
Input Voltage (VAC)
Figure 10 – Efficiency vs. Line and Load.
Page 21 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
270
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9.2
26-Jan-12
Line and Load Regulation
440
~35 V
435
~36 V
430
~37 V
Output Current (mA)
425
420
415
410
405
400
395
390
385
180
190
200
210
220
230
240
250
260
270
Input Voltage (VAC)
Figure 11 – Regulation vs. Line and Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 56
26-Jan-12
9.3
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
Power Factor
0.95
~35 V
0.94
~36 V
~37 V
Power Factor
0.93
0.92
0.91
0.90
0.89
180
190
200
210
220
230
240
250
260
Input Voltage (VAC)
Figure 12 – Power Factor vs. Line and Load.
Page 23 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
270
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9.4
26-Jan-12
A-THD
28.7
~35 V
28.6
~36 V
~37 V
28.5
A-THD (%)
28.4
28.3
28.2
28.1
28.0
27.9
27.8
27.7
180
190
200
210
220
230
240
250
260
270
Input Voltage (VAC)
Figure 13 – A-THD vs. Line and Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9.5 Harmonic Currents
The design met the limits for Class C equipment for an active input power of <25 W. In
this case IEC61000-3-2 specifies that harmonic currents shall not exceed the limits of
Class D equipment1. Therefore the limits shown in the charts below are Class D limits
which must not be exceeded to meet Class C compliance.
9.5.1 35 V LED Load
70
Class C (D) Limit
mA Content
Harmonic Current (mA)
60
50
40
30
20
10
0
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (n)
Figure 14 – 35 V LED Load Input Current Harmonics at 230 VAC, 50 Hz.
1
IEC6000-3-2 Section 7.3, table 2, column 2.
Page 25 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
9.5.3 36 V LED Load
70
Class C (D) Limit
mA Content
Harmonic Current (mA)
60
50
40
30
20
10
0
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (n)
Figure 15 – 36 V LED Load Input Current Harmonics at 230 VAC, 50 Hz.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9.5.4 37 V LED Load
70
Class C (D) Limit
mA Content
Harmonic Current (mA)
60
50
40
30
20
10
0
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic Number (n)
Figure 16 – 37 V LED Load Input Current Harmonics at 230 VAC, 50 Hz.
Page 27 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
9.6 Test Data
All measurements were taken with the board at open frame, 25 °C ambient, and 50 Hz
line frequency.
9.6.1 Test Data, 35 V LED Load
VIN
(VRMS)
185.03
203.06
220.08
230.13
254.10
265.11
Input Measurement
IIN
PIN
PF
(mARMS)
(W)
90.22
15.734 0.943
85.46
16.204 0.934
81.74
16.626 0.924
79.86
16.871 0.918
76.17
17.454 0.902
74.76
17.715 0.894
%ATHD
27.83
28.18
28.38
28.47
28.48
28.35
Load Measurement
VOUT
IOUT
POUT
(VDC) (mADC)
(W)
35.11 389.21 13.710
35.18 400.28 14.128
35.23 409.96 14.492
35.25 415.58 14.701
35.32 428.33 15.183
35.35 433.96 15.394
PCAL
(W)
13.66
14.08
14.44
14.65
15.13
15.34
Calculation
Efficiency Loss
(%)
(W)
87.14
2.02
87.19
2.08
87.16
2.13
87.14
2.17
86.99
2.27
86.90
2.32
Load Measurement
VOUT
IOUT
POUT
(VDC) (mADC)
(W)
36.14 389.94 14.14
36.20 400.96 14.56
36.24 410.58 14.93
36.26 416.04 15.14
36.32 428.66 15.62
36.34 434.20 15.83
PCAL
(W)
14.09
14.51
14.88
15.09
15.57
15.78
Calculation
Efficiency Loss
(%)
(W)
87.15
2.08
87.21
2.14
87.20
2.19
87.17
2.23
87.03
2.33
86.95
2.38
PCAL
(W)
14.40
14.83
15.21
15.42
15.91
16.13
Calculation
Efficiency Loss
(%)
(W)
87.18
2.13
87.24
2.18
87.24
2.23
87.22
2.27
87.09
2.37
87.01
2.42
9.6.2 Test Data, 36 V LED Load
VIN
(VRMS)
185.00
203.05
220.06
230.11
254.08
265.10
Input Measurement
IIN
PIN
PF
(mARMS)
(W)
92.88
16.219 0.944
87.90
16.695 0.935
83.99
17.120 0.926
81.98
17.363 0.920
78.08
17.947 0.905
76.59
18.210 0.897
%ATHD
27.81
28.13
28.36
28.49
28.54
28.42
9.6.3 Test Data, 37 V LED Load
VIN
(VRMS)
185.00
203.04
220.06
230.11
254.07
265.09
Input Measurement
IIN
PIN
PF
(mARMS)
(W)
94.83
16.573 0.945
89.70
17.055 0.936
85.68
17.490 0.928
83.61
17.737 0.922
79.57
18.329 0.907
78.02
18.595 0.899
%ATHD
27.81
28.17
28.45
28.51
28.6
28.53
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Load Measurement
VOUT
IOUT
POUT
(VDC) (mADC)
(W)
36.88 390.53 14.45
36.95 401.45 14.88
37.00 411.10 15.26
37.02 416.54 15.47
37.09 429.01 15.96
37.11 434.58 16.18
Page 28 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9.6.4 230 VAC 50 Hz, 35 V LED Load Harmonics Data
Page 29 of 56
V
230
Freq
50.00
I (mA)
79.86
P
16.8710
PF
0.9180
%THD
28.47
nth
Order
1
2
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
mA
Content
76.74
0.02
17.52
9.67
5.34
4.46
2.64
2.73
1.49
1.85
0.99
1.26
0.65
0.90
0.50
0.69
0.39
0.58
0.35
0.49
0.34
0.37
0.31
0.32
0.40
0.30
%
Content
Limit
<25 W
Limit
>25 W
Remarks
57.3614
32.0549
16.8710
8.4355
5.9049
4.9964
4.3302
3.8208
3.4186
3.0930
2.8241
2.5981
2.4057
2.2398
2.0953
1.9683
1.8558
1.7555
1.6655
2.00%
27.54%
10.00%
7.00%
5.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
0.03%
22.83%
12.60%
6.96%
5.81%
3.44%
3.56%
1.94%
2.41%
1.29%
1.64%
0.85%
1.17%
0.65%
0.90%
0.51%
0.76%
0.46%
0.64%
0.44%
0.48%
0.40%
0.42%
0.52%
0.39%
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
9.6.5 230 VAC 50 Hz, 36 V LED Load Harmonics Data
V
230
Freq
50.00
I (mA)
81.98
P
17.3630
PF
0.9204
%THD
28.49
nth
Order
1
2
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
mA
Content
78.78
0.05
18.01
9.91
5.51
4.57
2.78
2.80
1.58
1.77
0.95
1.24
0.72
0.91
0.56
0.69
0.43
0.52
0.38
0.42
0.36
0.38
0.30
0.32
0.28
0.22
%
Content
Limit
<25 W
Limit
>25 W
Remarks
59.0342
32.9897
17.3630
8.6815
6.0771
5.1421
4.4565
3.9322
3.5183
3.1832
2.9064
2.6739
2.4758
2.3051
2.1564
2.0257
1.9099
1.8067
1.7140
2.00%
27.61%
10.00%
7.00%
5.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
0.06%
22.86%
12.58%
6.99%
5.80%
3.53%
3.55%
2.01%
2.25%
1.21%
1.57%
0.91%
1.16%
0.71%
0.88%
0.55%
0.66%
0.48%
0.53%
0.46%
0.48%
0.38%
0.41%
0.36%
0.28%
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Page 30 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
9.6.6 230 VAC 50 Hz, 37 V LED Load Harmonics Data
Page 31 of 56
V
230
Freq
50.00
I (mA)
83.61
P
17.7370
PF
0.9219
%THD
28.51
nth
Order
1
2
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
mA
Content
80.35
0.03
18.39
10.09
5.61
4.64
2.82
2.84
1.63
1.89
1.06
1.32
0.77
0.96
0.59
0.72
0.46
0.55
0.40
0.44
0.35
0.37
0.32
0.28
0.27
0.20
%
Content
Limit
<25 W
Limit
>25 W
Remarks
60.3058
33.7003
17.7370
8.8685
6.2080
5.2529
4.5525
4.0169
3.5941
3.2518
2.9690
2.7315
2.5292
2.3547
2.2028
2.0693
1.9511
1.8456
1.7510
2.00%
27.66%
10.00%
7.00%
5.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
3.00%
0.04%
22.89%
12.56%
6.98%
5.77%
3.51%
3.53%
2.03%
2.35%
1.32%
1.64%
0.96%
1.19%
0.73%
0.90%
0.57%
0.68%
0.50%
0.55%
0.44%
0.46%
0.40%
0.35%
0.34%
0.25%
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
10 Dimming Performance Data
TRIAC dimming results were taken at an input voltage of 230 VAC, 50 Hz line frequency,
room temperature, and a nominal 36 V LED load.
The output current High Limit IOUT (HL) and Low Limit IOUT (LL) were incorporated based
on the USA NEMA Publication SSL6-2010 Section 4 page 9 for dimming performance
system requirements for reference. The standard however refers to 120 VAC operating
input voltage and pertains to the limits as relative light output. The limits incorporated on
the succeeding graphs assumes that 100% relative light output falls on the maximum
operating output current of 425 mA and 0 mA as 0% light output, and input line of
230 VAC, 50 Hz.
10.1 Performance with Clipsal Brand (Australian market) Dimmers
450
32E450TM
350
Output Current (mA)
Trailing Edge
32E450LM
400
32E450UDM
300
Iout (HL)
250
Iout (LL)
200
150
100
Leading Edge
50
0
20
40
60
80
100
120
140
160
180
Conduction Angle (˚)
Figure 17 – Clipsal Dimmers Dimming Curve at 230 VAC, 50 Hz Input.
Dimmer
32E450LM
32E450TM
32E450UDM
Minimum
Conduction
Angle, (º)
49.14
42.3
47.16
Minimum
IOUT
(mA)
83
83
97
Maximum
Conduction
Angle, (º)
140.4
140.4
139.5
Maximum
IOUT
(mA)
376
391
389
Dim
Ratio
4.5
4.7
4.0
Figure 18 – Clipsal Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
10.2 Performance with China Dimmers
450
Clipmei
400
TCL 630 W
Output Current (mA)
350
SEN BO LANG 300 W
EBA HUANG
300
SB ELECT 600 W
250
MYONGBO
200
Iout (LL)
Iout (HL)
150
100
50
0
0
20
40
60
80
100
120
140
160
180
Conduction Angle (˚)
Figure 19 – China Dimmers Dimming Curve at 230 VAC, 50 Hz Input.
Dimmer
CLIPMEI
TCL 630 W
SEN BO LANG 300 W
EBA HUANG
SB ELECT 600 W
MYONGBO
KBE 650 W
MANK 200 W
Minimum
Conduction
Angle, (º)
43.2
45
64.8
18
14.4
61.2
14.4
70.2
Minimum
IOUT
(mA)
70
75
119
4.2
8.4
116
3
136
Maximum
Conduction
Angle, (º)
167.94
166.14
166.14
167.4
154.8
169.2
165.6
165.6
Maximum
IOUT
(mA)
412
413
413
413
404
413
412
412
Dim
Ratio
5.9
5.5
3.5
98.3
48.1
3.6
137.3
3.0
Figure 20 – China Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input.
Page 33 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
10.3 Performance with Korean Dimmers
450
ANAM 500 W
Output Current (mA)
400
SHIN SUNG 500 W
350
FANTASIA 500 W
300
SS 700 W
Iout (LL)
250
Iout (HL)
200
150
100
50
0
20
40
60
80
100
120
140
160
180
Conduction Angle (˚)
Figure 21 – Korean Dimmers Dimming Curve at 230 VAC, 50 Hz Input.
Dimmer
ANAM 500 W
SHIN SUNG 500 W
FANTASIA 500 W
SS 700 W
Minimum
Conduction
Angle, (º)
68.4
63
63
54
Minimum
IOUT
(mA)
142
126
138
105
Maximum
Conduction
Angle, (º)
162
165.6
153
162
Maximum
IOUT
(mA)
408
411
407
411
Dim
Ratio
2.9
3.3
2.9
3.9
Figure 22 – Korean Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
10.4 Performance with German Dimmers
450
REV 300
Output Current (mA)
400
BUSCH2250 600 W
350
MERTEN 572499
300
BUSCH 6513
Trailing Edge
BERKER 2875
250
Iout (LL)
200
Iout (HL)
150
100
Leading Edge
50
0
0
20
40
60
80
100
120
140
160
180
Conduction Angle (˚)
Figure 23 – German Dimmers Dimming Curve at 230 VAC, 50 Hz Input.
Dimmer
REV300
BUSCH 2250 600 W
MERTEN 572499 400 W
BUSCH 6513 420 W
BERKER 2875 600 W
Minimum
Conduction
Angle, (º)
14.4
45
43.2
39.6
49.14
Minimum
IOUT
(mA)
4
69
54
90
74
Maximum
Conduction
Angle, (º)
150.3
153.72
162
142.2
151.2
Maximum
IOUT
(mA)
393
398
407
399
393
Dim
Ratio
98.3
5.8
7.5
4.4
5.3
Figure 24 – German Dimmers Minimum and Maximum Dimming Characteristic at 230 VAC, 50 Hz Input.
Page 35 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11 Thermal Performance
Images captured after running for >30 minutes at room temperature (25 °C), open frame
for the conditions specified.
11.1 Non-Dimming VIN = 185 VAC, 50 Hz, 36 V LED Load
Figure 25 – Top Side.
Figure 26 – Bottom Side.
11.2 Non-Dimming VIN = 265 VAC, 50 Hz, 36 V LED Load
Figure 27 – Top Side.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 28 – Bottom Side.
Page 36 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
11.3 Dimming VIN = 230 VAC, 50 Hz, 90º Conduction Angle, 36 V LED Load
Figure 29 – Top Side.
Page 37 of 56
Figure 30 – Bottom Side.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11.4 Thermal Fold Back
A test board had T type thermocouples attached to key components. The unit was then
potted using Silgard 170 and placed inside a thermal chamber. A chart recorder was
used to monitor the temperature and output current while the external ambient
temperature was swept from -25 ºC to 70 ºC. Testing was performed at 230 VAC, 60 Hz
with no dimmer connected. The frequency of 60 Hz was specifically chosen to ensure
sampling of chart recorder was synchronized to output of LED driver. Note current is
represented in centi-Amps ie a value of 40 = 0.4 A
This data shows (point 1) that the thermal fold back occurs at a case temperature of
70 ºC, with an IC temperature of ~92 ºC. This indicates that the fold back threshold may
be raised further. At point 2 the oven door was opened and the output current returned to
the original value (point 3).
Temperature (C) / Output Current (cA)
100
75
50


U1 LinkSwitch-PH
R1
T1
D4
D7 output
Case Surface
COUT (C11)
IOUT
25
0

-25
Elapsed Time (H:MM:SS)
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
Non-Dimming Waveforms
11.5 Input Voltage and Input Current Waveforms
Figure 31 – 185 VAC, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 32 – 220 VAC, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 33 – 230 VAC, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 34 – 265 VAC, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Page 39 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11.6 Output Current and Output Voltage at Normal Operation
Input Condition
185 VAC, 50 Hz
220 VAC, 60 Hz
230 VAC, 50 Hz
265 VAC, 50 Hz
IOUT, Mean (mA)
388
412
418
437
IOUT, Peak to Peak (mA)
250
260
267
278
IOUT Ripple (%)
±32.2
±31.6
±31.94
±31.81
Figure 35 – 185 VAC, 50 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Figure 36 – 220 VAC, 50 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Figure 37 – 230 VAC, 50 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Figure 38 – 265 VAC, 50 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 40 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
11.7 Output Current/Voltage Rise and Fall
Figure 39 – 185 VAC Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 100 ms / div.
Figure 40 – 185 VAC Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 100 ms / div.
Figure 41 – 265 VAC Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 100 ms / div.
Figure 42 – 265 VAC Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 5 V, 100 ms / div.
Page 41 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11.8 Input Voltage and Output Current Waveform at Start-up
Figure 43 – 185 VAC, 50 Hz.
Upper: IOUT, 0.1 A / div.
Lower: VIN, 100 V, 50 ms / div.
Figure 44 – 220 VAC, 50 Hz.
Upper: IOUT, 0.1 A / div.
Lower: VIN, 100 V, 50 ms / div.
Figure 45 – 230 VAC, 50 Hz.
Upper: IOUT, 0.1 A / div.
Lower: VIN, 100 V, 50 ms / div.
Figure 46 – 265 VAC, 50 Hz.
Upper: IOUT, 0.1 A / div.
Lower: VIN, 100 V, 50 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 42 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
11.9 Drain Voltage and Current at Normal Operation
Figure 47 – 185 VAC, 50 Hz.
Upper: IDRAIN, 0.2 A / div.
Lower: VDRAIN, 100 V, 2 ms / div.
Figure 48 – 185 VAC, 50 Hz.
Upper: IDRAIN, 0.2 A / div.
Lower: VDRAIN, 100 V / div., 10 s / div.
Figure 49 – 265 VAC, 50 Hz.
Upper: IDRAIN, 0.2 A / div.
Lower: VDRAIN, 100 V, 2 ms / div.
Figure 50 – 265 VAC, 50 Hz.
Upper: IDRAIN, 0.2 A / div.
Lower: VDRAIN, 100 V / div., 10 s / div.
Page 43 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11.10 Drain Voltage and Current at Start-up
At higher input voltage, the peak current can reach the current limit of the device and
enter the SOA mode which disables the switching of the power MOSFET for 40 cycles or
approximately 600 s. The SOA mode protects the device under short circuit and start-up
condition and does not affect the output current rise during start-up since this condition
happens when the output capacitor voltage is still far from the conduction voltage of the
LED load as shown on the Figures below.
Figure 51 – 185 VAC, 50 Hz Start-up.
Upper: IDRAIN, 200 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 52 – 265 VAC, 50 Hz Start-up.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 53 – Expanded 265 VAC Start-up Showing
600 s Dead Time.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 0.2 ms / div.
Figure 54 – Output Current rise at 265 VAC Start-up.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 10 ms / div.
IOUT, 100 mA, 10 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 44 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
11.11 Output Short Condition
During output short condition, the IFB current falls below the IFB(AR) threshold and enters
the auto-restart condition. During this condition, to minimize power dissipation on the
power components, the auto-restart circuit turns the power supply on and off at an autorestart duty cycle of typically DCAR for as long as the fault condition persists.
Figure 55 – 185 VAC, 50 Hz Output Short Condition.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 10 ms / div.
Figure 56 – 185 VAC, 50 Hz Output Short Condition.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 2 s / div.
Figure 57 – 265 VAC, 50 Hz Output Short Condition.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 10 ms / div.
Figure 58 – 265 VAC, 50 Hz Output Short Condition.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 2 s / div.
Page 45 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
11.12 Output Diode PIV
Figure 59 – 265 VAC, 50 Hz Normal Operation
VRM, 50 V / div., 2 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 60 – 265 VAC, 50 Hz Output Short
VRM, 50 V / div., 2 ms / div.
Page 46 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
12 Dimming Waveforms
12.1 Input Voltage and Input Current Waveforms – CLIPSAL 32E450LM
Input: 230 VAC, 50 Hz
Output: 36 V LED Load
Dimmer: Clipsal 32E450LM (Leading Edge Type)
Figure 61 – 140º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 62 – 108º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 63 – 90º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 64 – 49º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Page 47 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
12.2 Output Current Waveforms – CLIPSAL 32E450LM
Input: 230 VAC, 50 Hz
Output: 36 V LED Load
Dimmer: Clipsal 32E450LM (Leading Edge Type)
Figure 65 – 140º Conduction Angle.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 66 – 108º Conduction Angle.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 67 – 90º Conduction Angle.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 68 – 49º Conduction Angle.
Upper: IOUT, 20 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 48 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
12.3 Input Voltage and Input Current Waveforms – CLIPSAL 32E450TM
Input: 230 VAC, 50 Hz
Output: 36 V LED Load
Dimmer: Clipsal 32E450TM (Trailing Edge Type)
Figure 69 – 140º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 70 – 108º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 71 – 90º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 72 – 42º Conduction Angle.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Page 49 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
12.4 Output Current Waveforms – CLIPSAL 32E450TM
Input: 230 VAC, 50 Hz
Output: 36 V LED Load
Dimmer: Clipsal 32E450TM (Trailing Edge Type)
Figure 73 – 140º Conduction Angle.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 74 – 108º Conduction Angle.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 75 – 90º Conduction Angle.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Figure 76 – 42º Conduction Angle.
Upper: IOUT, 20 mA / div.
Lower: VIN, 100 V, 5 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 50 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
13 Conducted EMI
13.1 Test Set-up
The unit was tested using LED load (~36 V VOUT) with input voltage of 230 VAC, 60 Hz at
room temperature.
Figure 77 – EMI Test Set-up with the Unit and LED Load Placed Inside the Cone.
Page 51 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
13.2 Test Result
Power Integrations
20.Dec 11 17:10
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
120
EN55015Q
110
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 78 – Conducted EMI, 36 V LED Load, 230 VAC, 60 Hz, and EN55015 B Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 52 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
14 Line Surge
The unit was subjected to ±2500 V 100 kHz ring wave and ±500 V Differential Surge at
230 VAC using 10 strikes at each condition. A test failure was defined as a nonrecoverable interruption of output requiring supply repair or recycling of input voltage.
Level
(V)
Input
Voltage
(VAC)
Injection
Location
Injection
Phase
(°)
+2500
230
L1, L2
0
-2500
230
L1, L2
0
+2500
230
L1, L2
90
-2500
230
L1, L2
90
Level
(V)
+500
-500
+500
-500
Input
Voltage
(VAC)
230
230
230
230
Injection
Location
L1, L2
L1, L2
L1, L2
L1, L2
Injection
Phase
(°)
0
0
90
90
Type
100 kHz Ring
Wave (500 A)
100 kHz Ring
Wave (500 A)
100 kHz Ring
Wave (500 A)
100 kHz Ring
Wave (500 A)
Test Result
(Pass/Fail)
Pass
Pass
Pass
Pass
Type
Test Result
(Pass/Fail)
Surge (2 )
Surge (2 )
Surge (2 )
Surge (2 )
Pass
Pass
Pass
Pass
Figure 79 – 500 V Differential Line Surge at 90˚ Injection Phase without TVS VR1.
CH1: U1 VDS (<650 V); CH2: C6 Voltage.
Page 53 of 56
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
For improved surge performance or higher surge margin requirement, TVS VR1 can be
added.
Figure 80 – 500 V Differential Line Surge at 90˚ Injection Phase with TVS VR1.
CH1: U1 VDS (<600 V); CH2: C6 Voltage.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 54 of 56
26-Jan-12
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
15 Revision History
Date
26-Jan-12
Page 55 of 56
Author
CA
Revision
1.0
Description and Changes
Initial Release
Reviewed
Apps & Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-314 15.3 W Dimmable LED Driver Using LNK406EG
26-Jan-12
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power
Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
INDIA
th
#1, 14 Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
e-mail:
[email protected]
CHINA (SHENZHEN)
rd
3 Floor, Block A, Zhongtou
International Business Center,
No. 1061, Xiang Mei Road,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 56 of 56
Design Example Report
Title
12 W Non-Isolated, Buck-Boost Topology,
Power Factor Corrected, LED Driver Using
LinkSwitchTM-PH LNK406EG
Specification
90 VAC – 265 VAC Input; 36 V, 330 mA Output
Application
LED Driver
Author
Applications Engineering Department
Document
Number
DER-273
Date
March 31, 2011
Revision
1.0
Summary and Features
 Dramatically simplifies off-line, power factor corrected, LED driver design
 Single-stage, power factor corrected, non-isolated LED driver
 Compact with extremely low component count
 High PF >0.9 across line and load
 High efficiency >85%
 Low THD, <25% at 230 VAC
 Eliminates all control loop compensation
 No output current sensing required
 Advanced performance features
 Compensates for inductance tolerance
 Compensates for input voltage variations
 Compensates for output voltage variations
 Frequency jittering greatly reduces EMI filter costs
 Advanced protection and safety features
 Auto-restart protection for short-circuit
 Hysteretic thermal shutdown
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
Table of Contents
1
2
3
4
5
6
Introduction ................................................................................................................. 5
Power Supply Specification ........................................................................................ 7
Schematic ................................................................................................................... 8
Circuit Description....................................................................................................... 9
PCB Layout............................................................................................................... 10
Bill of Materials ......................................................................................................... 12
6.1
Electrical ............................................................................................................ 12
6.2
Mechanical ........................................................................................................ 12
7 Heat Sink Assembly.................................................................................................. 13
8 Inductor Specification................................................................................................ 15
8.1
Electrical Diagram.............................................................................................. 15
8.2
Electrical Specifications ..................................................................................... 15
8.3
Materials ............................................................................................................ 15
8.4
Inductor Build Diagram ...................................................................................... 15
9 Performance Data..................................................................................................... 16
9.1
Efficiency ........................................................................................................... 16
9.2
Line and Load Regulation.................................................................................. 17
9.3
Power Factor ..................................................................................................... 18
9.4
THD ................................................................................................................... 19
9.5
Harmonics ......................................................................................................... 20
9.5.1
230 VAC .....................................................................................................20
9.5.2
115 VAC .....................................................................................................21
9.6
Test Data ........................................................................................................... 22
9.6.1
Test Data, 13 LED Load .............................................................................22
9.6.2
Test Data, 12 LED Load .............................................................................22
9.6.2
Test Data, 11 LED Load .............................................................................23
9.6.3
230 VAC Harmonics Data ..........................................................................24
9.6.3
115 VAC Harmonics Data ..........................................................................25
10 Waveforms................................................................................................................ 26
10.1 Input Line Current ..........................................................................................26
10.2 Drain Voltage and Current Normal Operation ................................................27
10.3 Drain Voltage and Current Start-up Operation ...............................................28
10.4 Output Current and Output Voltage................................................................29
10.5 Output Current and Voltage at Power-up, Power-down .................................30
10.6 Output Short...................................................................................................31
11 Thermal Measurements ............................................................................................ 32
11 Conducted EMI Measurements ................................................................................ 33
11.1 Conducted EMI Test Set-up .............................................................................. 33
11.2 Conducted EMI Test Results ............................................................................. 34
12 Revision History........................................................................................................ 36
Important Note:
Page 3 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
1 Introduction
The document describes a non-isolated, power factor corrected, low THD, high-efficiency
LED driver designed to drive 36 V at 330 mA from an input voltage range of 90 VAC to
265 VAC.
The LinkSwitch-PH has been developed to cost effectively design a single-stage power
factor corrected LED driver with primary-side constant current control. The LinkSwitch-PH
controller was optimized for LED driver applications with minimal external parts count and
control of the output current through the LED load without the use of an optocoupler.
The LinkSwitch-PH monolithically integrates the 725 V power MOSFET and controller.
The controller consists of an oscillator, PWM, 6 V regulator, BYPASS (BP) pin
programming functions, over-temperature protection, frequency jittering, cycle-by-cycle
current limit, leading edge blanking, and charge controller for output CC (constant
current) control.
The LinkSwitch-PH also provides a sophisticated range of protection features including
auto-restart for control loop open/short faults and output short-circuit conditions. Accurate
hysteretic thermal shutdown ensures safe average PCB temperatures under all
conditions.
The non-isolated power factor corrected buck-boost presented in this report shows how
LinkSwitch-PH dramatically simplifies off-line, high-efficiency, power factor corrected LED
driver design with very low parts count.
This document contains the LED driver specification, schematic, PCB diagram, bill of
materials, conducted EMI measurements, thermal measurements, inductor
documentation and typical performance characteristics.
Figure 1 – Populated Circuit Board Photograph.
Page 5 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
Figure 2 – Populated Circuit Board Photograph, Top.
Figure 3 – Populated Circuit Board Photograph, Bottom.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
2 Power Supply Specification
The table below represents the minimum acceptable performance of the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
Output
LED voltage
LED Current
Total Output Power
Continuous Output Power
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
90
47
265
63
VAC
Hz
2 Wire – no P.E.
50/60
VOUT
30
38
V
mA
36
330
12
POUT
W
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Safety
Non-isolated
Efficiency
83
Harmonic
Class C
Power Factor
Ambient Temperature
Page 7 of 37
61000-3-2
0.9
TAMB
25
o
C
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
3 Schematic
Figure 4 – Schematic.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
4 Circuit Description
The LinkSwitch-PH (U1) is a highly integrated primary-side controller intended for use in
LED driver applications. The LinkSwitch-PH provides high power factor in a single-stage
conversion topology while regulating the output current in a wide range of input and
output voltage variations typical in LED driver application environment. All of the control
circuitry responsible for these functions plus a high-voltage power MOSFET is
incorporated into the device.
Capacitor C1, C2, and differential choke L1, and L2 perform EMI filtering while
maintaining high-power factor. This input filter network plus the frequency jittering feature
of LinkSwitch-PH easily meets Class B emission limits. Resistor R1 and R2 were used to
damp the Q of L1 and L2 for lower EMI.
The buck-boost power circuit with floating output connection composed of U1 (power
switch + control), D2 and D3 (free-wheeling diode), C5 (output capacitor), and L3 (output
inductor). Diode D4 was used to prevent negative voltage appearing across drain-source
of U1 near the zero-crossing of the input voltage. Diode D1 and C3 detect the peak AC
line voltage. The voltage across C3 along with R3, R4, and R5 sets input current fed into
the VOLTAGE MONITOR (V) pin. This current is used by U1 to control line undervoltage
(UV), overvoltage (OV), and feed-forward current which in conjunction with the
FEEDBACK (FB) pin current provides constant current to the LED load.
The FB pin current used by U1 for output voltage feedback is provided by the voltage to
current converter network formed by R7-R10, Q1, C6, and D4. Output voltage is
converted to feedback current by the following relation:
I FB  k  VOUT
where
1
R8
k

R7 R8  R9
Voltage across R8 was chosen high enough to eliminate or minimize the effect of the
temperature and VCE dependence of Q1’s VBE voltage.
Page 9 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
5 PCB Layout
The RD-257 assembled board was used.
Figure 2 – Printed Circuit Layout, Top, 2” (50.8 mm) x 0.95” (24.1 mm).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
The modifications to the RD-257 PCB are shown below. Inductor L3 was removed and
reworked into the location on the PCB for D2. Diodes D2 and D3 were removed and
soldered into locations indicated.
Cut Trace
Inductor L2 in Place of D2
D2, D3
Jumper
Figure 3 – Printed Circuit Layout, Bottom.
Page 11 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
6 Bill of Materials
6.1
Electrical
Item
Qty
Ref
Des
Description
1
1
BR1
1000 V, 0.8 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC
2
1
C1
3
1
C2
Mfg Part Number
Mfg
B10S-G
Comchip
100 nF, 630 V, Film
ECQ-E6104KF
Panasonic
100 nF, 400 V, Film
ECQ-E4104KF
Panasonic
SMG400VB2R2M8X11LL
Nippon ChemiCon
4
1
C3
2.2 F, 400 V, Electrolytic, (8 x 11.5)
5
1
C4
10 F, 25 V, Ceramic, X7R, 1206
6
1
C5
220 F, 50 V, Electrolytic, Very Low ESR, 42 m,
(10 x 16)
7
1
C6
1 F, 25 V, Ceramic, X7R, 1206
8
1
D1
1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA
(MELF)
9
2
D2 D3
600 V, 1 A, Ultrafast Recovery, 35 ns, SMB Case
10
1
D4
100 V, 1 A, Ultrafast Recovery, 25 ns, DO-214AC
11
1
D5
100 V, 0.2 A, Fast Switching, 50 ns, SOD-323
12
1
F1
3.15 A, 250 V, Slow, RST
13
2
L1 L2
2.2 mH, 0.19 A, Ferrite Core
14
1
L3
0.68 mH, RM6 Ferrite Core
15
1
Q1
PNP, Small Signal BJT, 500 V, 0.15 A, SOT23
16
2
R1 R2
17
2
R3 R4
18
1
19
20
21
22
23
24
25
6.2
ECJ-3YB1E106M
Panasonic
EKZE500ELL221MJ16S
Nippon ChemiCon
HMK316B7105KL-T
Taiyo Yuden
DL4007-13-F
Diodes Inc
MURS160T3G
On Semi
ES1B-13-F
Diodes Inc
BAV19WS-7-F
Diodes Inc
507-1181
Belfuse
CTCH895F-222K
CT Parts
FMMT560TA
Zetex
10 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ103V
Panasonic
2.00 M, 1%, 1/4 W, Thick Film, 1206
ERJ-8ENF2004V
Panasonic
R6
24.9 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF2492V
Panasonic
1
R7
88.7 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF8872V
Panasonic
1
R8
34.8 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF3482V
Panasonic
1
R9
90.9 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF9092V
Panasonic
1
R10
47 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ473V
Panasonic
1
R12
0 , 5%, 1/4 W, Thick Film, 1206
ERJ-8GEY0R00V
Panasonic
1
RV1
275 V, 23 J, 7 mm, RADIAL
V275LA4P
Littlefuse
1
U1
LinkSwitch-PH, eSIP
LNK406EG
Power
Integrations
Part Number
Mfg
Mechanical
Item
Qty
Ref Des
Description
1
1
HSK
RD257_HSK
2
1
SCREW1
3
1
ESIP
CLIP1
Heat sink Hardware, Edge Clip 16.5 mm L x 7.5 mm
W x 0.5 mm H
4
1
NUT1
Nut, Hex 4-40, SS
5
1
TE1
SCREW MACHINE PHIL Flat head 4-40 X 1/4 SS
PH-3
Terminal, Eyelet, Tin Plated Brass, Zierick PN 190
190
Zierick
6
1
TP1
Test Point, WHT, Miniature THRU-HOLE MOUNT
5002
Keystone
7
2
TP2 TP4
Test Point, BLK, Miniature THRU-HOLE MOUNT
5001
Keystone
8
1
TP3
Test Point, RED, Miniature THRU-HOLE MOUNT
5000
Keystone
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
7 Heat Sink Assembly
Figure 4 – Heat Sink Dimensions.
Page 13 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
Figure 5 – Heat Sink Assembly Drawing.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
8 Inductor Specification
8.1
Electrical Diagram
Figure 6 – Inductor Electrical Diagram.
8.2
Electrical Specifications
Inductance
Resonant Frequency
8.3
680 H ±5%
1 MHz (Min.)
Materials
Item
[1]
[2]
[3]
[4]
8.4
Pins 1-FLY1, all other windings open, measured at 66 kHz,
0.4 VRMS
Pins 1-FLY1, all other windings open
Description
Core: PC44 RM6 (NC2H).
Bobbin: RM6, Vertical, 6 pins, 3/3.
Magnet Wire: #27 AWG.
Tape: 3M 1298 Polyester Film, 6.4 mm wide.
Inductor Build Diagram
Figure 7 – Inductor Build Diagram.
Page 15 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
9 Performance Data
The following data were measured using 3 sets of load (i.e. 11, 12, and 13 LED strings to
represent the load range of 30 V ~ 36 V output voltage / 10 W ~ 12 W output power).
Refer to the table on Section 9.6 for the complete set of test data values. All
measurements performed at room temperature.
9.1
Efficiency
87.0
~12 W Pout
~11 W Pout
~10 W Pout
86.5
Efficiency (%)
86.0
85.5
85.0
84.5
84.0
83.5
83.0
80
100
120
140
160
180
200
220
240
260
280
Input Voltage (VAC)
Figure 8 – Efficiency vs. Load and Input Voltage.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 37
31-Mar-11
9.2
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
Line and Load Regulation
350
~12 W Pout
~11 W Pout
~10 W Pout
345
Output Currrent (mA)
340
335
330
325
320
315
310
305
300
80
100
120
140
160
180
200
220
240
260
Input Voltage (VAC)
Figure 9 – Regulation vs. Load and Input Voltage.
Page 17 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
9.3
31-Mar-11
Power Factor
0.99
~12 W Pout
~11 W Pout
~10 W Pout
0.98
Power Factor (PF)
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.90
80
100
120
140
160
180
200
220
240
260
280
Input Voltage (VAC)
Figure 10 – Power Factor vs. Load and Input Voltage.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 18 of 37
31-Mar-11
9.4
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
THD
25
24
23
THD (A%)
22
21
20
19
18
~12 W Pout
~11 W Pout
~10 W Pout
17
16
80
100
120
140
160
180
200
220
240
260
Input Voltage (VAC)
Figure 11 – THD vs. Load and Input Voltage.
Page 19 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
9.5
31-Mar-11
Harmonics
9.5.1 230 VAC
50
Class C Limit
230 VAC Harmonics
45
Harmonic Content (mA)
40
35
30
25
20
15
10
5
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic #
Figure 12 – 230 VAC Input Current Harmonics.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
9.5.2 115 VAC
100
Class C Limit
115 VAC Harmonics
90
Harmonic Content (mA)
80
70
60
50
40
30
20
10
0
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Harmonic #
Figure 13 – 115 VAC Input Current Harmonics.
Page 21 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
9.6 Test Data
All measurements were taken with the board at open frame, 25 °C ambient.
9.6.1 Test Data, 13 LED Load
Input
Input Measurement
Load Measurement
VAC
(VRMS)
Freq
(Hz)
I
(mARMS)
P
(W)
PF
%ATHD
90
100
115
132
185
200
230
240
265
60
60
60
60
50
50
50
50
50
157.56
142.99
125.86
111.01
81.31
75.68
66.62
64.14
58.81
13.93
13.99
14.11
14.21
14.40
14.41
14.38
14.36
14.29
0.982
0.979
0.974
0.969
0.957
0.952
0.938
0.932
0.917
17.23
18.66
20.27
21.67
23.34
23.62
23.88
23.84
23.64
V
(VDC)
I
(mADC)
37.41
37.19
37.09
37.04
36.99
36.96
36.94
36.93
36.92
MAX
MIN
314.30
319.20
324.60
328.60
333.20
333.20
331.40
330.50
327.40
333.20
314.30
PO
(W)
Efficiency
(%)
11.85
11.97
12.14
12.27
12.45
12.44
12.36
12.32
12.20
0.97%
4.76%
85.08
85.54
86.07
86.35
86.48
86.33
85.95
85.79
85.38
9.6.2 Test Data, 12 LED Load
Input
Input Measurement
Load Measurement
VAC
(VRMS)
Freq
(Hz)
I
(mARMS)
P
(W)
PF
%ATHD
90
100
115
132
185
200
230
240
265
60
60
60
60
50
50
50
50
50
145.84
132.66
117.06
103.57
76.42
71.29
63.12
60.91
56.17
12.88
12.97
13.10
13.24
13.51
13.55
13.59
13.60
13.60
0.981
0.978
0.973
0.968
0.955
0.950
0.935
0.930
0.913
17.70
19.03
20.56
21.71
22.99
23.14
23.07
23.16
22.83
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
V
(VDC)
I
(mADC)
34.62
34.41
34.33
34.29
34.26
34.24
34.24
34.23
34.22
MAX
MIN
313.00
318.30
324.10
328.80
334.90
335.30
334.50
334.00
332.00
335.30
313.00
PO
(W)
Efficiency
(%)
10.93
11.05
11.23
11.37
11.60
11.61
11.58
11.56
11.48
1.61%
5.15%
84.89
85.22
85.71
85.88
85.86
85.70
85.23
85.03
84.44
Page 22 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
9.6.2 Test Data, 11 LED Load
Input
Input Measurement
Load Measurement
VAC
(VRMS)
Freq
(Hz)
I
(mARMS)
P
(W)
PF
%ATHD
90
100
115
132
185
200
230
240
265
60
60
60
60
50
50
50
50
50
134.59
122.76
108.88
96.49
71.84
67.25
59.94
57.97
53.79
11.87
11.98
12.17
12.32
12.68
12.75
12.87
12.90
12.97
0.979
0.976
0.971
0.967
0.954
0.948
0.933
0.927
0.909
18.20
19.41
20.64
21.64
22.46
22.51
22.23
22.12
21.62
Page 23 of 37
V
(VDC)
I
(mADC)
31.83
31.66
31.57
31.55
31.53
31.51
31.50
31.49
31.48
MAX
MIN
312.50
318.20
324.00
330.00
338.00
339.00
340.00
340.00
340.00
340.00
312.50
PO
(W)
Efficiency
(%)
10.04
10.18
10.37
10.52
10.79
10.82
10.85
10.84
10.83
3.03%
5.30%
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
84.62
84.97
85.24
85.41
85.11
84.84
84.34
84.06
83.51
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
9.6.3 230 VAC Harmonics Data
Freq
49.998
V
230.11
I (mA)
66.86
P
14.4300
PF
0.9381
%THD
23.93
nth
Order
mA
content
Base
Limit
mA/W
Actual
Limit
Remarks
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
64.06
10.20
7.66
5.23
3.85
2.69
2.41
1.85
1.66
1.42
1.42
1.00
1.03
0.85
0.83
0.67
0.65
0.56
0.57
0.47
0.48
0.38
0.38
0.38
0.48
3.40000
1.90000
1.00000
0.50000
0.35000
0.29615
0.25667
0.22647
0.20263
0.18333
0.16739
0.15400
0.14259
0.13276
0.12419
0.11667
0.11000
0.10405
0.09872
49.0620
27.4170
14.4300
7.2150
5.0505
4.2735
3.7037
3.2680
2.9240
2.6455
2.4155
2.2222
2.0576
1.9157
1.7921
1.6835
1.5873
1.5015
1.4245
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
9.6.3 115 VAC Harmonics Data
Freq
59.998
Page 25 of 37
V
115.02
I (mA)
127.89
P
14.3350
PF
0.9745
%THD
20.31
nth
Order
mA
Content
Base
Limit
mA/W
Actual
Limit
Remarks
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
124.19
19.23
11.00
7.56
5.72
4.09
2.88
2.22
1.79
1.22
0.99
0.74
0.92
1.18
0.93
0.72
0.45
0.35
0.30
0.24
0.16
0.13
0.10
0.09
0.10
3.40000
1.90000
1.00000
0.50000
0.35000
0.29615
0.25667
0.22647
0.20263
0.18333
0.16739
0.15400
0.14259
0.13276
0.12419
0.11667
0.11000
0.10405
0.09872
97.4780
54.4730
28.6700
14.3350
10.0345
8.4907
7.3586
6.4929
5.8094
5.2562
4.7991
4.4152
4.0881
3.8062
3.5606
3.3448
3.1537
2.9832
2.8302
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
10 Waveforms
10.1
Input Line Current
Figure 14 – 90 VAC 60 Hz, Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 15 – 115 VAC 60 Hz, Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 16 – 230 VAC 50 Hz, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 17 – 265 VAC 50 Hz, Full Load.
Upper: IIN, 50 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 37
31-Mar-11
10.2
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
Drain Voltage and Current Normal Operation
Figure 18 – 90 VAC 60Hz, Full Load.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 50 V, 5 ms / div.
Figure 19 – 90 VAC 60Hz, Full Load.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 50 V, 5 s / div.
Figure 20 – 265 VAC 50 Hz, Full Load.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 21 – 265 VAC 50 Hz, Full Load.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 5 s / div.
Page 27 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
10.3
31-Mar-11
Drain Voltage and Current Start-up Operation
Figure 22 – 90 VAC 60 Hz, Full Load Start-up.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 50 V, 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 23 – 265 VAC 50 Hz, 90˚ Full Load Start-up.
Upper: IDRAIN, 500 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Page 28 of 37
31-Mar-11
10.4
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
Output Current and Output Voltage
Figure 24 – 90 VAC 60 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 5 ms / div.
Figure 25 – 115 VAC 60 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 5 ms / div.
Figure 26 – 230 VAC 50 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 5 ms / div.
Figure 27 – 265 VAC 50 Hz, Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 5 ms / div.
Page 29 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
10.5
31-Mar-11
Output Current and Voltage at Power-up, Power-down
Figure 28 – 90 VAC 60 Hz, Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 50 ms / div.
Figure 29 – 90 VAC 60 Hz, Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 50 ms / div.
Figure 30 – 265 VAC 50 Hz, Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 50 ms / div.
Figure 31 – 265 VAC 50 Hz, Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 10 V, 50 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 37
31-Mar-11
10.6
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
Output Short
Figure 32 – 265 VAC 50 Hz, Output Short.
Upper: IDRAIN, 1 A / div.
Lower: VDRAIN, 100 V, 500 ms / div.
Page 31 of 37
Figure 33 – 265 VAC 50 Hz, Output Short.
Upper: IDRAIN, 1 A / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
11 Thermal Measurements
Thermal measurements were done with the EUT operated at room temperature.
Figure 34 – 90 VAC 60 Hz, Thermals.
Top Side.
Device: U1 - LNK406EG
Figure 35 – 90 VAC 60 Hz, Thermals.
Bottom Side.
Device: D2, D3
Figure 36 – 265 VAC 50 Hz, Thermals.
Top Side.
Device: U1 - LNK406EG
Figure 37 – 265 VAC 50 Hz, Thermals.
Bottom Side.
Device: D2, D3
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
11 Conducted EMI Measurements
11.1
Conducted EMI Test Set-up
Figure 38 – EMI Measurement Set-up.
Page 33 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
11.2
31-Mar-11
Conducted EMI Test Results
Power Integrations
22.Feb 11 09:02
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
1 QP
CLRWR
100
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
67.1676282959 kHz
28.02
L1 gnd
2
Average
124.475875068 kHz
30.87
N gnd
2
Average
126.977840157 kHz
41.66
N gnd
2
Average
133.454986145 kHz
22.80
L1 gnd
2
Average
136.137431366 kHz
35.13
L1 gnd
2
Average
138.873793737 kHz
25.74
L1 gnd
1
Quasi Peak
196.231331718 kHz
53.53
N gnd
2
Average
196.231331718 kHz
45.07
L1 gnd
-8.69
1
Quasi Peak
261.871472881 kHz
47.87
N gnd
-13.50
2
Average
261.871472881 kHz
36.66
L1 gnd
-14.71
1
Quasi Peak
325.955575511 kHz
44.22
L1 gnd
-15.33
2
Average
325.955575511 kHz
32.07
L1 gnd
-17.47
1
Quasi Peak
389.890938834 kHz
40.92
L1 gnd
-17.14
1
Quasi Peak
457.177788726 kHz
37.12
L1 gnd
-19.62
1
Quasi Peak
782.418853721 kHz
39.38
N gnd
-16.61
2
Average
17.975130353 MHz
30.40
L1 gnd
-19.59
-10.23
Figure 39 – Conducted EMI, 12 LED Load, 230 VAC, 60 Hz, and EN55015 Limits.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
Power Integrations
22.Feb 11 09:31
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
100 kHz
120
EN55015Q
LIMIT CHECK
110
1 MHz
PASS
10 MHz
SGL
100
1 QP
CLRWR
90
2 AV
CLRWR
TDF
80
70
60
EN55015A
50
6DB
40
30
20
10
0
-10
-20
9 kHz
Trace1:
30 MHz
EDIT PEAK LIST (Final Measurement Results)
EN55015Q
Trace2:
EN55015A
Trace3:
---
TRACE
FREQUENCY
LEVEL dBµV
DELTA LIMIT dB
2
Average
64.5467705779 kHz
33.38
L1 gnd
2
Average
67.1676282959 kHz
34.73
N gnd
2
Average
124.475875068 kHz
41.51
N gnd
2
Average
126.977840157 kHz
41.55
L1 gnd
2
Average
129.530094744 kHz
36.65
N gnd
2
Average
136.137431366 kHz
47.61
L1 gnd
2
Average
138.873793737 kHz
40.17
L1 gnd
2
Average
162.428505844 kHz
33.89
L1 gnd
-21.44
1
Quasi Peak
196.231331718 kHz
55.07
N gnd
-8.69
2
Average
196.231331718 kHz
46.05
L1 gnd
-7.71
1
Quasi Peak
261.871472881 kHz
44.02
L1 gnd
-17.34
2
Average
261.871472881 kHz
34.52
L1 gnd
-16.84
1
Quasi Peak
393.789848222 kHz
39.10
N gnd
-18.87
1
Quasi Peak
457.177788726 kHz
40.27
L1 gnd
-16.47
1
Quasi Peak
520.310969312 kHz
38.50
L1 gnd
-17.49
1
Quasi Peak
782.418853721 kHz
37.78
N gnd
-18.21
Figure 40 – Conducted EMI, 12 LED Load, 115 VAC, 60 Hz, and EN55015 Limits.
Page 35 of 37
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
31-Mar-11
12 Revision History
Date
31-Mar-11
Author
CA
Revision
1.0
Description & changes
Initial release
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Reviewed
ME
Page 36 of 37
31-Mar-11
DER-273 12 W Buck-Boost LED Driver Using LNK406EG
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.
Other trademarks are property of their respective companies. ©Copyright 2011 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail:
[email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3911
Fax: +49-89-5527-3920
e-mail:
[email protected]
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: [email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail:
[email protected]
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
[email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728
Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: [email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
[email protected]
CHINA (SHENZHEN)
Rm A, B & C 4th Floor, Block C,
Electronics Science and
Technology Building
2070 Shennan Zhong Road
Shenzhen, Guangdong,
P.R.C. 518031
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail:
[email protected]
ITALY
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Page 37 of 37
APPLICATIONS FAX
World Wide +1-408-414-9760
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com