PHILIPS MAC223A8X

Philips Semiconductors
Product specification
Triacs
MAC223A8X
GENERAL DESCRIPTION
QUICK REFERENCE DATA
Passivated triac in a full pack, plastic
envelope, intended for use in applications
requiring high bidirectional transient and
blocking voltage capability and high thermal
cycling performance. Typical applications
include motor control, industrial and
domestic lighting, heating and static
switching.
PINNING - SOT186A
PIN
SYMBOL
PARAMETER
MAX.
UNIT
VDRM
Repetitive peak off-state
voltages
600
V
IT(RMS)
RMS on-state current
20
A
ITSM
Non-repetitive peak on-state
current
230
A
PIN CONFIGURATION
SYMBOL
DESCRIPTION
case
1
main terminal 1
2
main terminal 2
3
gate
T2
T1
G
1 2 3
case isolated
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL
PARAMETER
VDRM
Repetitive peak off-state
voltages
IT(RMS)
ITSM
RMS on-state current
Non-repetitive peak
on-state current
I2t
dIT/dt
I2t for fusing
Repetitive rate of rise of
on-state current after
triggering
IGM
VGM
PGM
PG(AV)
Tstg
Tj
Peak gate current
Peak gate voltage
Peak gate power
Average gate power
Storage temperature
Operating junction
temperature
September 2002
CONDITIONS
full sine wave; Ths ≤ 25 ˚C
full sine wave; Tj = 25 ˚C prior to
surge
t = 16.7 ms
t = 10 ms
ITM = 30 A; IG = 0.2 A;
dIG/dt = 0.2 A/µs
T2+ G+
T2+ GT2- GT2- G+
over any 20 ms period
1
MIN.
MAX.
UNIT
-
6001
V
-
20
A
-
230
180
A
A2s
-40
-40
50
50
50
10
2
5
5
0.5
150
125
A/µs
A/µs
A/µs
A/µs
A
V
W
W
˚C
˚C
Rev 1.000
Philips Semiconductors
Product specification
Triacs
MAC223A8X
THERMAL RESISTANCES
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Rth j-hs
Thermal resistance
junction heatsink
Rth j-a
Thermal resistance
junction to ambient
full or half cycle
with heatsink compound
without heatsink compound
in free air
-
55
3.85
5.5
-
K/W
K/W
K/W
MIN.
TYP.
MAX.
UNIT
-
-
2500
V
-
10
-
pF
MIN.
TYP.
MAX.
UNIT
T2+ G+
T2+ GT2- GT2- G+
-
6
10
11
23
50
50
50
75
mA
mA
mA
mA
T2+ G+
T2+ GT2- GT2- G+
-
8
30
18
15
40
60
40
60
mA
mA
mA
mA
IT = 30 A
VD = 12 V; IT = 0.1 A
VD = 400 V; IT = 0.1 A; Tj = 125 ˚C
VD = VDRM(max); Tj = 125 ˚C
0.25
-
7
12
1.3
0.7
0.4
0.1
30
30
1.55
1.5
0.5
mA
mA
V
V
V
mA
ISOLATION LIMITING VALUE & CHARACTERISTIC
Ths = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
Visol
R.M.S. isolation voltage from all
three terminals to external
heatsink
f = 50-60 Hz; sinusoidal
waveform;
R.H. ≤ 65% ; clean and dustfree
Cisol
Capacitance from T2 to external f = 1 MHz
heatsink
STATIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
IGT
Gate trigger current
VD = 12 V; IT = 0.1 A
IL
Latching current
IH
Holding current
VT
VGT
On-state voltage
Gate trigger voltage
ID
Off-state leakage current
VD = 12 V; IGT = 0.1 A
VD = 12 V; IGT = 0.1 A
T2+
T2-
DYNAMIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
dVD/dt
Critical rate of rise of
off-state voltage
Critical rate of change of
commutating voltage
Gate controlled turn-on
time
VDM = 67% VDRM(max); Tj = 125 ˚C;
exponential waveform; gate open circuit
VDM = 400 V; Tj = 95 ˚C; IT(RMS) = 25 A;
dIcom/dt = 9 A/ms; gate open circuit
ITM = 30 A; VD = VDRM(max); IG = 0.1 A;
dIG/dt = 5 A/µs
100
300
-
V/µs
-
10
-
V/µs
-
2
-
µs
dVcom/dt
tgt
September 2002
2
Rev 1.000
Philips Semiconductors
Product specification
Triacs
30
MAC223A8X
Ptot (W)
Ths(max) (°C)
IT (RMS) (A)
10
25
= 180
20
120
1
20
48
90
60
15
30
10
87
10
5
125
0
0
5
10
15
0
-50
20
25
IT(RMS) (A)
Fig.1. Maximum on-state dissipation, Ptot, versus rms
on-state current, IT(RMS), where α = conduction angle.
1000
0
50
100
Ths (°C)
150
Fig.4. Maximum permissible rms current IT(RMS) ,
versus heatsink temperature Ths.
ITSM / A
50
IT(RMS) / A
40
30
100
dI T /dt limit
20
I TSM
IT
T2- G+ quadrant
T
10
time
Tj initial = 25 C max
10
10us
100us
1ms
T/s
10ms
0
0.01
100ms
Fig.2. Maximum permissible non-repetitive peak
on-state current ITSM, versus pulse width tp, for
sinusoidal currents, tp ≤ 20ms.
200
1.6
ITSM
T
150
10
Fig.5. Maximum permissible repetitive rms on-state
current IT(RMS), versus surge duration, for sinusoidal
currents, f = 50 Hz; Ths ≤ 91˚C.
ITSM / A
IT
0.1
1
surge duration / s
VGT(Tj)
VGT(25 C)
1.4
time
Tj initial = 25 C max
1.2
100
1
0.8
50
0.6
0
1
10
100
Number of cycles at 50Hz
0.4
-50
1000
Fig.3. Maximum permissible non-repetitive peak
on-state current ITSM, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
September 2002
0
50
Tj / C
100
150
Fig.6. Normalised gate trigger voltage
VGT(Tj)/ VGT(25˚C), versus junction temperature Tj.
3
Rev 1.000
Philips Semiconductors
Product specification
Triacs
5
MAC223A8X
IGT(Tj)
IGT(25 C)
T2+ G+
T2+ GT2- GT2- G+
4
BTA140
IT / A
80
Tj = 125 C
Tj = 25 C
70
typ
60 Vo = 1.073 V
max
Rs = 0.015 ohms
50
3
40
2
30
20
1
10
0
-50
0
50
Tj / C
100
0
150
0.5
1
1.5
VT / V
2
2.5
3
Fig.10. Typical and maximum on-state characteristic.
Fig.7. Normalised gate trigger current
IGT(Tj)/ IGT(25˚C), versus junction temperature Tj.
3
0
IL(Tj)
IL(25 C)
10
Zth j-hs (K/W)
with heatsink compound
without heatsink compound
2.5
1
unidirectional
bidirectional
2
0.1
1.5
P
D
1
tp
0.01
0.5
t
0
-50
0
50
Tj / C
100
0.001
10us
150
1ms
10ms
0.1s
10s
1s
tp (s)
Fig.8. Normalised latching current IL(Tj)/ IL(25˚C),
versus junction temperature Tj.
3
0.1ms
Fig.11. Transient thermal impedance Zth j-hs, versus
pulse width tp.
IH(Tj)
IH(25C)
1000
dV/dt (V/us)
off-state dV/dt limit
2.5
100
2
1.5
dIcom/dt =
25 A/ms
10
1
20
15
12
9.0
7.0
0.5
0
-50
0
50
Tj / C
100
1
150
50
100
150
Tj / C
Fig.9. Normalised holding current IH(Tj)/ IH(25˚C),
versus junction temperature Tj.
September 2002
0
Fig.12. Typical commutation dV/dt versus junction
temperature, parameter commutation dIT/dt. The triac
should commutate when the dV/dt is below the value
on the appropriate curve for pre-commutation dIT/dt.
4
Rev 1.000
Philips Semiconductors
Product specification
Triacs
MAC223A8X
MECHANICAL DATA
Dimensions in mm
Net Mass: 2 g
10.3
max
4.6
max
3.2
3.0
2.9 max
2.8
Recesses (2x)
2.5
0.8 max. depth
6.4
15.8
max.
19
max.
15.8
max
seating
plane
3 max.
not tinned
3
2.5
13.5
min.
1
0.4
2
3
M
1.0 (2x)
0.6
2.54
0.9
0.7
0.5
2.5
5.08
1.3
Fig.13. SOT186A; The seating plane is electrically isolated from all terminals.
Notes
1. Refer to mounting instructions for F-pack envelopes.
2. Epoxy meets UL94 V0 at 1/8".
September 2002
5
Rev 1.000
Philips Semiconductors
Product specification
Triacs
MAC223A8X
DEFINITIONS
DATA SHEET STATUS
DATA SHEET
STATUS1
PRODUCT
STATUS2
DEFINITIONS
Objective data
Development
This data sheet contains data from the objective specification for
product development. Philips Semiconductors reserves the right to
change the specification in any manner without notice
Preliminary data
Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product
Product data
Production
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in
order to improve the design, manufacturing and supply. Changes will
be communicated according to the Customer Product/Process
Change Notification (CPCN) procedure SNW-SQ-650A
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 2002
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
1 Please consult the most recently issued datasheet before initiating or completing a design.
2 The product status of the device(s) described in this datasheet may have changed since this datasheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
September 2002
6
Rev 1.000