AD AD8648ARZ

Low Cost, 24 MHz, Rail-to-Rail,
Quad Amplifiers
AD8648
APPLICATIONS
Barcode scanners
Battery-powered instrumentation
Multipole filters
Sensors
ASIC input or output amplifiers
Audio
Photodiode amplification
PIN CONFIGURATIONS
OUT A 1
14
OUT D
–IN A 2
13
–IN D
12
+IN D
11
V–
+IN B 5
10
+IN C
–IN B 6
9
–IN C
OUT B 7
8
OUT C
AD8648
+IN A 3
TOP VIEW
(Not to Scale)
V+ 4
05890-001
Low offset voltage: 2.5 mV max
Single-supply operation: 2.7 V to 5.5 V
Low noise: 6 nV/√Hz
Wide bandwidth: 24 MHz
Slew rate: 12 V/μs
High output current: 150 mA
No phase reversal
Low input bias current: 1 pA
Low supply current: 2 mA max
Unity-gain stable
Figure 1. 14-Lead TSSOP (RU-14)
OUT D
OUT A
1
14
–IN A
2
13
–IN D
+IN A
3
12
+IN D
AD8648
TOP VIEW
11 V–
(Not to Scale)
10 +IN C
V+
4
+IN B
5
–IN B
6
9
–IN C
OUT B
7
8
OUT C
05890-002
FEATURES
Figure 2. 14-Lead SOIC (R-14)
GENERAL DESCRIPTION
The AD8648 is a quad, rail-to-rail, input and output, singlesupply amplifier featuring low offset voltage, wide signal
bandwidth, and low input voltage and current noise.
The combination of 24 MHz bandwidth, low offset, low noise,
and very low input bias current makes these amplifiers useful in
a wide variety of applications. Filters, integrators, photodiode
amplifiers, and high impedance sensors all benefit from the
combination of performance features. AC applications benefit
from the wide bandwidth and low distortion. The AD8648
family offers high output drive capability, which is excellent for
audio line drivers and other low impedance applications.
Applications for the part include portable and low powered
instrumentation, audio amplification for portable devices,
portable phone headsets, bar code scanners, and multipole
filters. The ability to swing rail to rail at both the input and
output enables designers to buffer CMOS ADCs, DACs, ASICs,
and other wide output swing devices in single-supply systems.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2006 Analog Devices, Inc. All rights reserved.
AD8648
TABLE OF CONTENTS
Features .............................................................................................. 1
Absolute Maximum Ratings ............................................................5
Applications....................................................................................... 1
Thermal Resistance .......................................................................5
Pin Configurations ........................................................................... 1
ESD Caution...................................................................................5
General Description ......................................................................... 1
Typical Performance Characteristics ..............................................6
Revision History ............................................................................... 2
Outline Dimensions ....................................................................... 12
Specifications..................................................................................... 3
Ordering Guide .......................................................................... 12
REVISION HISTORY
1/06—Rev 0: Initial Version
Rev. 0 | Page 2 of 12
AD8648
SPECIFICATIONS
VDD = 5.0 V, VCM = VDD/2, TA = 25oC, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
VOS
Offset Voltage Drift
Input Bias Current
ΔVOS/ΔT
IB
VCM = 0 V to 5 V
−40°C < TA < +125°C
−40°C < TA < +125°C
Min
Typ
Max
Unit
0.7
2.5
3.2
7.5
1
50
550
0.5
50
250
5
mV
mV
μV/°C
pA
pA
pA
pA
pA
pA
V
dB
V/mV
pF
pF
2.0
0.2
−40°C < TA < +85°C
−40°C < TA < +125°C
Input Offset Current
IOS
0.1
−40°C < TA < +85°C
−40°C < TA < +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large-Signal Voltage Gain
Input Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Output Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
VCM
CMRR
AVO
CDIFF
CCM
VOH
VOL
ISC
ZOUT
PSRR
ISY
VCM = 0 V to 5.0 V
RL = 2 kΩ, VO = 0.5 V to 4.5 V
IOUT = 1 mA
IOUT = 10 mA
−40°C < TA < +125°C
IOUT = 1 mA
IOUT = 10 mA
−40°C < TA < +125°C
0
67
160
4.98
4.87
4.70
4.99
4.92
8.4
78
63
80
1.8
−40°C < TA < +125°C
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
Channel Separation
20
145
200
±150
3
At 1 MHz, AV = 1
VDD = 2.7 V to 5.5 V
84
700
2.5
6.7
2.0
2.5
V
V
V
mV
mV
mV
mA
Ω
dB
mA
mA
SR
ts
GBP
ΦM
RL = 2 kΩ
To 0.01%
12
0.5
24
74
V/μs
μs
MHz
Degrees
en p-p
en
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 kHz
f = 10 kHz
f = 100 kHz
2.4
8
6
−115
−110
μV
nV/√Hz
nV/√Hz
dB
dB
CS
Rev. 0 | Page 3 of 12
AD8648
VDD = 2.7 V, VCM = VDD/2, TA = 25oC, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
VOS
Offset Voltage Drift
Input Bias Current
ΔVOS/ΔT
IB
VCM = 0 V to 2.7 V
−40°C < TA < +125°C
−40°C < TA < +125°C
Min
Typ
Max
Unit
0.7
2.5
3.2
7.0
1
50
550
0.5
50
250
2.7
mV
mV
μV/°C
pA
pA
pA
pA
pA
pA
V
dB
V/mV
pF
pF
1.8
0.2
−40°C < TA < +85°C
−40°C < TA < +125°C
Input Offset Current
IOS
0.1
−40°C < TA < +85°C
−40°C < TA < +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large-Signal Voltage Gain
Input Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Output Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
VCM
CMRR
AVO
CDIFF
CCM
VOH
VOL
ISC
ZOUT
PSRR
ISY
VCM = 0 V to 2.7 V
RL = 2 kΩ, VO = 0.5 V to 2.2 V
IOUT = 1 mA
−40°C < TA < +125°C
IOUT = 1 mA
−40°C < TA < +125°C
0
62
60
2.65
2.60
2.69
11
63
80
1.7
−40°C < TA < +125°C
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
Channel Separation
25
30
±50
3
At 1 MHz, AV = 1
VDD = 2.7 V to 5.5 V
79
130
2.5
7.8
2.0
2.5
V
V
mV
mV
mA
Ω
dB
mA
mA
SR
ts
GBP
ΦM
RL = 2 kΩ
To 0.01%
12
0.3
22
52
V/μs
μs
MHz
Degrees
en p-p
en
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 kHz
f = 10 kHz
f = 100 kHz
2.1
8
6
−115
−110
μV
nV/√Hz
nV/√Hz
dB
dB
CS
Rev. 0 | Page 4 of 12
AD8648
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage
Output Short Circuit to GND
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 60 sec)
Junction Temperature
Rating
6V
GND to VDD
±3 V
Indefinite
−65°C to +150°C
−40°C to +125°C
300°C
150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type
14-Lead SOIC (R)
14-Lead TSSOP (RU)
θJA
120
180
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 5 of 12
θJC
36
35
Unit
°C/W
°C/W
AD8648
TYPICAL PERFORMANCE CHARACTERISTICS
140
INPUT BIAS CURRENT (pA)
120
NUMBER OF AMPLIFIERS
1000
V DD = 5V
V CM = 2.5V
T = 25°C
1400 AMPLIFIERS
100
80
60
40
VDD = 2.7V TO 5V
100
10
1
–1.0
–0.5
0
0.5
1.0
INPUT OFFSET VOLTAGE (mV)
1.5
2.0
0.1
25
45
1000
NUMBER OF AMPLIFIERS
OUTPUT SATURATION VOLTAGE (mV)
V DD = 5V
V CM = 2.5V
–40°C < TA < +125°C
25
20
15
10
5
0
1
2
3
4
TCVOS (µV/°C)
5
6
7
10
VOL
SINKING
1
0.01
0.1
1
LOAD CURRENT (mA)
10
100
Figure 7. Output Saturation Voltage vs. Load Current
25
OUTPUT SATURATION VOLTAGE (mV)
VDD = 5V
TA = 25°C
2000
1500
1000
500
0
–500
–1000
–1500
VDD = 5V
IOUT = 1mA
20
15
VDD – VOH
SOURCING
10
VOL
SINKING
5
–2500
0
1
2
3
4
INPUT COMMON-MODE VOLTAGE (V)
5
0
–40
–20
0
20
40
60
TEMPERATURE (°C)
80
100
Figure 8. Output Saturation Voltage vs. Temperature
Figure 5. Input Offset Voltage vs. Input Common-Mode Voltage
Rev. 0 | Page 6 of 12
120
05890-008
–2000
05890-005
INPUT OFFSET VOLTAGE (µV)
VDD – VOH
SOURCING
100
Figure 4. VOS Drift (TCVOS) Distribution
2500
125
VDD = 5V
T = 25°C
0.1
0.001
05890-004
0
105
Figure 6. Input Bias Current vs. Temperature
Figure 3. Input Offset Voltage Distribution
30
65
85
TEMPERATURE (°C)
05890-007
–1.5
05890-003
0
–2.0
05890-006
20
AD8648
90
20
135
ФM = 74°
GAIN
0
180
–20
225
–40
10k
100k
1M
270
100M
10M
FREQUENCY (Hz)
80
20
1k
OUTPUT SWING (V p-p)
4.0
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 12. Common-Mode Rejection Ratio vs. Frequency
100
VDD = 5V
VIN = 4.9V p-p
AV = 1
RL = 10kΩ
TA = 25°C
4.5
60
40
Figure 9. Open-Loop Gain and Phase vs. Frequency
5.0
VDD = 5V
TA = 25°C
05890-012
40
CMRR (dB)
45
PHASE
VDD = 5V
TA = 25°C
PSRR+
80
3.5
PSRR–
PSRR (dB)
3.0
2.5
2.0
60
40
1.5
20
1.0
10M
0
1k
100k
1M
Figure 13. Power Supply Rejection Ratio vs. Frequency
1000
VDD = 2.7V TO 5V
TA = 25°C
VOLTAGE NOISE DENSITY (nV/√Hz)
VDD = 5V
TA = 25°C
100
AV = 100
AV = 10
1
0.1
1K
10K
AV = 1
100K
1M
10M
100M
FREQUENCY (Hz)
100
10
1
10
05890-011
10
10M
FREQUENCY (Hz)
Figure 10. Maximum Output Swing vs. Frequency
1000
10k
100
1k
FREQUENCY (Hz)
Figure 14. Voltage Noise Density vs. Frequency
Figure 11. Closed-Loop Output Impedance vs. Frequency
Rev. 0 | Page 7 of 12
10k
05890-014
1M
FREQUENCY (Hz)
05890-010
0
100k
05890-013
0.5
ZOUT (Ω)
OPEN-LOOP GAIN (dB)
60
100
0
OPEN-LOOP PHASE SHIFT (Degrees)
VDD = 5V
RL = 1kΩ
CL = 10pF
05890-009
80
AD8648
0.1
VDD = 5V
VIN = 300mV rms
BW = 80kHz
RL = 100kΩ
VDD = 2.7V TO 5V
TA = 25°C
0.0001
20
05890-015
TIME (1s/DIV)
0.001
100
Figure 15. 0.1 Hz to 10 Hz Voltage Noise
20k
Figure 18. THD + Noise vs. Frequency
1
VDD = 5V
RL = 10kΩ
CL = 20pF
AV = 1
OUTPUT VOLTAGE (50mV/DIV)
10k
1k
FREQUENCY (Hz)
05890-018
VOLTAGE (1µV/DIV)
THD + NOISE (%)
0.01
0.01
0.001
0.0001
0.001
05890-016
TIME (40ns/DIV)
0.01
0.1
1
OUTPUT AMPLITUDE (V rms)
Figure 16. Small-Signal Transient Response
Figure 19. THD + Noise vs. Output Amplitude
70
SMALL-SIGNAL OVERSHOOT (%)
VDD = 5V
RL = 100kΩ
CL = 20pF
AV = 1
OUTPUT VOLTAGE (500mV/DIV)
VDD = 5V
AV = 1
BW = 30kHz
RL = 100kΩ
f = 1kHz
05890-019
THD + NOISE (%)
0.1
VDD = 5V
RL = 10kΩ
TA = 25°C
60
50
40
OS+
30
OS–
20
05890-017
TIME (200ns/DIV)
0
10
100
1000
LOAD CAPACITANCE (pF)
Figure 20. Small-Signal Overshoot vs. Load Capacitance
Figure 17. Large-Signal Transient Response
Rev. 0 | Page 8 of 12
05890-020
10
AD8648
OUTPUT SATURATION VOLTAGE (V)
100
80
60
40
20
–1.5
–1.0
–0.5
0
0.5
1.0
1.5
2.0
INPUT OFFSET VOLTAGE (mV)
VDD – VOH
SOURCING
10
VOL
SINKING
1
0.1
0.001
05890-021
0
–2.0
100
OUTPUT SATURATION VOLTAGE (V)
NUMBER OF AMPLIFIERS
25
20
15
10
5
0
1
2
3
4
5
6
7
8
TCVOS (µV/°C)
VDD – VOH
SOURCING
15
VOL
SINKING
10
5
0
–40
–20
0
20
40
60
80
Figure 25. Output Saturation Voltage vs. Temperature
80
2500
VDD = 2.7V
RL = 1kΩ
CL = 10pF
VDD = 2.7V
TA = 25°C
2000
120
100
TEMPERATURE (°C)
Figure 22. VOS Drift (TCVOS) Distribution
60
OPEN-LOOP GAIN (dB)
1500
1000
500
0
–500
–1000
–1500
0
45
90
40
ФM = 52°
20
135
0
180
–20
225
–2500
0
0.5
1.0
1.5
2.0
2.5
3.0
INPUT COMMON-MODE VOLTAGE (V)
–40
10k
100k
1M
10M
270
100M
FREQUENCY (Hz)
Figure 26. Open-Loop Gain and Phase vs. Frequency
Figure 23. Input Offset Voltage vs. Input Common-Mode Voltage
Rev. 0 | Page 9 of 12
05890-026
–2000
05890-023
INPUT OFFSET VOLTAGE (µV)
VDD = 2.7V
ILOAD = 1mA
20
05890-022
0
10
Figure 24. Output Saturation Voltage vs. Load Current
VDD = 2.7V
VCM = 1.35V
–40°C < TA < +125°C
25
1
0.1
LOAD CURRENT (mA)
Figure 21. Input Offset Voltage Distribution
30
0.01
05890-024
120
VDD = 2.7V
TA = 25°C
05890-025
140
NUMBER OF AMPLIFIERS
1000
VDD = 2.7V
VCM = 1.35V
TA = 25°C
1400 AMPLIFIERS
OPEN-LOOP PHASE SHIFT (Degrees)
160
AD8648
100
3.0
VDD = 2.7V
VIN = 2.6V p-p
AV = 1
RL = 10kΩ
TA = 25°C
80
2.0
60
PSRR (dB)
1.5
40
1.0
10M
1M
FREQUENCY (Hz)
0
1k
05890-027
0
100k
10M
1M
Figure 30. Power Supply Rejection Ratio vs. Frequency
VDD = 2.7V
TA = 25°C
AV = 10
AV = 1
0.1
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
05890-028
1
TIME (40ns/DIV)
Figure 28. Closed-Loop Output Impedance vs. Frequency
100
Figure 31. Small-Signal Transient Response
VDD = 2.7V
TA = 25°C
VDD = 2.7V
RL = 10kΩ
CL = 20pF
AV = 1
OUTPUT VOLTAGE (500mV/DIV)
80
60
10k
100k
1M
FREQUENCY (Hz)
10M
05890-029
40
20
1k
05890-031
AV = 100
10
VDD = 2.7V
RL = 10kΩ
CL = 20pF
AV = 1
OUTPUT VOLTAGE (50mV/DIV)
100
ZOUT (Ω)
100k
FREQUENCY (Hz)
Figure 27. Maximum Output Swing vs. Frequency
1000
10k
05890-030
20
0.5
CMRR (dB)
PSRR–
Figure 29. Common-Mode Rejection Ratio vs. Frequency
TIME (1µs/DIV)
Figure 32. Large-Signal Transient Response
Rev. 0 | Page 10 of 12
05890-032
OUTPUT SWING (V p-p)
2.5
VDD = 2.7V
TA = 25°C
PSRR+
AD8648
2.5
40
OS+
30
OS–
20
10
0
1
10
1000
100
LOAD CAPACITANCE (pF)
Figure 33. Small-Signal Overshoot vs. Load Capacitance
3.0
2.5
VDD = 2.7V
VDD = 5.0V
1.5
1.0
0.5
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
05890-034
SUPPLY CURRENT PER AMPLIFIER (mA)
VOUT = VDD/2
3.5
0
–40
2.0
1.5
1.0
0.5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
Figure 35. Supply Current per Amplifier vs. Supply Voltage
4.0
2.0
TA = 25°C
Figure 34. Supply Current per Amplifier vs. Temperature
Rev. 0 | Page 11 of 12
5.0
05890-035
SUPPLY CURRENT PER AMPLIFIER (mA)
VDD = 2.7V
RL = 10kΩ
TA = 25°C
05890-033
SMALL-SIGNAL OVERSHOOT (%)
50
AD8648
OUTLINE DIMENSIONS
5.10
5.00
4.90
14
8
4.50
4.40
4.30
6.40
BSC
1
7
PIN 1
0.65
BSC
1.05
1.00
0.80
1.20
MAX
0.15
0.05
0.30
0.19
0.20
0.09
SEATING
COPLANARITY
PLANE
0.10
0.75
0.60
0.45
8°
0°
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 36. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
14
8
1
7
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
6.20 (0.2441)
5.80 (0.2283)
1.75 (0.0689)
1.35 (0.0531)
0.51 (0.0201)
0.31 (0.0122)
SEATING
PLANE
0.50 (0.0197)
× 45°
0.25 (0.0098)
8°
0.25 (0.0098) 0° 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 37. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-14)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model
AD8648ARZ 1
AD8648ARZ-REEL1
AD8648ARZ-REEL71
AD8648ARUZ1
AD8648ARUZ-REEL1
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead TSSOP
14-Lead TSSOP
Z = Pb-free part.
©2006 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05890–0–1/06(0)
Rev. 0 | Page 12 of 12
Package Option
R-14
R-14
R-14
RU-14
RU-14