LINER LT1012AIN8

LT1012A/LT1012
Picoamp Input Current,
Microvolt Offset,
Low Noise Op Amp
DESCRIPTIO
U
FEATURES
■
■
■
■
■
■
■
■
■
OP-07 Type Performance:
at 1/8th of OP-07’s Supply Current
at 1/20th of OP-07’s Bias and Offset Currents
Guaranteed Offset Voltage: 25µV Max
Guaranteed Bias Current: 100pA Max
Guaranteed Drift: 0.6µV/°C Max
Low Noise, 0.1Hz to 10Hz: 0.5µVP-P
Guaranteed Low Supply Current: 500µA Max
Guaranteed CMRR: 114dB Min
Guaranteed PSRR: 114dB Min
Guaranteed Operation at ±1.2V Supplies
U
APPLICATIO S
■
■
■
■
■
■
■
Replaces OP-07 While Saving Power
Precision Instrumentation
Charge Integrators
Wide Dynamic Range Logarithmic Amplifiers
Light Meters
Low Frequency Active Filters
Thermocouple Amplifiers
The LT ®1012 is an internally compensated universal
precision operational amplifier which can be used in
practically all precision applications. The LT1012
combines picoampere bias currents (which are
maintained over the full –55°C to 125°C temperature
range), microvolt offset voltage (and low drift with time
and temperature), low voltage and current noise, and
low power dissipation. The LT1012 achieves precision
operation on two Ni-Cad batteries with 1mW of power
dissipation. Extremely high common mode and
power supply rejection ratios, practically unmeasurable
warm-up drift, and the ability to deliver 5mA load current
with a voltage gain of one million round out the LT1012’s
superb precision specifications.
The all around excellence of the LT1012 eliminates the
necessity of the time consuming error analysis procedure
of precision system design in many applications; the
LT1012 can be stocked as the universal internally
compensated precision op amp.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Protected by U. S. patents 4,575,685 and 4,775,884
U
TYPICAL APPLICATIO
± 250V Common Mode Range Instrumentation Amplifier (AV = 1)
R1
1M
R5
975k
1
R2
20k
6V TO 18V
2
R3
1M
+IN 7
200
4
–
50k
R6
25k
7
2
6
OUT
LT1012
6
5
3
+
OPTIONAL
CMRR
TRIM
4
R4
19.608k
– 6V TO –18V
R1 TO R6: VISHAY 444
ACCUTRACT THIN FILM
SIP NETWORK
X : VISHAY 444 PIN NUMBERS
VISHAY INTERTECHNOLOGY, INC
63 LINCOLN HIGHWAY
MALVERN, PA 19355
COMMON MODE REJECTION RATIO = 74dB (RESISTOR LIMITED)
WITH OPTIONAL TRIM = 130dB
OUTPUT OFFSET (TRIMMABLE TO ZERO) = 500µV
OUTPUT OFFSET DRIFT = 10µV/°C
INPUT RESISTANCE = 1M
LT1012A • TA01
160
NUMBER OF UNITS
–IN 3
COMMON
MODE
INPUT
± 250V
Typical Distribution of Input
Offset Voltage
1140 UNITS
FROM THREE
RUNS
VS = ±15V
TA = 25°C
VCM = 0V
120
80
40
0
–40
20
40
–20
0
INPUT OFFSET VOLTAGE (µV)
LT1012A • TA02
sn1012 1012afbs
1
LT1012A/LT1012
W W
W
AXI U
U
ABSOLUTE
RATI GS
(Note 1)
Supply Voltage ...................................................... ± 20V
Differential Input Current (Note 1) ...................... ± 10mA
Input Voltage ......................................................... ± 20V
Output Short Circuit Duration .......................... Indefinite
Operating Temperature Range
LT1012AM/LT1012M (OBSOLETE)....– 55°C to 125°C
LT1012I/LT1012AI ............................. – 40°C to 85°C
LT1012AC/LT1012C
LT1012D/LT1012S8 ................................ 0°C to 70°C
Storage Temperature Range ................. – 65°C to 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
U
U
W
PACKAGE/ORDER I FOR ATIO
TOP VIEW
TOP VIEW
VOS
TRIM
1
–IN
2
+IN
3
V–
4
8
VOS
TRIM
VOS
TRIM 1
–
7
V+
–IN 2
+
6
OUT
OVER
COMP
5
VOS
TRIM
8
TOP VIEW
7 V
–
+
+IN 3
+
6 OUT
5 OVER
COMP
– (CASE)
V
4
VOS
TRIM
1
–IN
2
+IN
3
V–
4
8
VOS
TRIM
–
7
V+
+
6
OUT
OVER
COMP
5
S8 PACKAGE
8-LEAD PLASTIC SO
H PACKAGE
8-LEAD TO-5 METAL CAN
N8 PACKAGE
8-LEAD PDIP
TJMAX = 100°C, θJA = 170°C/W
TJMAX = 150°C, θJA = 150°C/W, θJC = 45°C/W
TJMAX = 100°C, θJA = 130°C/W
ORDER PART NUMBER
ORDER PART NUMBER
ORDER PART NUMBER
LT1012S8
LT1012IS8
LT1012ACS8
LT1012AIS8
LT1012AMH
LT1012MH
LT1012ACH
LT1012CH
LT1012DH
LT1012ACN8
LT1012AIN8
LT1012CN8
LT1012DN8
LT1012IN8
S8 PART MARKING
1012
1012I
1012A
1012AI
OBSOLETE PACKAGE
Consider the S8 or N8 Packages for Alternate Source
Consult LTC Marketing for parts specified with wider operating temperature ranges.
sn1012 1012afbs
2
LT1012A/LT1012
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER
VOS
CONDITIONS
VS = ± 15V, VCM = OV, TA = 25°C, unless otherwise noted.
LT1O12AM/AC/AI
MIN TYP
MAX
Input Offset Voltage
8
20
(Note 3)
Long Term lnput Offset
Voltage Stability
IOS
IB
MIN
LT1O12M/I
TYP
MAX
25
90
8
20
0.3
Input Offset Current
10
25
UNITS
µV
µV
50
120
µV/month
0.3
15
25
100
150
15
25
100
150
20
30
150
200
pA
pA
(Note 3)
±25
±35
±100
±150
±25
±35
±100
±150
±30
±40
±150
±200
pA
pA
Input Noise Voltage
0.1Hz to 10Hz
0.5
en
Input Noise Voltage Density
fO = 10Hz (Note 4)
fO = 1000Hz (Note 5)
17
14
in
Input Noise Current Density
fO = 10Hz
20
AVOL
Large Signal Voltage Gain
VOUT = ±12V, RL ≥ 10kΩ
VOUT = ±10V, RL ≥ 2kΩ
300
300
2000
1000
300
200
2000
1000
CMRR
Common Mode Rejection
Ratio
VCM = ±13.5V
114
132
114
PSRR
Power SuppIy Rejection Ratio VS = ±1.2V to ±20V
114
132
±13.5
Input Voltage Range
RL = 10kΩ
Slew Rate
IS
LT1O12C
TYP MAX
(Note 3)
Input Bias Current
Output Voltage Swing
35
90
0.3
en
VOUT
MIN
Supply Current
(Note 3)
0.5
30
22
17
14
µVP-P
0.5
30
22
17
14
nV√Hz
nV√Hz
20
fA/√Hz
200
200
2000
1000
V/mV
V/mV
132
110
132
dB
114
132
110
132
dB
±14
±13.5
±14
±13.5
±14
V
±13
±14
±13
±14
±13
±14
V
0.1
0.2
0.1
0.2
0.1
0.2
V/µs
370
380
20
30
22
500
600
380
380
600
380
380
600
µA
µA
sn1012 1012afbs
3
LT1012A/LT1012
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER
VOS
CONDITIONS
VS = ± 15V, VCM = 0V, TA = 25°C, unless otherwise noted.
MIN
Input Offset Voltage
12
25
(Note 3)
Long Term Input Offset
Voltage Stability
lOS
IB
LT1012D
TYP
Input Offset Current
UNITS
15
25
120
180
µV
µV
µV/month
0.4
150
50
60
280
380
pA
pA
±30
±40
± 150
(Note 3)
±80
±120
±300
±400
pA
pA
0.1Hz to 10Hz
0.5
en
Input Noise Voltage Density
fO = 10Hz (Note 5)
fO = 1000Hz (Note 5)
17
14
in
lnput Noise Current Density
fO = 10Hz
20
AVOL
Large-Signal Voltage Gain
VOUT = ±12V,RL ≥ 10kΩ
VOUT = ±10V,RL ≥ 2kΩ
CMRR
Common Mode Rejection Ratio VCM = ±13.5V
PSRR
Power Supply Rejection Ratio
VS = ±1.2V to ± 20V
Input Voltage Range
RL = 10kΩ
Slew Rate
Supply Current
MAX
20
30
Input Noise Voltage
IS
60
LT1012S8
TYP
(Note 3)
Input Bias Current
Output Voltage Swing
MIN
0.3
en
VOUT
MAX
(Note 3)
µVP-P
0.5
30
22
17
14
30
22
nV√Hz
nV√Hz
20
fA/√Hz
200
200
2000
1000
200
120
2000
1000
V/mV
V/mV
110
132
110
132
dB
110
132
110
132
dB
±13.5
±14.0
±13.5
±14.0
V
±13
±14
±13
±14
V
0.1
0.2
0.1
0.2
V/µs
380
600
380
600
µA
sn1012 1012afbs
4
LT1012A/LT1012
ELECTRICAL CHARACTERISTICS
The ● denotes the specifications which apply over the full operating
temperature range of –55°C ≤ TA ≤ 125°C for LT1012AM and LT1012M, and –40°C ≤ TA≤ 85°C for LT1012AI and LT1012I.
VS = ± 15V, VCM = 0V, unless otherwise noted.
SYMBOL PARAMETER
VOS
CONDITIONS
Input Offset Voltage
(Note 3)
Average Temperature Coefficient of
Input Offset Voltage
IOS
Input Offset Current
(Note 3)
Average Temperature Coefficient of
Input Offset Current
IB
Input Bias Current
(Note 3)
Average Temperature Coefficient of
Input Bias Current
MIN
LT1012AM/AI
TYP
MAX
MIN
LT1012M/I
TYP
MAX
UNITS
●
●
30
40
60
180
30
40
180
250
µV
µV
●
0.2
0.6
0.2
1.5
µV/°C
●
●
30
70
250
350
30
70
250
350
pA
pA
●
0.3
2.5
0.3
2.5
pA/°C
●
●
±80
±150
±600
±800
±80
±150
±600
±800
●
0.6
6.0
0.6
6.0
pA
pA
pA/°C
AVOL
Large-Signal Voltage Gain
VOUT = ±12V, RL ≥ 10kΩ
VOUT = ±10V, RL ≥ 2kΩ
●
●
200
200
1000
600
150
100
1000
600
V/mV
V/mV
CMRR
Common Mode Rejection Ratio
VCM = ±13.5V
●
110
128
108
128
dB
PSRR
Power Supply Rejection Ratio
VS = ±1.5V to ± 20V
●
110
126
108
126
dB
●
±13.5
●
±13
Input Voltage Range
VOUT
Output Voltage Swing
IS
Supply Current
RL = 10kΩ
●
±13.5
±14
400
±13
650
V
±14
400
V
800
µA
sn1012 1012afbs
5
LT1012A/LT1012
ELECTRICAL CHARACTERISTICS
The ● denotes the specifications which apply over the full operating
temperature range of 0°C ≤ TA ≤ 70°C. VS = ± 15V, VCM = 0V, unless otherwise noted.
SYMBOL PARAMETER
VOS
Input Offset Voltage
(Note 3)
Average Temperature Coefficient of
Input Offset Voltage
IOS
Input Offset Current
(Note 3)
Average Temperature Coefficient of
Input Offset Current
IB
LT1012AC
TYP
MAX
LT1012C
TYP
MAX
UNITS
●
●
20
30
60
160
20
30
100
200
µV
µV
●
0.2
0.6
0.2
1.0
µV/°C
●
●
25
40
230
300
35
45
230
300
pA
pA
●
0.3
2.5
0.3
2.5
pA/°C
●
●
± 35
± 50
± 230
± 300
± 35
± 50
± 230
± 300
●
0.3
2.5
0.3
2.5
CONDITIONS
Input Bias Current
(Note 3)
Average Temperature Coefficient of
Input Bias Current
MIN
MIN
pA
pA
pA/°C
AVOL
Large-Signal Voltage Gain
VOUT = ±12V, RL ≥ 10kΩ
VOUT = ±10V, RL ≥ 2kΩ
●
●
200
200
1500
1000
150
150
1500
800
V/mV
V/mV
CMRR
Common Mode Rejection Ratio
VCM = 13.5V
●
110
130
108
130
dB
PSRR
Power Supply Rejection Ratio
VS = ±1.3V to ± 20V
●
110
128
108
128
dB
●
±13.5
●
±13
Input Voltage Range
VOUT
Output Voltage Swing
IS
Supply Current
RL = 10kΩ
●
±13.5
±14
400
±13
600
V
±14
400
V
800
µA
sn1012 1012afbs
6
LT1012A/LT1012
ELECTRICAL CHARACTERISTICS
The ● denotes the specifications which apply over the full operating
temperature range of 0°C ≤ TA ≤ 70°C. VS = ± 15V, VCM = 0V, unless otherwise noted.
SYMBOL PARAMETER
VOS
CONDITIONS
Input Offset Voltage
(Note 3)
Average Temperature Coefficient of
Input Offset Voltage
IOS
Input Offset Current
(Note 3)
Average Temperature Coefficient of
Input Offset Current
IB
Input Bias Current
(Note 3)
Average Temperature Coefficient of
Input Bias Current
MIN
LT1012D
TYP
MAX
MIN
LT1012S8
TYP
MAX
UNITS
●
●
25
40
140
30
45
200
270
µV
µV
●
0.3
1.7
0.3
1.8
µV/°C
●
●
35
45
380
60
80
380
500
pA
pA
●
0.35
4.0
0.4
4.0
pA/°C
●
●
± 50
± 65
± 420
±100
±150
± 420
± 550
●
0.4
5.0
0.5
5.0
pA
pA
pA/°C
AVOL
Large-Signal Voltage Gain
VOUT = ±12V, RL ≥ 10kΩ
VOUT = ±10V, RL ≥ 2kΩ
●
●
150
150
1500
800
150
100
1500
800
V/mV
V/mV
CMRR
Common Mode Rejection Ratio
VCM = ±13.5V
●
108
130
108
130
dB
PSRR
Power Supply Rejection Ratio
VS = ±1.3V to ± 20V
●
108
128
108
128
dB
●
±13.5
●
±13
Input Voltage Range
VOUT
Output Voltage Swing
IS
Supply Current
RL = 10kΩ
●
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: Differential input voltages greater than 1V will cause excessive
current to flow through the input protection diodes unless limiting
resistance is used.
V+
5k TO 100k POT
–
8
7
LT1012
3
6
4
400
±13
800
±14
400
V
800
µA
Note 3: These specifications apply for VMIN ≤ VS ≤ ± 20V and
–13.5V ≤ VCM ≤ 13.5V (for VS = ± 15V). VMIN = ±1.2V at 25°C, ± 1.3V from
0°C to 70°C, ± 1.5V from – 55°C to 125°C.
Note 4: 10Hz noise voltage density is sample tested on every lot. Devices
100% tested at 10Hz are available on request.
Note 5: This parameter is tested on a sample basis only.
Optional Offset Nulling and Overcompensation
Circuits
OUT
5
+
±14
V
Input offset voltage can be adjusted over a ± 800µV range
with a 5k to 100k potentiometer.
1
2
±13.5
CS
V–
LT1012A • EC01
The LT1012 is internally compensated for unity gain
stability. The overcompensation capacitor, CS, can be
used to improve capacitive load handling capability, to
narrow noise bandwidth, or to stabilize circuits with gain
in the feedback loop.
sn1012 1012afbs
7
LT1012A/LT1012
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage vs Source
Resistance (Balanced or
Unbalanced)
Typical Distribution of Input Bias
Current
200
1000
VS = ±15V
TA = 25°C
VCM = 0V
– 55°C TO 125°C
25°C
10
160
120
80
40
1
10k 30k 100k 300k 1M
SOURCE RESISTANCE (Ω)
–120
3M 10M
60
– 60
0
INPUT BIAS CURRENT (pA)
Input Bias Current vs
Temperature
Input Bias Current Over Common
Mode Range
100
60
VS = ±15V
TA = 25oC
40
INPUT BIAS CURRENT (pA)
UNDERCANCELLED UNIT
0
OVERCANCELLED
UNIT
–50
–100
DEVICE WITH POSITIVE
INPUT CURRENT
20
RIN CM = 2 X 1012Ω
DEVICE WITH NEGATIVE
INPUT CURRENT
0
–20
–25
50
75
0
25
TEMPERATURE (°C)
100
VCM
–60
–15
125
–
+
IB
–40
–150
–50
80
–120
60
120
–60
0
INPUT OFFSET CURRENT (pA)
LT1012A • TPC02
LT1012A • TPC01
50
1020 UNITS
FROM THREE
RUNS
120
0
120
–10
–5
0
5
10
15
LT1012A • TPC03
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/ °C)
3k
VS = ±15V
TA = 25°C
VCM = 0V
40
0
1k
INPUT BIAS CURRENT (pA)
200
1020 UNITS
FROM THREE
RUNS
NUMBER OF UNITS
160
100
NUMBER OF UNITS
INPUT OFFSET VOLTAGE (µV)
VS = ±15V
Typical Distribution of Input
Offset Current
Offset Voltage Drift vs Source
Resistance (Balanced or
Unbalanced)
100
10
1.0
TYPICAL
0.1
1k
COMMON MODE INPUT VOLTAGE
LT1012A • TPC04
MAXIMUM
10k
100k
1M
10M
SOURCE RESISTANCE (Ω)
LT1012 • TPC06
LT1012A * TPC5
Long Term Stability of Four
Representative Units
Warm-Up Drift
3
METAL CAN (H) PACKAGE
DUAL-IN-LINE PACKAGE
PLASTIC (N) OR SO (S)
1
60
8
40
6
OFFSET VOLTAGE (µV)
4
2
Offset Voltage Drift with Temperature
of Four Representative Units
10
VS = ±15V
TA = 25°C
CHANGE IN OFFSET VOLTAGE (µV)
CHANGE IN OFFSET VOLTAGE (µV)
5
100M
4
2
0
–2
–4
–6
20
0
–20
–40
–8
0
0
1
3
4
2
TIME AFTER POWER ON (MINUTES)
5
LT1012A • TPC07
–10
0
1
3
2
TIME (MONTHS)
4
5
LT1012A • TPC08
–60
–50 –25
50
25
75
0
TEMPERATURE (°C)
100
125
LT1012A • TPC09
sn1012 1012afbs
8
LT1012A/LT1012
U W
TYPICAL PERFOR A CE CHARACTERISTICS
0.1Hz to 10Hz Noise
Noise Spectrum
Total Noise vs Source Resistance
1000
2
0
6
4
TIME (SECONDS)
8
TA = 25°C
VS = ±1.2 TO ±20V
100
CURRENT NOISE
VOLTAGE NOISE
10
1/f CORNER
2.5Hz
1/f CORNER
120Hz
10
1
10
100
FREQUENCY (Hz)
R
RESISTOR NOISE
ONLY
0.01
102
1000
25°C
125°C
–55°C
100
80
60
40
20
VS = ±15V
TA = 25°C
1
10k
1k
100
FREQUENCY (Hz)
10
100k
120
100
NEGATIVE
SUPPLY
80
POSITIVE
SUPPLY
60
40
VS = ±15V
TA = 25°C
20
0.1
1M
Voltage Gain vs Frequency
Gain, Phase Shift vs Frequency
140
GAIN
10
160
0
1
180
VS = ±15V
TA = 25°C
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
LT1012A • TPC16
–10
0.01
200
0.1
1
FREQUENCY (MHz)
10
LT1012A • TPC17
– 55°C
3M
VOLTAGE GAIN
GAIN (dB)
120
PHASE MARGIN
= 70°C
–20
0.01 0.1
1M
VS = ±15V
V0 = ±10V
PHASE SHIFT (DEGREES)
VOLTAGE GAIN (dB)
PHASE
20
20
100k
10M
100
30
100
100 1k
10k
FREQUENCY (Hz)
Voltage Gain vs Load Resistance
40
VS = ±15V
TA = 25°C
10
LT1012A • TPC15
120
0
1
LT1012A • TPC14
140
108
Power Supply Rejection vs
Frequency
120
LT1012A • TPC13
40
104
105
106
107
SOURCE RESISTANCE (Ω)
140
0
± 20
60
103
LT1012A • TPC12
POWER SUPPLY REJECTION RATIO (dB)
COMMON MODE REJECTION RATIO (dB)
400
80
RS = 2R
AT 10Hz
AT 1kHz
140
±10
±15
±5
SUPPLY VOLTAGE (V)
–
+
0.1
Common Mode Rejection vs
Frequency
500
SUPPLY CURRENT (µA)
R
LT1012A • TPC11
Supply Current vs Supply Voltage
0
AT 10Hz
AT 1kHz
1.0
1
LT1012A • TPC10
300
TA = 25°C
VS = ± 1.2V TO ± 20V
TOTAL NOISE DENSITY (µV/√Hz)
VOLTAGE NOISE DENSITY (nV√Hz)
CURRENT NOISE DENSITY (fA√Hz)
NOISE VOLTAGE 400nV/DIVISION
TA = 25°C
VS = ±1.2V TO ± 20V
10.0
25°C
1M
125°C
300k
100k
1
2
5
10
LOAD RESISTANCE (kΩ)
20
LT1012A • TPC18
sn1012 1012afbs
9
LT1012A/LT1012
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Small-Signal Transient Response
2V/DIV
20mV/DIV
5µs/DIV
AV = +1
CLOAD = 100pF
AV = +1
CLOAD = 1000pF
5µs/DIV
1
20
20µs/DIV
AV = +1
Slew Rate, Gain Bandwidth
Product vs Overcompensation
Capacitor
Output Short-Circuit Current
vs Time
Closed-Loop Output Impedance
1000
1000
–55°C
GBW
25°C
SLEW RATE (V/µs)
10
125°C
5
VS = ±15V
0
–5
125°C
SLEW
0.1
100
0.01
10
–10
25°C
–15
VS = ±15V
TA = 25°C
–55°C
0.001
–20
0
2
1
TIME FROM OUTPUT SHORT (MINUTES)
1
3
1
10
100
1000
10,000
OVERCOMPENSATION CAPACITOR (pF)
I0 = 1mA
VS = ±15V
TA = 25°C
0.01
0.001
1
10
100
1
FREQUENCY (Hz)
10
100
LT1012A • TPC21
±1.8
V+ – 0.3
±1.6
MINIMUM SUPPLY VOLTAGE (V)
CM RANGE
+ – 0.6
V+ – 0.9
SWING R L = 2k
V+ – 1.2
SWING R L = 10k
V – + 1.2
– + 0.9
SWING R L = 2k
V – + 0.6
±1.4
400k
±1.2
±1.0
± 0.8
300k
RL = 10k
200k
RL = 2k
100k
CM RANGE
+ 0.3
V–
–50
AV = +1
0.1
Minimum Supply Voltage,
Voltage Gain at VMIN
V+
V–
AV = 1000
1
VOLTAGE GAIN AT MINIMUM
SUPPLY VOLTAGE (V/V)
COMMON MODE RANGE OR OUTPUT VOLTAGE (V)
Common Mode Range and Voltage
Swing at Minimum Supply Voltage
V
10
LT1012A • TPC20
LT1012A • TPC19
V
100
OUTPUT IMPEDANCE (Ω)
15
GAIN BANDWIDTH PRODUCT (kHz)
SHORT-CIRCUIT CURRENT (mA)
SINKING
SOURCING
Large-Signal Transient Response
20mV/DIV
Small-Signal Transient Response
–25
0
25
75
50
TEMPERATURE (°C)
100
125
LT1012A • TPC22
–50 –25
50
25
0
75
TEMPERATURE (°C)
100
0
125
LT1012A • TPC23
sn1012 1012afbs
10
LT1012A/LT1012
U
W
U U
APPLICATIO S I FOR ATIO
The LT1012 may be inserted directly into OP-07, LM11,
108A or 101A sockets with or without removal of external
frequency compensation or nulling components. The
LT1012 can also be used in 741, LF411, LF156 or OP-15
applications provided that the nulling circuitry is
removed.
Although the OP-97 is a copy of the LT1012, the LT1012
directly replaces and upgrades OP-97 applications. The
LT1012C and D have lower offset voltage and drift than the
OP-97F. The LT1012A has lower supply current than the
OP-97A/E. In addition, all LT1012 grades guarantee
operation at ±1.2V supplies.
Microvolt level error voltages can also be generated in
the external circuitry. Thermocouple effects caused by
temperature gradients across dissimilar metals at the
contacts to the input terminals can exceed the inherent
drift of the amplifier. Air currents over device leads should
be minimized, package leads should be short, and the two
input leads should be as close together as possible and
maintained at the same temperature.
Noise Testing
For application information on noise testing and calculations, please see the LT1008 data sheet.
Achieving Picoampere/Microvolt Performance
Frequency Compensation
In order to realize the picoampere/microvolt level
accuracy of the LT1012, proper care must be exercised.
For example, leakage currents in circuitry external to
the op amp can significantly degrade performance. High
quality insulation should be used (e.g. Teflon, Kel-F);
cleaning of all insulating surfaces to remove fluxes and
other residues will probably be required. Surface coating
may be necessary to provide a moisture barrier in high
humidity environments.
The LT1012 can be overcompensated to improve
capacitive load handling capability or to narrow noise
bandwidth. In many applications, the feedback loop around
the amplifier has gain (e.g. Iogarithmic amplifiers);
overcompensation can stabilize these circuits with a single
capacitor.
Board leakage can be minimized by encircling the input
circuitry with a guard ring operated at a potential close
to that of the inputs: in inverting configurations the
guard ring should be tied to ground, in non-inverting
connections to the inverting input at Pin 2. Guarding both
sides of the printed circuit board is required. Bulk leakage
reduction depends on the guard ring width. Nanoampere
level leakage into the offset trim terminals can affect offset
voltage and drift with temperature.
OFFSET TRIM
V+
7
OUTPUT
8
1
2
5
3
PU
TS
4
The inputs of the LT1012 are protected with back-to-back
diodes. Current limiting resistors are not used, because
the leakage of these resistors would prevent the realization
of picoampere level bias currents at elevated temperatures. In the voltage follower configuration, when the input
is driven by a fast, large signal pulse (>1V), the input
protection diodes effectively short the output to the input
during slewing, and a current, limited only by the output
short-circuit protection will flow through the diodes.
The use of a feedback resistor, as shown in the voltage
follower feedforward diagram, is recommended because
this resistor keeps the current below the short-circuit
limit, resulting in faster recovery and settling of the output.
6
OVER COMP
The availability of the compensation terminal permits
the use of feedforward frequency compensation to
enhance slew rate. The voltage follower feedforward
scheme bypasses the amplifier’s gain stages and slews at
nearly 10V/µs.
IN
V–
GUARD
LT1012A * AI01
sn1012 1012afbs
11
LT1012A/LT1012
U
W
U U
APPLICATIO S I FOR ATIO
Test Circuit for Offset Voltage
and its Drift with Temperature
Pulse Response of Feedforward
Compensation
Follower Feedforward Compensation
50k *
50pF
15V
–
100Ω*
10k
7
LT1012
3
6
5V/DIV
2
V0
2
+
–
4
50k*
–15V
6
LT1012
5k
3
IN
Photoo
OUT
5
+
5µs/DIV
V0 = 1000V0S
0.01µF
*RESISTORS MUST HAVE LOW THERMOELECTRIC
POTENTIAL
LT1012A • AI03
LT1012A • AI02
U
TYPICAL APPLICATIO S
Ampmeter with Six Decade Range
10k
15V
Q3
R1
2k
100µA
METER
1.2k
0.1µF
100pA
Q1
15V
10k
10k
Q2
549Ω
RANGE
1nA
2
CURRENT INPUT
7
–
LT1012
3
10nA
6
549Ω
33k
+
4
–15V
LT1004C
549Ω
Q4
PIN 13
CA3146
100nA
549Ω
1µA
549Ω
10µA
Q1, Q2, Q3, Q4, RCA CA3146 TRANSISTOR ARRAY.
CALIBRATION: ADJUST R1 FOR FULL-SCALE
DEFLECTION WITH 1µA INPUT CURRENT
AMPMETER MEASURES CURRENTS FROM 100pA
TO 100µA WITHOUT THE USE OF EXPENSIVE
HIGH VALUE RESISTORS. ACCURACY AT 100µA
IS LIMITED BY THE OFFSET VOLTAGE BETWEEN
Q1 AND Q2 AND, AT 100pA, BY THE INVERTING
BIAS CURRENT OF THE LT1012
549Ω
100µA
LT1012A • TA03
sn1012 1012afbs
12
LT1012A/LT1012
U
TYPICAL APPLICATIO S
Saturated Standard Cell Amplifier
15V
2N3609
3
7
+
6
LT1012
LT1008
2
1.018235V
–
+
OUT
4
–15V
SATURATED
STANDARD
CELL
#101
EPPLEY LABS
NEWPORT, R.I.
R2
R1
THE TYPICAL 30pA BIAS CURRENT OF THE LT1012 WILL
DEGRADE THE STANDARD CELL BY ONLY 1ppm/YEAR.
NOISE IS A FRACTION OF A ppm. UNPROTECTED GATE
MOSFET ISOLATES STANDARD CELL ON POWER DOWN
LT1012A • TA05
Amplifier for Bridge Transducers
R5
56M
V+
R1
100k
S2
T
100k
S1
100k T
R3
510k
2
R4
510k
3
R2
100k
–
LT1012
R6
56M
6
OUT
+
VOLTAGE GAIN ≈ 100
LT1012A • TA06
sn1012 1012afbs
13
LT1012A/LT1012
U
TYPICAL APPLICATIO S
Amplifier for Photodiode Sensor
Buffered Reference for A-to-D Converters
R1
5M
1%
15V
7k
200
3
S1
2
λ
6 1k
LT1012
2
–
6
LT1012
3
7
+
+
LM399
OUT
–
2N3904
4
3k
VOUT = 10V/µA
R2
5M
1%
OUT
10V
1k*
6.5k
1k
LT1012A • TA07
*THE 1k PRELOAD
MINIMIZES GLITCHES
INDUCED BY TRANSIENT
LOADS
LT1012A • TA08
Instrumentation Amplifier with ±100V Common Mode Range
Low Power Comparator with <10µV Hysteresis
100Ω
10M
5V
1k
100k
330k
15V
100M
– IN
100M
+IN
2
+IN
7
–
LT1012
3
10k
100k
+
6
10k
–IN
OUT
7
2
3
–
1
LT1012
3
+
4
620k
6
OUT
2N3904
100k
4
–5V
LT1012A • TA10
10M
–15V
A V = 100
ALL RESISTORS 1% OR BETTER
LT1012A • TA09
sn1012 1012afbs
14
LT1012A/LT1012
U
TYPICAL APPLICATIO S
Air Flow Detector
Input Amplifier for 4.5 Digit Voltmeter
15V
15V
R2
10M
15V
R1
1k
+
2
TYPE J
2
1 100k
IN
0.1V
–
8
7
LT1012
3
3
+
4
–
COLD
JUNCTION
AT AMBIENT
6
OUT
9M
900k
– 15V
1V
100k
5%
7
–
3
+
1V
4
5
10V
0.1V
6
LT1012
10V
9k*
–15V
100V
1000pF
1000V
1k*
90k
MOUNT R1 IN AIRFLOW.
ADJUST R2 SO OUTPUT GOES
HIGH WHEN AIRFLOW STOPS
100V
* RATIO MATCH ±0.01%
1000V
LT1012A • TA11
TO 1V FULL SCALE
ANALOG TO DIGITAL
CONVERTER
10k
FN507
ALLEN BRADLEY
DECADE VOLTAGE
DIVIDER
THIS APPLICATION REQUIRES LOW
BIAS CURRENT AND OFFSET VOLTAGE,
LOW NOISE, AND LOW DRIFT WITH
TIME AND TEMPERATURE
LT1012A • TA12
Resistor Multiplier
“No Trims” 12-Bit Multiplying DAC Output Amplifier
3
RFEEDBACK
RIN
1G
+
2
IOUT1
6
LT1012
VOUT
–
10k
R1
10M
R2
1k
R3
100k
REFERENCE IN
0.1V TO 10V
12-BIT CMOS
MULTIPLYING
DAC
2
–
LT1012
3
6
OUT
+
IOUT2
(
RIN = R1 1 + R3
R2
WHEN THE REFERENCE INPUT DROPS TO 0.1V,
THE LEAST SIGNIFICANT BIT DECREASES TO
THE MICROVOLT/PICOAMPERE RANGE
)
LT1012 • TA14
LT1012 • TA13
sn1012 1012afbs
15
LT1012A/LT1012
W
W
SCHE ATIC DIAGRA
TRIM
TRIM
OVER
COMP
1
8
5
V+
7
800Ω
800Ω
22k
22k
1.3k
4.2k
Q20
1.3k
Q30
Q14
Q29
Q7
Q22
Q8
1.5k
30pF
1.5k
2.5k
Q43
Q25
Q21
Q6
Q5
Q16
Q27
Q37
S
Q24
40Ω
Q4
100Ω
Q3
3k
Q13
40Ω
Q11 Q23
S
–IN
2
S
Q2
Q1
1.5k
Q28
S
Q15
50k
1.5k
Q38
Q26
Q42
J1
Q9
+IN
OUT
6
Q33
Q12
Q31
Q10
Q32
Q39
3
3.7k
Q18
Q17
Q19
Q36
Q40
20k
3.3k
3.3k
Q41
Q34
Q35
320Ω
4.3k
–
V
4.8k
3.7k
3.7k
16k
40Ω
330Ω
4
LT1012A • SD01
sn1012 1012afbs
16
LT1012A/LT1012
U
PACKAGE DESCRIPTIO
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
.335 – .370
(8.509 – 9.398)
DIA
.305 – .335
(7.747 – 8.509)
.040
(1.016)
MAX
.050
(1.270)
MAX
SEATING
PLANE
.165 – .185
(4.191 – 4.699)
GAUGE
PLANE
.010 – .045*
(0.254 – 1.143)
REFERENCE
PLANE
.500 – .750
(12.700 – 19.050)
.016 – .021**
(0.406 – 0.533)
.027 – .045
(0.686 – 1.143)
PIN 1
45°TYP
.028 – .034
(0.711 – 0.864)
.200
(5.080)
TYP
.110 – .160
(2.794 – 4.064)
INSULATING
STANDOFF
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND THE SEATING PLANE
.016 – .024
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
(0.406 – 0.610) H8(TO-5) 0.200 PCD 0801
OBSOLETE PACKAGE
sn1012 1012afbs
17
LT1012A/LT1012
U
PACKAGE DESCRIPTIO
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.400*
(10.160)
MAX
8
7
6
5
1
2
3
4
.255 ± .015*
(6.477 ± 0.381)
.300 – .325
(7.620 – 8.255)
.008 – .015
(0.203 – 0.381)
(
+.035
.325 –.015
8.255
+0.889
–0.381
)
.045 – .065
(1.143 – 1.651)
.130 ± .005
(3.302 ± 0.127)
.065
(1.651)
TYP
.100
(2.54)
BSC
.120
(3.048) .020
MIN (0.508)
MIN
.018 ± .003
(0.457 ± 0.076)
N8 1002
NOTE:
1. DIMENSIONS ARE
INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
sn1012 1012afbs
18
LT1012A/LT1012
U
PACKAGE DESCRIPTIO
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.189 – .197
(4.801 – 5.004)
NOTE 3
.045 ±.005
.050 BSC
8
7
6
5
N
N
.245
MIN
.160 ±.005
1
.030 ±.005
TYP
.150 – .157
(3.810 – 3.988)
NOTE 3
.228 – .244
(5.791 – 6.197)
2
3
N/2
N/2
RECOMMENDED SOLDER PAD LAYOUT
.010 – .020
× 45°
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
1
.053 – .069
(1.346 – 1.752)
0°– 8° TYP
.016 – .050
(0.406 – 1.270)
NOTE:
1. DIMENSIONS IN
.014 – .019
(0.355 – 0.483)
TYP
INCHES
(MILLIMETERS)
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
2
3
4
.004 – .010
(0.101 – 0.254)
.050
(1.270)
BSC
SO8 0502
sn1012 1012afbs
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
19
LT1012A/LT1012
U
TYPICAL APPLICATIO
Kelvin-Sensed Platinum Temperature Sensor Amplifier
10V
REFERENCE
LT1021-10
10M
R2
100k
R1
182k
5k
RF*
654k
6.65M
235k*
R4
5k
R3
1k
10k
24.3k
20V
2
200k
5k*
392k*
4.75k
ROSEMOUNT
78S
OR
EQUIVALENT
RS
3
100Ω
AT
0°C
–15V
7
–
LT1012
+
4
6
VOUT = 100mV/°C
– 50°C TO 150°C
–15V
619k
* = WIRE WOUND RESISTORS
ALL OTHER RESISTORS ARE 1% METAL FILM
TRIM R2 AT 0°C FOR V0 = 0V
TRIM R3 AT 100°C FOR V0 = 10V
TRIM R4 AT 50°C FOR V0 = 5V
IN THE ORDER INDICATED
POSITIVE FEEDBACK (R1) LINEARIZES THE
INHERENT PARABOLIC NONLINEARITY OF
THE PLATINUM SENSOR AND REDUCES
ERRORS FROM 1.2°C TO 0.004°C OVER
THE – 50°C TO 150°C RANGE
LT1012A • TA04
sn1012 1012afbs
20
Linear Technology Corporation
LW/TP 1202 1K REV B • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
 LINEAR TECHNOLOGY CORPORATION 1991