LINER LT1013CJ8

LT1013/LT1014
Quad Precision Op Amp (LT1014)
Dual Precision Op Amp (LT1013)
U
DESCRIPTION
FEATURES
Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground while Sinking Current
Pin Compatible to 1458 and 324 with Precision Specs
Guaranteed Offset Voltage
150µV Max.
Guaranteed Low Drift
2µV/°C Max.
Guaranteed Offset Current
0.8nA Max.
Guaranteed High Gain
5mA Load Current
1.5 Million Min.
17mA Load Current
0.8 Million Min.
Guaranteed Low Supply Current
500µA Max.
Low Voltage Noise, 0.1Hz to 10Hz
0.55µVp-p
Low Current Noise—Better than 0P-07, 0.07pA/√Hz
■
■
■
■
■
■
■
■
■
U
APPLICATIONS
■
■
■
■
The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C,
offset current of 0.15nA, gain of 8 million, common-mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configuration. Although supply current is only 350µA per amplifier,
a new output stage design sources and sinks in excess of
20mA of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in
the 8-pin industry standard configuration, upgrading the
performance of such popular devices as the MC1458/
1558, LM158 and OP-221. The LT1013’s specifications
are similar to (even somewhat better than) the LT1014’s.
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
4mA–20mA Current Loop Transmitters
Multiple Limit Threshold Detection
Active Filters
Multiple Gain Blocks
■
The LT ®1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.
Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common-mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifications is provided with ±15V and single 5V supplies.
, LTC and LT are registered trademarks of Linear Technology Corporation.
LT1014 Distribution of Offset Voltage
3 Channel Thermocouple Thermometer
4k
1M
700
3k
299k
+5V
+5V
14
+
12
–
13
YSI 44007
5kΩ
AT 25°C
1684Ω
2
–
3
+
4
LT1014
1
OUTPUT A
10mV/°C
11
LT1014
260Ω
1.8k
1M
4k
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C
60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.
6
–
LT1014
5
+
NUMBER OF UNITS
LT1004
1.2V
VS = ±15V
TA = 25°C
425 LT1014s
(1700 OP AMPS)
500 TESTED FROM
THREE RUNS
400 J PACKAGE
600
300
200
100
7
OUTPUT B
10mV/°C
0
100
0
200
–300 –200 –100
INPUT OFFSET VOLTAGE (µV)
300
1
LT1013/LT1014
W W
U
W
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ...................................................... ±22V
Differential Input Voltage ....................................... ±30V
Input Voltage ............... Equal to Positive Supply Voltage
............5V Below Negative Supply Voltage
Output Short-Circuit Duration .......................... Indefinite
Storage Temperature Range
All Grades ......................................... – 65°C to 150°C
Lead Temperature (Soldering, 10 sec.)................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M ...................... – 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D ................. 0°C to 70°C
LT1013I/ LT1014I ............................... – 40°C to 85°C
W
U
U
PACKAGE/ORDER INFORMATION
A
B
–IN A 2 – +
+ – 6 –IN B
+IN A 3
5 +IN B
4
V –(CASE)
H PACKAGE
8-LEAD TO-5 METAL CAN
V–
+IN A 3
–
+A
B
V– 4
V+
7
OUTPUT B
6
–IN B
5
+IN B
J PACKAGE
8-LEAD CERAMIC DIP
N PACKAGE
8-LEAD PLASTIC DIP
TOP VIEW
+INA 1
–IN A 2
8
–
8
–INA
7
OUTA
+
2
+INB 3
+
6
V+
–INB 4
–
5
OUTB
SO PACKAGE
8-LEAD PLASTIC SOIC
NOTE: THIS PIN CONFIGURATION DIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
ORDER PART
NUMBER
LT1013DS8
LT1013IS8
PART MARKING
OUTPUT A
1
–IN A
2
+IN A
3
V+
4
+IN B
5
–IN B
6
OUTPUT B
7
14 OUTPUT D
–
LT1014AMJ
LT1014MJ
LT1014ACJ
LT1014CJ
LT1014ACN
LT1014CN
LT1014DN
LT1014IN
13 –IN D
+A
D
+
B
–
+ 10 +IN C
C
– 9 –IN C
12 +IN D
11 V –
8
OUTPUT C
J PACKAGE
14-LEAD CERAMIC DIP
N PACKAGE
14-LEAD PLASTIC DIP
ORDER PART
NUMBER
LT1014DS
LT1014IS
TOP VIEW
OUTPUT A 1
16 OUTPUT D
–IN A 2
15 –IN D
+IN A 3
14 +IN D
V+ 4
13 V –
+IN B 5
12 +IN C
–IN B 6
11 –IN C
OUTPUT B 7
PART MARKING
10 OUTPUT C
NC 8
9
NC
LT1014DS
LT1014IS
SO PACKAGE
16-LEAD PLASTIC SOIC
V S = ±15V, VCM = 0V, TA = 25°C unless otherwise noted
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
LT1013
LT1014
LT1013D/I, LT1014D/I
ISO
IB
en
Long Term Input Offset Voltage
Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
en
Input Noise Voltage Density
in
Input Noise Current Density
2
LT1013AMJ8
LT1013MJ8
LT1013ACJ8
LT1013CJ8
LT1013ACN8
LT1013CN8
LT1013DN8
LT1013IN8
1013
1013I
ELECTRICAL CHARACTERISTICS
ORDER PART
NUMBER
TOP VIEW
TOP VIEW
OUTPUT A 1
+
7 OUTPUT B
–
8
ORDER PART
NUMBER
+
V+
OUTPUT A 1
ORDER PART
NUMBER
LT1013AMH
LT1013MH
LT1013ACH
LT1013CH
–
TOP VIEW
MIN
—
—
—
LT1013AM/AC
LT1014AM/AC
TYP
MAX
40
150
50
180
—
—
MIN
—
—
—
LT1013C/D/I/M
LT1014C/D/I/M
TYP
60
60
200
MAX
300
300
800
UNITS
µV
µV
µV
—
0.4
—
—
0.5
—
µV/Mo.
0.1Hz to 10Hz
—
—
—
0.15
12
0.55
0.8
20
—
—
—
—
0.2
15
0.55
1.5
30
—
nA
nA
µVp-p
fO = 10Hz
fO = 1000Hz
—
—
24
22
—
—
—
—
24
22
—
—
nV/√Hz
nV/√Hz
fO = 10Hz
—
0.07
—
—
0.07
—
pA/√Hz
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
V S = ±15V, VCM = 0V, TA = 25°C unless otherwise noted
SYMBOL
AVOL
PARAMETER
CONDITIONS
Input Resistance – Differential
(Note 1)
Common-Mode
Large Signal Voltage Gain
VO = ±10V, RL = 2k
VO = ±10V, RL = 600Ω
Input Voltage Range
CMRR
PSRR
LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX
LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX
100
—
1.5
0.8
400
5
8.0
2.5
—
—
—
—
70
—
1.2
0.5
300
4
7.0
2.0
—
—
—
—
MΩ
GΩ
V/µV
V/µV
+13.5
– 15.0
+13.8
– 15.3
—
—
+13.5
– 15.0
+13.8
– 15.3
—
—
V
V
dB
dB
dB
V
UNITS
VOUT
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Channel Separation
Output Voltage Swing
VCM = + 13.5V, – 15.0V
VS = ±2V to ±18V
VO = ±10V, RL = 2k
RL = 2k
100
103
123
±13
117
120
140
±14
—
—
—
—
97
100
120
±12.5
114
117
137
±14
—
—
—
—
IS
Slew Rate
Supply Current
Per Amplifier
0.2
—
0.4
0.35
—
0.50
0.2
—
0.4
0.35
—
0.55
V/µs
mA
LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX
UNITS
Note 1: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
ELECTRICAL CHARACTERISTICS
V S+ = + 5V, V S– = 0V, VOUT = 1.4V, VCM = 0V, TA = 25°C unless otherwise noted
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
LT1013
LT1014
LT1013D/I, LT1014D/I
IOS
IB
Input Offset Current
Input Bias Current
AVOL
Large Signal Voltage Gain
Input Voltage Range
VO = 5mV to 4V, RL = 500Ω
VOUT
Output Voltage Swing
IS
Supply Current
Output Low, No Load
Output Low, 600Ω to Ground
Output Low, ISINK = 1mA
Output High, No Load
Output High, 600Ω to Ground
Per Amplifier
LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX
—
—
—
—
—
60
70
—
0.2
15
250
280
—
1.3
35
—
—
—
—
—
90
90
250
0.3
18
450
450
950
2.0
50
µV
µV
µV
nA
nA
—
+ 3.5
0
—
—
—
4.0
3.4
—
1.0
+ 3.8
– 0.3
15
5
220
4.4
4.0
0.31
—
—
—
25
10
350
—
—
0.45
—
+3.5
0
—
—
—
4.0
3.4
—
1.0
+ 3.8
– 0.3
15
5
220
4.4
4.0
0.32
—
—
—
25
10
350
—
—
0.50
V/µV
V
V
mV
mV
mV
V
V
mA
3
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER
VOS
IOS
V S = ±15V, VCM = 0V, – 55°C ≤ TA ≤ 125°C unless otherwise noted
CONDITIONS
Input Offset Voltage
Input Offset Voltage Drift
Input Offset Current
VS = + 5V, 0V; VO = + 1.4V
– 55°C ≤ TA ≤ 100°C
VCM = 0.1V, TA = 125°C
VCM = 0V, TA = 125°C
(Note 2)
VS = + 5V, 0V; VO = +1.4V
IB
AVOL
CMRR
PSRR
VOUT
IS
Input Bias Current
Large Signal Voltage Gain
Common-Mode Rejection
Power Supply Rejection
Ratio
Output Voltage Swing
Supply Current
Per Amplifier
VS = + 5V, 0V; VO = +1.4V
VO = ±10V, RL = 2k
VCM = +13.0V, – 14.9V
VS = ±2V to ±18V
RL = 2k
VS = +5V, 0V
RL = 600Ω to Ground
Output Low
Output High
VS = +5V, 0V; VO = +1.4V
LT1013AM
MIN TYP MAX
● —
80
300
●
●
●
●
●
●
●
●
●
—
—
—
—
—
—
—
—
0.5
97
100
● ±12
●
●
●
●
—
3.2
—
—
MIN
—
LT1014AM
TYP MAX
90
350
80
120
250
0.4
0.3
0.6
15
20
2.0
114
117
450
450
900
2.0
2.5
6.0
30
80
—
—
—
—
—
—
—
—
—
—
—
0.4
96
100
90
150
300
0.4
0.3
0.7
15
25
2.0
114
117
±13.8
—
±12 ±13.8
6
3.8
0.38
0.34
15
—
0.60
0.55
—
3.2
—
—
6
3.8
0.38
0.34
LT1013M/LT1014M
UNITS
MIN TYP MAX
—
110 550
µV
480
480
960
2.0
2.8
7.0
30
90
—
—
—
—
—
—
—
—
—
—
—
0.25
94
97
—
±11.5 ±13.8
15
—
0.60
0.55
—
3.1
—
—
100
200
400
0.5
0.4
0.9
18
28
2.0
113
116
6
3.8
0.38
0.34
750
µV
750
µV
1500
µV
2.5 µV/°C
5.0
nA
10.0
nA
45
nA
120
nA
—
V/µV
—
dB
—
dB
—
18
—
0.7
0.65
V
mV
V
mA
mA
ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, –40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D unless otherwise noted
SYMBOL PARAMETER
VOS
IOS
AVOL
CMRR
MAX
240
—
350
MIN
—
—
—
TYP
65
—
85
MAX
270
—
380
—
—
—
—
—
—
—
1.0
98
—
0.3
—
0.2
0.4
13
18
5.0
116
—
2.0
—
1.5
3.5
25
55
—
—
—
—
—
—
—
—
—
1.0
98
—
0.3
—
0.2
0.4
13
20
5.0
116
—
2.0
—
1.7
4.0
25
60
—
—
—
—
—
—
—
—
—
0.7
94
280
0.4
0.7
0.3
0.5
16
24
4.0
113
VS = ±2V to ±18V
● 101
119
—
101
119
—
97
116
RL = 2k
VS = +5V, 0V; RL = 600Ω
Output Low
Output High
● ±12.5 ±13.9
LT1013D/I, LT1014D/I
VS = +5V, 0V; VO = 1.4V
LT1013D/I, LT1014D/I
VS = +5V, 0V; VO = 1.4V
(Note 2)
LT1013D/I, LT1014D/I
PSRR
VOUT
IS
Input Bias Current
Large Signal Voltage Gain
Common-Mode Rejection
Ratio
Power Supply Rejection
Ratio
Output Voltage Swing
VS = +5V, 0V; VO = 1.4V
VO = ±10V, RL = 2k
VCM = +13.0V, – 15.0V
Supply Current per Amplifier
VS = +5V, 0V; VO = 1.4V
Note 2: This parameter is not 100% tested.
4
LT1013C/D/I
UNITS
LT1014C/D/I
MIN TYP MAX
—
80
400
µV
—
230 1000
µV
—
110 570
µV
TYP
55
—
75
VS = +5V, 0V; VO = 1.4V
IB
LT1014AC
MIN
● —
● —
● —
Input Offset Voltage
Average Input Offset
Voltage Drift
Input Offset Current
LT1013AC
CONDITIONS
●
●
●
●
●
●
●
●
●
—
3.3
● —
● —
●
●
6
3.9
0.36
0.32
—
13
—
0.55
0.50
±12.5 ±13.9
—
3.3
—
—
6
3.9
0.36
0.32
—
13
—
0.55
0.50
±12.0 ±13.9
—
3.2
—
—
6
3.9
0.37
0.34
1200
µV
2.5 µV/°C
5.0 µV/°C
2.8
nA
6.0
nA
38
nA
90
nA
—
V/µV
—
dB
—
dB
—
V
13
—
0.60
0.55
mV
V
mA
mA
The ● denotes specifications which apply over the full operating temperature range.
LT1013/LT1014
U W
TYPICAL PERFORMANCE CHARACTERISTICS
Offset Voltage Drift with
Temperature of Representative
Units
Warm-Up Drift
5
10
INPUT OFFSET VOLTAGE (mV)
100
0
–100
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
1
VS = 5V, 0V, 25°C
0.1
RS
VS = ±15V, 0V, 25°C
RS
–200
VS = ±15V
TA = 25°C
CHANGE IN OFFSET VOLTAGE (µV)
VS = ±15V
200
INPUT OFFSET VOLTAGE (µV)
Offset Voltage vs Balanced
Source Resistance
+
4
3
LT1013 METAL CAN (H) PACKAGE
2
LT1014
1
0.01
–50 –25
50
25
0
75
TEMPERATURE (°C)
100
125
0
1k
Common-Mode Rejection Ratio
vs Frequency
5
0.1Hz to 10Hz Noise
100
80
VS = 5V, 0V
VS = ±15V
60
40
20
10
100
1k
10k
FREQUENCY (Hz)
100k
TA = 25°C
VS = ±2V TO ±18V
100
NEGATIVE
SUPPLY
80
POSITIVE
SUPPLY
60
40
VS = ±15V + 1VP-P SINE WAVE
TA = 25°C
20
0
0.1
1M
NOISE VOLTAGE (200nV/DIV)
TA = 25°C
POWER SUPPLY REJECTION RATIO (dB)
1
10
100 1k
10k
FREQUENCY (Hz)
100k
1M
0
10Hz Voltage Noise
Distribution
Noise Spectrum
TA = 25°C
VS = ±2V TO ±18V
160
NUMBER OF UNITS
300
100
CURRENT NOISE
VOLTAGE NOISE
30
140
120
100
80
60
40
20
1/f CORNER 2Hz
0
1
10
100
FREQUENCY (Hz)
1k
10
20
40
50
30
VOLTAGE NOISE DENSITY (nV/√Hz)
6
4
TIME (SECONDS)
8
10
460
VS = ±15V
TA = 25°C
328 UNITS TESTED
FROM THREE RUNS
180
2
Supply Current vs Temperature
200
1000
SUPPLY CURRENT PER AMPLIFIER (µA)
COMMON-MODE REJECTION RATIO (dB)
1
3
4
2
TIME AFTER POWER ON (MINUTES)
120
0
VOLTAGE NOISE DENSITY (nV/√Hz)
CURRENT NOISE DENSITY (fA/√Hz)
0
3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)
Power Supply Rejection Ratio
vs Frequency
120
10
LT1013 CERDIP (J) PACKAGE
–
60
420
380
VS = ±15V
340
VS = 5V, 0V
300
260
–50 –25
50
25
0
75
TEMPERATURE (°C)
100
125
5
LT1013/LT1014
U W
Input Bias Current vs
Common-Mode Voltage
4
10
3
5
VS = ±15V
2
0
VS = 5V, 0V
1
–5
0
–10
–1
0
–5
–25
–10
–15
–20
INPUT BIAS CURRENT (nA)
–15
–30
1.0
VCM = 0V
–25
0.8
0.6
0.4
VS = 5V, 0V
VS
=±
V
2.5
0.2
0
–50 –25
–20
VS = 5V, 0V
.5V
VS = ± 2
–15
VS = ±15V
–10
–5
VS = ±15V
50
25
0
75
TEMPERATURE (°C)
100
125
0
–50 –25
50
25
75
0
TEMPERATURE (°C)
100
125
Large Signal Transient
Response, VS = ±15V
Small Signal Transient
Response, VS = ±15V
V + = 5V TO 30V
V – = 0V
ISINK = 10mA
1
ISINK = 5mA
5V/DIV
20mV/DIV
SATURATION VOLTAGE (V)
–30
VCM = 0V
Output Saturation vs Sink
Current vs Temperature
10
Input Bias Current vs
Temperature
INPUT BIAS CURRENT (nA)
15
TA = 25°C
INPUT OFFSET CURRENT (nA)
5
Input Offset Current vs
Temperature
COMMON-MODE INPUT VOLTAGE, VS = ±15V (V)
COMMON-MODE INPUT VOLTAGE, VS = +5V, 0V (V)
TYPICAL PERFORMANCE CHARACTERISTICS
ISINK = 1mA
0.1
ISINK = 100µA
ISINK = 10µA
AV = +1
2µs/DIV
AV = +1
50µs/DIV
ISINK = 0
0.01
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
125
Large Signal Transient
Response, VS = 5V, 0V
Small Signal Transient
Response, VS = 5V, 0V
Large Signal Transient
Response, VS = 5V, 0V
4V
4V
100mV
2V
2V
0V
50mV
0V
0
AV = +1
RL = 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE
6
20µs/DIV
AV = +1
RL = 4.7k TO 5V
INPUT = 0V TO 4V PULSE
10µs/DIV
AV = +1
NO LOAD
INPUT = 0V TO 4V PULSE
10µs/DIV
LT1013/LT1014
U W
TYPICAL PERFORMANCE CHARACTERISTICS
Output Short Circuit Current
vs Time
40
125°C
TA = 125°C, VS = ±15V
10
0
125°C
–10
–20
25°C
–30
–55°C
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
1M
TA = 125°C, VS = 5V, 0V
100
80
1
2
0
3
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
1k
LOAD RESISTANCE TO GROUND (Ω)
20
0
±15V
GAIN
140
160
0
5V, 0V
180
5V, 0V
200
CHANNEL SEPARATION (dB)
120
160
PHASE SHIFT (DEGREES)
VOLTAGE GAIN (dB)
80
TA = 25°C
VCM = 0V
100
CL = 100pF
±15V
10
–20
0.01 0.1
10k
140
LIMITED BY
THERMAL
INTERACTION
120
1
3
FREQUENCY (MHz)
RS = 100Ω
RS = 1kΩ
100
LIMITED BY
PIN TO PIN
CAPACITANCE
80
60
10
10
100
10k
1k
FREQUENCY (Hz)
100k
1M
U
W
U
0.3
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
VS = ±15V
TA = 25°C
VIN = 20Vp-p to 5kHz
RL = 2k
–10
0.1
1
Channel Separation vs
Frequency
Gain, Phase vs Frequency
PHASE
VS = ±15V
40
VO = 20mV TO 3.5V
WITH VS = 5V, 0V
100k
100
VS = 5V, 0V
60
VO = ±10V WITH VS = ±15V
–40
20
TA = 25°C
CL = 100pF
120
VOLTAGE GAIN (dB)
20
Voltage Gain vs Frequency
140
TA = 25°C, VS = ±15V
TA = –55°C, VS = ±15V
VOLTAGE GAIN (V/V)
SHORT CIRCUIT CURRENT (mA)
SINKING
SOURCING
25°C
10M
VS = ±15V
–55°C
30
Voltage Gain vs Load
Resistance
U
APPLICATIONS INFORMATION
Single Supply Operation
The LT1013/1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common-mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific
circuitry which addresses these problems.
At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than
a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as
the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP420:
a) When the input is more than a diode drop below ground,
unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/
1014, the 400Ω resistors, in series with the input (see
schematic diagram), protect the devices even when the
input is 5V below ground.
7
LT1013/LT1014
U
W
U
U
APPLICATIONS INFORMATION
(b) When the input is more than 400mV below ground (at
25°C), the input stage saturates (transistors Q3 and Q4)
and phase reversal occurs at the output. This can cause
lock-up in servo systems. Due to a unique phase reversal
protection circuitry (Q21, Q22, Q27, Q28), the LT1013/
1014’s outputs do not reverse, as illustrated below, even
when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of the
other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.
D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20) or
cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/1014’s
all-NPN output stage maintains its low output resistance
and high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/1014 lends
itself to its use as a precision comparator with TTL
compatible output:
In systems using both op amps and comparators, the
LT1013/1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.
Voltage Follower with Input Exceeding the Negative Common-Mode Range
4V
2V
4V
4V
2V
2V
0V
0V
0V
6Vp-p INPUT, – 1.5V TO 4.5V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
LT1013/LT1014
NO PHASE REVERSAL
Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
OUTPUT (V)
OUTPUT (V)
Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives
4
2
INPUT (mV)
INPUT (mV)
2
0
0
– 100
0
100
0
VS = 5V, 0V
8
4
50µs/DIV
VS = 5V, 0V
50µs/DIV
LT1013/LT1014
U
U
W
U
APPLICATIONS INFORMATION
Test Circuit for Offset Voltage and
Offset Drift with Temperature
Low Supply Operation
The minimum supply voltage for proper operation of the
LT1013/1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290µA, therefore power
dissipation is only one milliwatt per amplifier.
50k*
+15V
–
100Ω*
LT1013
OR LT1014
50k*
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.
VO
+
Noise Testing
–15V
*RESISTOR MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
**THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
VO = 1000VOS
U
TYPICAL APPLICATIONS
5V Single Supply Dual Instrumentation Amplifier
50MHz Thermal rms to DC Converter
100k*
+5V
+5V
1/2 LTC1043
2
30k*
30k*
–
0.01
LT1014
10k
3
1µF
+INPUT
1
10k*
6
5
5
6
2
6
–
5
+
300Ω*
100k*
10k*
7
OUTPUT A
–
4
+5V
4
LT1014
8
1/2 LT1013
10k*
+
+
R2
1µF
1µF
3
7
R1
11
10k*
–INPUT
18
+INPUT
7
15
0.01
0.01
T1A
GRN
–
12
+
LT1014
10k
INPUT
300mV–
10VRMS
BRN
13
1/2 LTC1043
14
3
8
1/2 LT1013
1µF
2
11
10
RED
T1B
RED
T2B
GRN
BRN
+
20k
FULLSCALE
TRIM
10k
8
1µF
0V–4V
OUTPUT
10k*
–INPUT
10k*
2% ACCURACY, DC–50MHz.
100:1 CREST FACTOR CAPABILITY.
* 0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
1µF
12
–
T2A
OUTPUT B
–
R2
+
LT1014
9
1
13
14
16
0.01
R1
OFFSET = 150µV
GAIN = R2 + 1.
R1
CMRR = 120dB.
COMMON-MODE RANGE IS 0V TO 5V.
9
LT1013/LT1014
U
TYPICAL APPLICATIONS
Hot Wire Anemometer
+15V
500pF
Q1
2N6533
Q2–Q5
CA3046
PIN 3 TO –15V
Q2
2k
Q5
Q3
220
150k*
0.01µF
10k*
27Ω
1W
33k
–
2
#328
6
A2
LT1014
Q4
7
2k
150k*
+
12k
1
1k
ZERO
FLOW
+
2k*
500k
–15V
–
12
+
A4
LT1014
10M
RESPONSE
TIME
ADJUST
2M
FULLSCALE
FLOW
3.3k
11
13
1µF
+15V
4
A1
LT1014
3
5
1000pF
–
14
0V–10V =
0–1000 FEET/MINUTE
100k
–15V
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
* 1% RESISTOR.
9
–
10
+
1µF
A3
LT1014
8
Liquid Flowmeter
3.2k**
1M*
+15V
15Ω
DALE
HL-25
3.2k*
1M*
2
1M*
6.25k**
3
10M
RESPONSE
TIME
–
1
A1
LT1014
+
6
–
5
+LT1014
A2
100k
7
6.98k*
5k
FLOW
CALIB
6.25k**
1µF
1M*
1k*
T1
T2
+15V
4.7k
1N4148
100k
2N4391
300pF
0.1
LT1004
–1.2
383k*
9
2.7k
10
–
8
A3
LT1014
100k
12
+
100k
–15V
13
+
OUTPUT
0Hz
300Hz =
0
300ML/MIN
+15V
4
14
A4
LT1014
–
11
–15V
T1
FLOW
T2
FLOW
PIPE
10
15Ω HEATER RESISTOR
* 1% FILM RESISTOR.
** SUPPLIED WITH YSI THERMISTOR NETWORK.
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
FREQUENCY OUTPUT.
LT1013/LT1014
U
TYPICAL APPLICATIONS
5V Powered Precision Instrumentation Amplifier
–
8
9
LT1014
+
TO
INPUT
CABLE SHIELDS
10
200k*
10k*
10k*
1
LT1014
†
20k
–INPUT
–
2
+5V
+
3
+5V
10k
†
13
–
12
+
4
RG (TYP 2k)
14
LT1014
1µF
200k*
†
6
20k
10k*
7
LT1014
10k*
+
5
+INPUT
11
10k
–
OUTPUT
†
* 1% FILM RESISTOR. MATCH 10k's 0.05%
400,000
GAIN EQUATION: A =
+ 1.
RG
†
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.
+5V
9V Battery Powered Strain Gauge Signal Conditioner
15k
+9V
+9V
2
–
0.068
3
+
1N4148
4
LT1014
11
22M
47µF
4.7k
1
330Ω
2N2219
100k
0.01
TO A/D RATIO
REFERENCE
100k
100k
100k
+9V
+9V
1
15k
15
350Ω
STRAIN GAUGE
BRIDGE
13
6
5
–
+
LT1014
7
499
0.068
14
–
12
+
LT1014
14
TO A/D
499
7 74C221
3k
13
9
–
0.068
6
9
10
+
100k
LT1014
8
5
TO A/D
CONVERT COMMAND
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA.
4.7k–0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
HIGH ∆V/∆T STEPS.
11
LT1013/LT1014
U
TYPICAL APPLICATIONS
5V Powered Motor Speed Controller
No Tachometer Required
+5V
100k
2
330k
3
47
1k
82Ω
–
A1
1/2 LT1013
0.47
+
1
2k
Q3
2N5023
Q1
2N3904
+
1N4001
1M
2k
6.8M
0.068
1/4 CD4016
5V
8
–
7
1N4001
1N4148
6
3.3M
0.068
1N4148
A2
1/2 LT1013
0.47
2k
5
MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.
Q2
+
4
EIN
0V–3V
5V Powered EEPROM Pulse Generator
+5V
DALE
#TC-10-04 1N4148
1N4148
1N4148
2N2222
10Ω
+5V
0.05
0.1
2N2222
2N2222
4.7k
20k
0.33
1N4148
820
270Ω
100k
100Ω
820
2
1N4148
TTL INPUT
MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT).
*1% METAL FILM.
4.7M
–
LT1013
3
+
1
1N4148
6
–
8
LT1013
0.005
5
1k
2N2222
+
4
120k
OUTPUT
100K*
LT1004
1.2V
12
7
6.19K
21V
600µs RC
LT1013/LT1014
U
TYPICAL APPLICATIONS
Methane Concentration Detector with Linearized Output
+5V
1
* 1% METAL FILM RESISTOR
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
14
LT1004
1.2V
–5V
0.033
390k*
10
1N4148 (4)
CD4016
–
A3
LT1014
+
100k*
8
13
11
12
5
8
LTC1044
–
74C04
A4
LT1014
14
+
74C04
+5V
–5V
4
2
10µF
+
10µF
3
470pF
+
470pF
10k
+5V
1
74C04
14
SENSOR
CA3046
Q2
2
3
OUTPUT
500ppm-10,000ppm
50Hz 1kHz
Q3
1000pF
+5V
4
2k
A1
LT1014
1
100k*
6
–
A2
LT1014
+
5
2k
7
150k*
+
12k*
Low Power 9V to 5V Converter
+9V INPUT
L
2N2905
+
1N4148
10k
5V
20mA
2N5434
47
390k
1%
HP5082-2811
VD = 200mV
+9V
10k
100µA
1
+
7
5
330k
LT1013
–
4
2
LT1013
8
+
5k
1000ppm
TRIM
–
1N4148
–5V
Q4
Q1
–
2.7k
9
3
120k
1%
+9V
6
47k
LT1004
1.2V
L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
≈ 75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
13
LT1013/LT1014
U
TYPICAL APPLICATIONS
5V Powered 4mA–20mA Current Loop Transmitter†
+5V
Q3
2N2905
820Ω
74C04
(6)
10µF
T1
Q1
2N2905
68Ω
1N4002 (4)
10µF
+
+
0.002
Q2
2N2905
820Ω
10k
10k
0.33
100k
+5V
8
A1
1/2 LT1013
1
+
100pF
3
4
10k*
20mA
TRIM
4k*
10k*
1k
4mA
TRIM
4.3k
+5V
7
A2
1/2 LT1013
+
†
12-BIT ACCURACY.
* 1% FILM.
T1 = PICO-31080.
100Ω*
80k*
–
–
2k
Q4
2N2222
10k*
2
LT1004
1.2V
6
4mA-20mA OUT
TO LOAD
2.2kΩ MAXIMUM
5
INPUT
0 TO 4V
Fully Floating Modification to 4mA-20mA Current Loop†
T1
0.1Ω
+5V
7
A1
1/2 LT1013
100k
A2
1/2 LT1013
1
68k*
5
+
–
TO INVERTER
DRIVE
6
–
8
+
3
10µF
2
4mA-20mA OUT
FULLY FLOATING
+
4
4k*
10k*
4.3k
2k
4mA
TRIM
INPUT
0V–4V
14
301Ω*
1k
20mA
TRIM
+5V
LT1004
1.2V
1N4002 (4)
†
8-BIT ACCURACY.
LT1013/LT1014
U
TYPICAL APPLICATIONS
5V Powered, Linearized Platinum RTD Signal Conditioner
2M
–
9
499Ω
Q1
167Ω
200k
–
2
A2
1/4 LT1014
Q2
200k
+
3
2N4250
(2)
A4
1/4 LT1014
150Ω
1
OUTPUT
0V–4V =
0°C–400°C
±0.05°C
GAIN TRIM
1k
2M
3.01k
SENSOR
–
1.5k
+
10
5k
LINEARITY
8
ROSEMOUNT
118MF
7
A3
1/4 LT1014
6
8.25k
50k
ZERO
TRIM
5
+
274k
+5V
4
–
A1
1/4 LT1014
+
14
+5V
11
13
2.4k
5%
LT1009
2.5V
10k
250k
12
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0 ° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100 °C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400 °C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
Strain Gauge Bridge Signal Conditioner
+5V
220
+5V
8
1
+
2
100µF
301k
39k
100k
3
4
E
LTC1044
4
10k
ZERO
TRIM
VREF
2
1/2 LT1013
8
D
PRESSURE
TRANSDUCER
350Ω
V ≈ –VREF
5
+
7
A
0.33
1/2 LT1013
6
OUTPUT
–
0V–3.5V
0psi–350psi
0.047
C
5
100µF
2k GAIN TRIM
+
+
LT1004
1.2V
–
0.1
1.2VOUT REFERENCE
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD
* 1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
46k*
100Ω*
15
LT1013/LT1014
U
TYPICAL APPLICATIONS
LVDT Signal Conditioner
7
0.005
30k
0.005
30k
8
FREQUENCY =
1.5kHz
+5V
5
+
7
LT1013
6
YEL-BLK
11
LVDT
RDBLUE
–
BLUE
–5V
GRN
10k
4.7k
YEL-RD
1N914
BLK
12
LT1004
1.2V
2N4338
100k
1.2k
10µF
1µF
13
7.5k
1/2 LTC1043
1
–
200k
+
8
1k
7
LT1011
3
–
10k
TO PIN 16, LT1043
4
1
+
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
3
–INPUT
+
1/4 LT1014
2
–
R1
R3
RG
–
5
+
12
+
13
–
2R
10M
–
R2
10
+
8
1/4 LT1014
OUTPUT
R3
(
1/4 LT1014
10pF
100k
V–
)
GAIN = 1 + 2R1 R3
RG R2
4
11
16
7
V+
R
5M
9
R1
1/4 LT1014
+INPUT
R2
1
2R
10M
6
OUT
0V–3V
+5V
2
100k
PHASE
TRIM
+
LT1013
2
100k
LVDT = SCHAEVITZ E-100.
3
14
0.01
14
INPUT BIAS CURRENT TYPICALLY <1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON-MODE LIMIT = V – + IB × 2R + 30mV
= 150mV for V – = 0V
I B = 12nA
LT1013/LT1014
U
TYPICAL APPLICATIONS
Voltage Controlled Current Source with
Ground Referred Input and Output
Low Dropout Regulator for 6V Battery
+5V
+12 OUTPUT
1N914
100Ω
3
2
4
+
+
8
LTC1044
10
0V–2V
3
8
+
1
1/2 LT1013
5
2
–
4
10
2N2219
5V OUTPUT
0.68µF
VBATT
6V
100k
100Ω
1k
1/2 LTC1043
0.01Ω
7
0.003µF
1.2k
6
5
1M
3
LT1004
1.2V
2
+
LT1013
1
11
1µF
–
100Ω
1µF
4
–
8
120k
8
12
7
A2
LT1013
1N914
+
14
13
30k
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
IQUIESCENT = 850µA.
IOUT = 0mA TO 15mA
50k
OUTPUT ADJUST
VIN
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY.
IOUT =
6V to ±15V Regulating Converter
+6V
+
+6V
1µF
15pF
10k
22k
10k
2N3906
L1
1MHY
Q2
+16V
10k
22k
2N3904
+15VOUT
+16V
8
10
1
+
2
LT1013
10
10k
200k
VOUT
ADJ
+6V
3
100k
4
15pF
1.4M
0.005
–16V
LT1004
1.2V
82k
7
6
+
D2
Q2
–
Q1
2N4391
74C00
+
CLK 1 74C74
D1
–16V
CLK 2
+
100kHz INPUT
Q1
–
+V
5
LT1013
L1 = 24-104 AIE VERNITRON
= 1N4148
±5mA OUTPUT
75% EFFICIENCY
0.005
2N5114
1M
–15VOUT
17
LT1013/LT1014
U
TYPICAL APPLICATIONS
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†
+5V
3
8
+
1
1/2 LT1013
2
OSCILLATOR SUPPLY
STABILIZATION
1M*
–
4
5M*
3.4k*
4.3k
+5V
LT1009
2.5V
RT1
3.2k
1M*
2.16k*
4.22M*
TEMPERATURE
COMPENSATION
GENERATOR
RT2
6.25k
6
5
3.5MHz
XTAL
20k
–
7
1/2 LT1013
1M*
100Ω
100k
100k
2N2222
OSCILLATOR
+
MV-209
510pF
3.5MHz OUTPUT
0.03ppm/°C, 0°C–70°C
680Ω
560k
4.22M*
RT
YSI 44201
+5V
510pF
* 1% FILM
3.5MHz XTAL = AT CUT – 35°20'
MOUNT RT NEAR XTAL
3mA POWER DRAIN
† THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT
Step-Up Switching Regulator for 6V Battery
INPUT
+6V
22k
2N2222
OUTPUT
+15V
50mA
+
2.2
LT1004
1.2V
L1
1MHY
200k
5
220pF
1N5821
1M
220k
0.001
3
+
LT1013
2
–
1
2N5262
6
18
–
4
100
5.6k
5.6k
LT = AIE–VERNITRON 24–104
78% EFFICIENCY
8
LT1013
130k
+
300Ω
+
0.1
7
LT1013/LT1014
W
W
SCHEMATIC DIAGRAM
V+
9k
9k
1.6k
1.6k
Q13
Q6
Q5
1/2 LT1013, 1/4 LT1014
1.6k
Q16
100Ω
1k
800Ω
Q14
Q36
Q15
Q32
Q30
Q35
Q3
J1
Q4
Q37
Q25
–
Q1
Q33
21pF
3.9k
Q27
Q26
2.4k
2.5pF
400Ω
18Ω
Q38
IN
+
Q21
OUTPUT
Q2
Q41
14k
Q28
400Ω
Q39
IN
Q22
Q18
4pF
Q12
Q29
Q10
Q31
Q40
Q19
2k
Q11
10pF
Q9
Q7
Q17
Q8
75pF
5k
V–
5k
Q34
100pF
600Ω
42k
Q23 Q24
Q20
1.3k
2k
2k
30Ω
J8 Package
8-Lead CERDIP (Narrow 0.300, Hermetic)
N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1110)
(LTC DWG # 05-08-1510)
CORNER LEADS OPTION
(4 PLCS)
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.400*
(10.160)
MAX
0.405
(10.287)
MAX
0.005
(0.127)
MIN
8
7
6
0.025
(0.635)
RAD TYP
1
2
3
7
6
5
1
2
3
4
0.255 ± 0.015*
(6.477 ± 0.381)
0.220 – 0.310
(5.588 – 7.874)
0.300 BSC
(0.762 BSC)
8
5
4
0.200
(5.080)
MAX
0.300 – 0.325
(7.620 – 8.255)
0.045 – 0.065
(1.143 – 1.651)
0.130 ± 0.005
(3.302 ± 0.127)
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.457)
0.009 – 0.015
(0.229 – 0.381)
0° – 15°
0.045 – 0.068
(1.143 – 1.727)
0.385 ± 0.025
(9.779 ± 0.635)
0.125
3.175
0.100 ± 0.010 MIN
(2.540 ± 0.254)
0.014 – 0.026
(0.360 – 0.660)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS.
J8 0694
(
0.065
(1.651)
TYP
0.125
(3.175)
MIN
0.005
(0.127)
MIN
+0.025
0.325 –0.015
+0.635
8.255
–0.381
)
0.018 ± 0.003
(0.457 ± 0.076)
0.100 ± 0.010
(2.540 ± 0.254)
0.015
(0.380)
MIN
N8 0695
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
Tjmax
θja
Tjmax
θja
150°C
100°C / W
100°C
130°C / W
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
19
LT1013/LT1014
U
PACKAGE DESCRIPTION
H Package
8-Lead TO-5 Metal Can (0.200 PCD)
(LTC DWG # 05-08-1320)
0.335 – 0.370
(8.509 – 9.398)
DIA
0.305 – 0.335
(7.747 – 8.509)
0.040
(1.016)
MAX
0.050
(1.270)
MAX
SEATING
PLANE
0.165 – 0.185
(4.191 – 4.699)
0.027 – 0.034
(0.686 – 0.864)
REFERENCE
PLANE
GAUGE
PLANE
0.027 – 0.045
(0.686 – 1.143)
45°TYP
0.500 – 0.750
(12.700 – 19.050)
0.010 – 0.045*
(0.254 – 1.143)
0.200
(5.080)
TYP
0.016 – 0.021**
(0.406 – 0.533)
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND 0.045" BELOW THE REFERENCE PLANE
0.016 – 0.024
(0.406 – 0.610)
0.110 – 0.160
(2.794 – 4.064)
INSULATING
STANDOFF
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
H8(TO-5) 0.200 PCD 0595
NOTE: DIMENSIONS IN INCHES (MILLIMETERS)
Tjmax
150°C
θjc
45°C /W
θja
150°C / W
J Package
14-Lead CERDIP (Narrow 0.300, Hermetic)
N Package
14-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1110)
CORNER LEADS OPTION
(4 PLCS)
0.005
(0.127)
MIN
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
(LTC DWG # 05-08-1510)
0.785
(19.939)
MAX
14
13
12
11
0.770*
(19.558)
MAX
10
9
8
1
2
3
4
5
6
7
0.200
(5.080)
MAX
0.300 BSC
(0.762 BSC)
0 . 1 0 0± 0 . 0 1 0
( 2 . 5 4 0± 0 . 2 5 4 )
0.014 – 0.026
(0.360 – 0.660)
0.125
(3.175)
MIN
J14 0694
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP OR TIN PLATE LEADS.
+0.025
0.325 –0.015
8.255
+0.635
–0.381
)
θja
100°C /W
1
2
3
4
5
6
7
0.065
(1.651)
TYP
8
7
6
θja
100°C / W
SW Package
16-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG # 05-08-1620)
16
2
3
0°– 8° T Y P
15
14
13
12
11
10
9
5
0.394 – 0.419
(10.007 – 10.643)
NOTE 1
0.150 – 0.157**
(3.810 – 3.988)
1
N14 0695
0.398 – 0.413*
(10.109 – 10.490)
0.228 – 0.244
(5.791 – 6.197)
0.053 – 0.069
(1.346 – 1.752)
0.018 ± 0.003
(0.457 ± 0.076)
0.125
(3.175)
MIN
0.189 – 0.197*
(4.801 – 5.004)
0.291 – 0.299**
(7.391 – 7.595)
4
1
0.004 – 0.010
(0.101 – 0.254)
2
3
4
5
6
7
8
0.037 – 0.045
(0.940 – 1.143)
0.093 – 0.104
(2.362 – 2.642)
0.010 – 0.029 × 45°
(0.254 – 0.737)
0° – 8° TYP
0.016 – 0.050
0.406 – 1.270
0.014 – 0.019
(0.355 – 0.483)
*D I M E N S I O N D O E S N O T I N C L U D E M O L D F L A S H . M O L D F L A S H
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
* *D I M E N S I O N D O E S N O T I N C L U D E I N T E R L E A D F L A S H . I N T E R L E A D
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
20
8
0.045 – 0.065
(1.143 – 1.651)
Tjmax
100°C
(LTC DWG # 05-08-1610)
0.008 – 0.010
(0.203 – 0.254)
9
0.005
(0.125)
MIN
0.100 ± 0.010
(2.540 ± 0.254)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
(
S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
0.010 – 0.020
× 4 5°
(0.254 – 0.508)
10
0.009 – 0.015
(0.229 – 0.381)
0.045 – 0.068
(1.143 – 1.727)
Tjmax
150°C
11
0.015
(0.380)
MIN
0° – 1 5°
0 . 3 8 5± 0 . 0 2 5
( 9 . 7 7 9± 0 . 6 3 5 )
12
0.130 ± 0.005
(3.302 ± 0.127)
0.300 – 0.325
(7.620 – 8.255)
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.457)
13
0.255 ± 0.015*
(6.477 ± 0.381)
0.220 – 0.310
(5.588 – 7.874)
0.025
(0.635)
RAD TYP
14
Linear Technology Corporation
0.050
(1.270)
BSC
SO8 0695
0.009 – 0.013
(0.229 – 0.330)
NOTE 1
0.016 – 0.050
(0.406 – 1.270)
0.050
(1.270)
TYP
0.004 – 0.012
(0.102 – 0.305)
0.014 – 0.019
(0.356 – 0.482)
TYP
NOTE:
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
S16 (WIDE) 0695
LT/GP 0196 REV A • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977
 LINEAR TECHNOLOGY CORPORATION 1990