STMicroelectronics DTV1500HD Crt horizontal deflection high voltage damper diode Datasheet

DTV1500Hxx
®
(CRT HORIZONTAL DEFLECTION)
HIGH VOLTAGE DAMPER DIODE
MAIN PRODUCTS CHARACTERISTICS
IF(AV)
6A
VRRM
1500 V
VF (max)
1.7 V
trr (max)
125 ns
K
FEATURES AND BENEFITS
High breakdown voltage capability
High frequency operation
Specified turn on switching characteristics
Very fast recovery diode
Low static and peak forward voltage drop for low
dissipation
Insulated package (ISOWATT220AC & TO-220FPAC):
Insulating voltage = 2000V DC
Capacitance = 12pF
Planar technology allowing high quality and best
electrical characteristics
■
■
■
A
A
K
TO-220FPAC
DTV1500HFP
■
■
A
■
K
ISOWATT220AC
DTV1500HF
■
DESCRIPTION
High voltage diode especially designed for
horizontal deflection stage in standard and high
resolution displays for TV’s and monitors.
This device is packaged in TO-220AC,
ISOWATT220AC and TO-220FPAC (insulated
package).
A
K
TO-220AC
DTV1500HD
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VRRM
Repetitive peak reverse voltage
IF(RMS)
RMS forward current
IFSM
Surge non repetitive forward current
Tstg
Storage temperature
Tj
Maximum operating junction temperature
January 2002 - Ed: 4C
tp = 10ms
sinusoidal
Value
Unit
1500
V
15
A
80
A
- 65 to 150
°C
150
°C
1/8
DTV1500Hxx
THERMAL RESISTANCE
Symbol
Rth(j-c)
Parameter
Junction to Case thermal resistance
Value
Unit
TO-220FPAC
5
°C/W
ISOWATT220AC
4
TO-220AC
2
STATIC ELECTRICAL CHARACTERISTICS
Value
Symbol
Parameter
Test Conditions
Unit
Typ
IR
VF
*
**
Reverse leakage current
Forward voltage drop
VR = 1500V
IF = 6A
Tj = 25°C
Max
100
µA
Tj = 125°C
100
1000
µA
Tj = 25°C
1.5
2.3
V
Tj = 125°C
1.25
1.7
pulse test : * tp = 5 ms , δ < 2%
** tp = 380 µs, δ < 2%
RECOVERY CHARACTERISTICS
Value
Symbol
Parameter
Test Conditions
Unit
Typ
Max
125
trr
Reverse
recovery time
Tj = 25°C
IF = 1 A dIF/dt = -50A/µs
VR = 30V
95
trr
Reverse
recovery time
Tj = 25°C
IF = 100mA IR = 100mA
IRR = 10mA
625
ns
ns
TURN-ON SWITCHING CHARACTERISTICS
Value
Symbol
Parameter
Test Conditions
Unit
Typ
tfr
VFp
Forward recovery
time
Tj = 100°C
IF = 6 A dIF/dt = 80 A/µs
VFR = 3 V
350
Peak forward
voltage
Tj = 100°C
IF = 6A
18
dIF/dt = 80 A/µs
To evaluate the maximum conduction losses use the following equation :
P = 1.35 x IF(AV) + 0.059 x IF2(RMS)
2/8
Max
ns
25
V
DTV1500Hxx
Fig. 1: Power dissipation versus forward current
(triangular waveform, δ = 0.45)
Fig. 2-1: Average current versus case temperature, (δ = 0.5) (TO-220FPAC)
PF(av)(W)
IF(av)(A)
2.5
12
2.0
10
8
1.5
6
1.0
4
0.5
T
2
Ip(A)
0.0
0
1
2
3
4
5
6
Fig. 2-2: Average current versus case temperature, (δ = 0.5) (ISOWATT220AC)
0
IF(av)(A)
10
10
8
8
6
6
125
150
2
Tcase(°C)
tp
25
100
T
2
δ=tp/T
75
4
T
0
50
IF(av)(A)
12
0
Tcase(°C)
tp
25
Fig. 2-3: Average current versus case temperature, (δ = 0.5) (TO-220AC)
12
4
δ=tp/T
0
50
75
100
125
150
Fig. 3: Forward voltage drop versus forward
curent
0
δ=tp/T
0
Tcase(°C)
tp
25
50
75
100
125
150
Fig. 4-1: Non repetitive surge peak forward current
versus overload duration (TO-220FPAC)
IFM(A)
IM(A)
15.0
50
Tc=100°C
40
10.0
Typical
Tj=125°C
Maximum
Tj=25°C
30
5.0
Maximum
Tj=125°C
20
10
IM
VFM(V)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
t(s)
t
0
1E-3
δ=0.5
1E-2
1E-1
1E+0
3/8
DTV1500Hxx
Fig. 4-2: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AC)
Fig. 4-3: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
IM(A)
IM(A)
60
80
Tc=100°C
Tc=100°C
70
50
60
40
50
30
40
30
20
20
IM
10
t
t(s)
δ=0.5
0
1E-3
1E-2
1E-1
1E+0
0
1E-3
Qrr(nc)
IF= 6A
90% confidence
Tj=125°C
800
600
400
200
dIF/dt(A/µs)
0.2
0.5
1.0
2.0
5.0
Fig. 7: Transient peak forward voltage versus
dIF/dt
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.1
30
25
20
15
10
5
0
dIF/dt(A/µs)
0
4/8
20
1E-1
1E+0
IF= 6A
90% confidence
Tj=125°C
dIF/dt(A/µs)
0.2
0.5
1.0
2.0
5.0
tfr(ns)
IF= 6A
90% confidence
Tj=125°C
35
1E-2
Fig. 8: Forward recovery time versus dIF/dt
VFP(V)
40
t(s)
IRM(A)
1200
0
0.1
t
δ=0.5
Fig. 6: Reverse recovery current versus dIF/dt
Fig. 5: Reverse recovery charges versus dIF/dt
1000
IM
10
40
60
80
100
120
140
800
750
700
650
600
550
500
450
400
350
300
IF= 6A
90% confidence
Tj=125°C
VFR=3V
dIF/dt(A/µs)
0
20
40
60
80
100
120
140
DTV1500Hxx
Fig. 9: Dynamic parameters versus junction temperature
Fig. 10: Junction capacitance versus reverse voltage applied (typical values)
C(pF)
1.2
100
Tj=25°C
F=1MHz
1.0
0.8
50
IRM
0.6
VFP
0.4
20
Qrr
0.2
Tj(°C)
0.0
0
20
40
60
80
VR(V)
100
120
140
Fig. 11-1: Relative variation of thermal impedance
junction to case versus pulse duration
(ISOWATT220AC & TO-220FPAC)
10
1
10
100
200
Fig. 11-2: Relative variation of thermal impedance
junction to case versus pulse duration ( TO-220AC)
K=[Zth(j-c)/Rth(j-c)]
K=[Zth(j-c)/Rth(j-c)]
1.0
1.0
δ = 0.5
δ = 0.5
0.5
0.5
δ = 0.2
δ = 0.2
δ = 0.1
δ = 0.1
0.2
0.2
T
T
Single pulse
Single pulse
t(s)
0.1
1E-2
1E-1
δ=tp/T
1E+0
tp(s)
tp
1E+1
0.1
1E-3
1E-2
δ=tp/T
1E-1
tp
1E+0
5/8
DTV1500Hxx
PACKAGE DATA
TO-220FPAC
DIMENSIONS
REF.
Millimeters
Inches
A
B
D
E
F
F1
G
G1
H
L2
L3
L4
L5
L6
L7
Dia.
Min.
Max.
4.4
4.6
2.5
2.7
2.5
2.75
0.45
0.70
0.75
1
1.15
1.70
4.95
5.20
2.4
2.7
10
10.4
16 Typ.
28.6
30.6
9.8
10.6
2.9
3.6
15.9
16.4
9.00
9.30
3.00
3.20
Min.
Max.
0.173
0.181
0.098
0.106
0.098
0.108
0.018
0.027
0.030
0.039
0.045
0.067
0.195
0.205
0.094
0.106
0.393
0.409
0.63 Typ.
1.126
1.205
0.386
0.417
0.114
0.142
0.626
0.646
0.354
0.366
0.118
0.126
A
H
B
Dia
L6
L2
L7
L3
L5
D
F1
L4
F
G1
G
6/8
E
DTV1500Hxx
PACKAGE DATA
ISOWATT220AC
A
H
B
Diam
REF.
L6
L7
L2
L3
F1
F
D
E
A
B
D
E
F
F1
G
H
L2
L3
L6
L7
Diam
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
4.40
4.60
0.173
0.181
2.50
2.70
0.098
0.106
2.40
2.75
0.094
0.108
0.40
0.70
0.016
0.028
0.75
1.00
0.030
0.039
1.15
1.70
0.045
0.067
4.95
5.20
0.195
0.205
10.00
10.40
0.394
0.409
16.00 Typ.
0.630 Typ.
28.60
30.60
1.125
1.205
15.90
16.40
0.626
0.646
9.00
9.30
0.354
0.366
3.00
3.20
0.118
0.126
G
PACKAGE DATA
TO-220AC
DIMENSIONS
REF.
A
H2
C
L5
L7
ØI
L6
L2
D
L9
F1
M
F
E
G
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
H2
10.00
10.40
0.393
0.409
L2
L4
Millimeters
16.40 typ.
0.645 typ.
L4
13.00
14.00
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
Diam. I
2.6 typ.
3.75
3.85
0.102 typ.
0.147
0.151
7/8
DTV1500Hxx
■
■
■
■
■
Type
Marking
Package
Weight
Base qty
Delivery mode
DTV1500HFP
DTV1500HFP
TO-220FPAC
1.8g
50
Tube
DTV1500HF
DTV1500HF
ISOWATT220AC
2g
50
Tube
DTV1500HD
DTV1500HD
TO-220AC
1.86g
50
Tube
Cooling method: C
Epoxy meets UL94-V0
Torquevalue: 0.55 m.Ntyp (0.7m.Nmax)
Electrical Isolation: 2000V DC
Capacitance: 12pF
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com
8/8
Similar pages