STMicroelectronics E-UC3842BN High performance current mode pwm controller Datasheet

UC2842B/3B/4B/5B
UC3842B/3B/4B/5B
®
HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER
.
.
..
.
.
..
.
TRIMMED OSCILLATOR FOR PRECISE FREQUENCY CONTROL
OSCILLATOR FREQUENCY GUARANTEED
AT 250kHz
CURRENT MODE OPERATION TO 500kHz
AUTOMATIC FEED FORWARD COMPENSATION
LATCHING PWM FOR CYCLE-BY-CYCLE
CURRENT LIMITING
INTERNALLY TRIMMED REFERENCE WITH
UNDERVOLTAGE LOCKOUT
HIGH CURRENT TOTEM POLE OUTPUT
UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
LOW START-UP AND OPERATING CURRENT
Minidip
SO8
comparator which also provides current limit control,
and a totem pole output stage designed to source
or sink high peak current. The output stage, suitable
for driving N-Channel MOSFETs, is low in the offstate.
Differences between members of this family are the
under-voltage lockout thresholds and maximum duty
cycle ranges. The UC3842B and UC3844B have
UVLO thresholds of 16V (on) and 10V (off), ideally
suited off-line applications The corresponding thresholds for the UC3843B and UC3845B are 8.5 V and 7.9
V. The UC3842B and UC3843B can operate to duty
cycles approaching 100%. A range of the zero to <
50 % is obtained by the UC3844B and UC3845B by
the addition of an internal toggle flip flop which blanks
the output off every other clock cycle.
DESCRIPTION
The UC384xB family of control ICs provides the necessary features to implement off-line or DC to DC
fixed frequency current mode control schemes with
a minimal external parts count. Internally implemented circuits include a trimmed oscillator for precise DUTY CYCLE CONTROL under voltage lockout featuring start-up current less than 0.5mA, a precision reference trimmed for accuracy at the error
amp input, logic to insure latched operation, a PWM
BLOCK DIAGRAM (toggle flip flop used only in UC3844B and UC3845B)
Vi
7
UVLO
34V
GROUND
S/R
5
8
5V
REF
INTERNAL
BIAS
2.50V
VREF GOOD
LOGIC
RT/CT
VFB
COMP
CURRENT
SENSE
4
2
1
3
6
OSC
+
-
ERROR AMP.
VREF
5V 50mA
OUTPUT
T
2R
R
S
1V
R
CURRENT
SENSE
COMPARATOR
PWM
LATCH
UC3842B
D95IN331
March 1999
1/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Vi
Supply Voltage (low impedance source)
Vi
IO
Supply Voltage (Ii < 30mA)
EO
Output Energy (capacitive load)
Value
Unit
30
V
Self Limiting
±1
5
Output Current
Analog Inputs (pins 2, 3)
A
– 0.3 to 5.5
µJ
V
10
1.25
mA
W
Error Amplifier Output Sink Current
Ptot
Power Dissipation at Tamb ≤ 25 °C (Minidip)
Ptot
Power Dissipation at Tamb ≤ 25 °C (SO8)
Storage Temperature Range
800
mW
– 65 to 150
Junction Operating Temperature
– 40 to 150
°C
°C
300
°C
Tstg
TJ
TL
Lead Temperature (soldering 10s)
* All voltages are with respect to pin 5, all currents are positive into the specified terminal.
PIN CONNECTION (top view)
Minidip/SO8
COMP
1
8
VREF
VFB
2
7
Vi
ISENSE
3
6
OUTPUT
RT/CT
4
5
GROUND
D95IN332
PIN FUNCTIONS
No
Function
1
COMP
Description
2
VFB
This is the inverting input of the Error Amplifier. It is normally connected to the switching
power supply output through a resistor divider.
3
ISENSE
A voltage proportional to inductor current is connected to this input. The PWM uses this
information to terminate the output switch conduction.
4
RT/CT
The oscillator frequency and maximum Output duty cycle are programmed by connecting
resistor RT to Vref and cpacitor CT to ground. Operation to 500kHz is possible.
5
GROUND
This pin is the combined control circuitry and power ground.
6
OUTPUT
This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced
and sunk by this pin.
7
VCC
This pin is the positive supply of the control IC.
8
Vref
This is the reference output. It provides charging current for capacitor C T through resistor RT.
This pin is the Error Amplifier output and is made available for loop compensation.
ORDERING NUMBERS
SO8
UC2842BD1;
UC2843BD1;
UC2844BD1;
UC2845BD1;
2/15
UC3842BD1
UC3843BD1
UC3844BD1
UC3845BD1
Minidip
UC2842BN;
UC2843BN;
UC2844BN;
UC2845BN;
UC3842BN
UC3843BN
UC3844BN
UC3845BN
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
THERMAL DATA
Symbol
Rth j-amb
Description
Thermal Resistance Junction-ambient.
Minidip
SO8
Unit
100
150
°C/W
max.
ELECTRICAL CHARACTERISTICS ( [note 1] Unless otherwise stated, these specifications apply for
-25 < Tamb < 85°C for UC284XB; 0 < Tamb < 70°C for UC384XB; Vi = 15V (note 5); RT = 10K; CT = 3.3nF)
Symbol
Parameter
REFERENCE SECTION
VREF
Output Voltage
Test Conditions
Line Regulation
12V ≤ Vi ≤ 25V
∆VREF
Load Regulation
1 ≤ Io ≤ 20mA
∆VREF/∆T Temperature Stability
eN
ISC
(Note 2)
10Hz ≤ f ≤ 10KHz Tj = 25°C
(note 2)
50
Long Term Stability
Tamb =
(note 2)
5
125°C,
-30
VOSC
Oscillator Voltage Swing
(peak to peak)
Idischg
Discharge Current (VOSC =2V) TJ = 25°C
TA = Tlow to Thigh
V3
Ib
µV
50
25
5
V
25
mV
55
56
275
KHz
KHz
KHz
–
0.2
1
–
0.2
1
%
–
1
–
–
0.5
–
%
–
1.6
–
–
1.6
–
V
7.8
7.5
8.3
–
8.8
8.8
7.8
7.6
8.3
–
8.8
8.8
mA
mA
2.45 2.50 2.55 2.42 2.50 2.58
TJ = 25°C
Output Sink Current
-0.1
-1
-0.1
90
65
0.7
1
12V ≤ Vi ≤ 25V
60
70
VPIN2 = 2.7V VPIN1 = 1.1V
2
-2
V
µA
90
dB
0.7
1
MHz
60
70
dB
12
2
12
mA
-0.5
-1
-0.5
-1
mA
5
6.2
5
6.2
V
0.8
(note 3 & 4)
2.85
Maximum Input Signal
VPIN1 = 5V (note 3)
0.9
Supply Voltage Rejection
12 ≤ Vi ≤ 25V (note 3)
Delay to Output
mV/°C
5.18
52
–
250
Power Supply Rejec. Ratio
Input Bias Current
4.82
49
48
225
Unity Gain Bandwidth
CURRENT SENSE SECTION
GV
Gain
mV
55
56
275
65
VPIN2 = 2.3V VPIN1 = 5V
25
52
–
250
2V ≤ Vo ≤ 4V
VPIN2 = 2.3V;
RL = 15KΩ to Ground
VPIN2 = 2.7V;
RL = 15KΩ to Pin 8
3
mA
AVOL
Output Source Current
mV
-100 -180
VFB = 5V
VOUT High
20
-30
Input Bias Current
VOUT Low
SVR
VPIN1 = 2.5V
2
0.2
5.1
V
-100 -180
49
Tj = 25°C
48
TA = Tlow to Thigh
TJ = 25°C (RT = 6.2k, CT = 1nF) 225
TA = Tlow to Thigh
ERROR AMP SECTION
V2
Input Voltage
4.9
1000Hrs
Output Short Circuit
Frequency Change with Temp.
Io
25
Output Noise Voltage
∆fOSC/∆T
Io
3
Line, Load, Temperature
Frequency Change with Volt. VCC = 12V to 25V
BW
20
0.2
∆fOSC/∆V
PSRR
2
Total Output Variation
OSCILLATOR SECTION
fOSC
Frequency
Ib
4.95 5.00 5.05 4.90 5.00 5.10
Tj = 25°C Io = 1mA
∆VREF
UC284XB
UC384XB
Unit
Min. Typ. Max. Min. Typ. Max.
1.1
3
3.15 2.85
1
1.1
70
0.9
0.8
1.1
V
3
3.15
V/V
1
1.1
70
V
dB
-2
-10
-2
-10
µA
150
300
150
300
ns
3/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Conditions
UC284XB
UC384XB
Unit
Min. Typ. Max. Min. Typ. Max.
OUTPUT SECTION
VOL
VOH
VOLS
Output Low Level
Output High Level
ISINK = 20mA
0.1
0.4
0.1
0.4
V
ISINK = 200mA
1.6
2.2
1.6
2.2
V
ISOURCE = 20mA
13
13.5
13
13.5
V
ISOURCE = 200mA
12
13.5
12
13.5
V
UVLO Saturation
VCC = 6V; ISINK = 1mA
0.1
1.1
0.1
1.1
V
tr
Rise Time
Tj = 25°C CL = 1nF (2)
50
150
50
150
ns
tf
Fall Time
Tj = 25°C CL = 1nF (2)
50
150
50
150
ns
UNDER-VOLTAGE LOCKOUT SECTION
Start Threshold
Min Operating Voltage
After Turn-on
X842B/4B
15
16
17
14.5
16
17.5
V
X843B/5B
7.8
8.4
9.0
7.8
8.4
9.0
V
X842B/4B
9
10
11
8.5
10
11.5
V
X843B/5B
7.0
7.6
8.2
7.0
7.6
8.2
V
X842B/3B
94
96
100
94
96
100
%
X844B/5B
47
48
50
47
48
50
%
0
%
PWM SECTION
Maximum Duty Cycle
Minimum Duty Cycle
0
TOTAL STANDBY CURRENT
Ist
Ii
Viz
Start-up Current
Vi = 6.5V for UCX843B/45B
0.3
0.5
0.3
0.5
mA
Vi = 14V for UCX842B/44B
0.3
0.5
0.3
0.5
mA
12
17
12
17
mA
Operating Supply Current
VPIN2 = VPIN3 = 0V
Zener Voltage
Ii = 25mA
30
36
30
36
V
Notes : 1. Max package power dissipation limits must be respected; low duty cycle pulse techniques are used during test maintain Tj as
close to Tamb as possible.
2. These parameters, although guaranteed, are not 100% tested in production.
3. Parameter measured at trip point of latch with VPIN2 = 0.
4. Gain defined as :
∆ VPIN1
A=
; 0 ≤ VPIN3 ≤ 0.8 V
∆ VPIN3
5. Adjust Vi above the start threshold before setting at 15 V.
4/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 1: Open Loop Test Circuit.
VREF
RT
4.7KΩ
2N2222
100KΩ
COMP
1KΩ
ISENSE
ADJUST
4.7KΩ
5KΩ
7
Vi
2
3
RT/CT
OUTPUT
6
4
1W
1KΩ
0.1µF
UC2842B
ISENSE
Vi
0.1µF
8
1
VFB
ERROR AMP.
ADJUST
A
VREF
OUTPUT
GROUND
5
CT
GROUND
D95IN343
High peak currents associated with capacitive loads
necessitate careful grounding techniques. Timing
and bypass capacitors should be connected close
to pin 5 in a single point ground. The transistor and
5 KΩ potentiometer are used to sample the oscillator
waveform and apply an adjustable ramp to pin 3.
Figure 2: Timing Resistor vs. Oscillator Frequency
Figure 3: Output Dead-Time vs. Oscillator Frequency
RT
(KΩ)
D95IN333
D95IN334
%
C
50
T=
20
0p
F
T=
10
0p
C
T=
50
20
CT=5nF
50
C
F
C
CT=2nF
30
0p
F
CT=5nF
20
T=
1n
F
CT=1nF
10
5
CT=10nF
CT=100pF
3
2
2
Vi=15V
TA=25˚C
1
0.8
10K
CT=200pF
5
CT=2nF
CT=10nF
CT=500pF
10
Vi=15V
TA=25˚C
20K
30K
50K
100K
200K 300K
500K
fOSC(KHz)
1
10K
20K
30K
50K
100K
200K 300K
500K fOSC(KHz)
5/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 4: Oscillator Discharge Current vs. Temperature.
Idischg
(mA)
Figure 5: Maximum Output Duty Cycle vs. Timing Resistor.
D95IN336
D95IN335
Dmax
(%)
Vi=15V
VOSC=2V
90
8.5
Idischg=7.5mA
80
Idischg=8.8mA
70
8.0
60
Vi=15V
CT=3.3nF
TA=25˚C
7.5
50
40
7.0
-55
-25
0
25
50
75
100 TA(˚C)
Figure 6: Error Amp Open-Loop Gain and
Phase vs. Frequency.
D95IN337
(dB)
Vi=15V
VO=2V to 4V
RL=100K
TA=25˚C
80
Gain
60
0.8
1
2
3
5
RT(KΩ)
Figure 7: Current Sense Input Threshold vs. Error Amp Output Voltage.
φ
30
Vth
(V)
D95IN338
Vi=15V
1.0
TA=25˚C
60
0.8
90
0.6
20
120
0.4
0
150
0.2
180
f(Hz)
0.0
TA=125˚C
40
Phase
-20
10
100
1K
10K
100K
1M
Figure 8: Reference Voltage Change vs.
Source Current.
D95IN339
60
Vi=15V
50
TA=-40˚C
0
2
4
6
Figure 9: Reference Short Circuit Current vs.
Temperature.
D95IN340
ISC
(mA)
Vi=15V
RL≤0.1Ω
100
TA=-40˚C
40
VO(V)
90
TA=125˚C
30
TA=25˚C
80
20
70
10
60
0
50
0
6/15
20
40
60
80
100 Iref(mA)
-55
-25
0
25
50
75
100 TA(˚C)
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 10: Output Saturation Voltagevs. Load
Current.
Ii
(mA)
D95IN341
Vi
-1
-2
Source Saturation
(Load to Ground)
TA=25˚C
TA=-40˚C
D95IN342
20
Vi=15V
80µs Pulsed Load 120Hz Rate
15
UCX843/45
3
10
TA=-40˚C
2
TA=25˚C
5
1
Sink Saturation
(Load to Vi)
0
0
200
400
RT=10K
CT=3.3nF
VFB=0V
ISense=0V
TA=25˚C
UCX842/44
Vsat
(V)
Figure 11: Supply Current vs. Supply Voltage.
GND
0
600
IO(mA)
Figure 12: Output Waveform.
0
10
20
30
Vi(V)
Figure 13: Output Cross Conduction
Vi =30V
CL = 15pF
TA = 25°C
Vi =15V
CL = 1.0nF
TA = 25°C
90%
VO
20V/DIV
ICC
10%
100mA/DIV
50ns/DIV
100ns/DIV
Figure 14: Oscillator and Output Waveforms.
Vi
CT
7
8
5V REG
OUTPUT
PWM
6
RT
LARGE RT/SMALL CT
OUTPUT
CLOCK
4
OSCILLATOR
CT
ID
OUTPUT
CT
5
SMALL RT/LARGE CT
GND
D95IN344
7/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 15 : Error Amp Configuration.
2.5V
1mA
+
VFB
2
COMP
1
Zi
-
Zf
D95IN345
Figure 16 : Under Voltage Lockout.
7
Vi
ON/OFF COMMAND
TO REST OF IC
ICC
UC3842B UC3843B
UC3844B UC3845B
VON
16V
8.4V
VOFF
10V
7.6V
<17mA
<0.5mA
VOFF VON
D95IN346
VCC
During UVLO, the Output is low
Figure 17 : Current Sense Circuit .
ERROR
AMPL.
IS
COMP
R
RS
C
1
3
CURRENT
SENSE
5
GND
D95IN347
Peak current (is) is determined by the formula
1.0 V
IS max ≈
RS
A small RC filter may be required to suppress switch transients.
8/15
2R
R
1V
CURRENT
SENSE
COMPARATOR
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 18 : Slope Compensation Techniques.
VREG
VREG
8
RT
RT
RT/CT
IS
RSLOPE
4
CT
R1
8
RT/CT
IS
UC3842B
RSLOPE
ISENSE
R1
3
5
RS
4
UC3842B
CT
ISENSE
3
5
RS
GND
GND
D95IN348
Figure 19 : Isolated MOSFET Drive and Current Transformer Sensing.
VCC
Vin
7
ISOLATION
BOUNDARY
+
5.0Vref
-
VGS Waveforms
+
0
-
Q1
6
+
S
R
Q
50% DC
Ipk =
-
+
0
-
V(pin 1) -1.4
3RS
25% DC
NS
( )
NP
+
COMP/LATCH
R
3
C
RS
NS
NP
D95IN349
9/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 20 : Latched Shutdown.
4
OSC
8
R
BIAS
R
+
1mA
2R
+
-
2
EA
R
1
5
2N
3905
2N
3903
D95IN350
SCR must be selected for a holding current of less than 0.5mA at TA(min).
The simple two transistor circuit can be used in place of the SCR as shown. All resistors are 10K.
Figure 21: Error Amplifier Compensation
From VO
+
2.5V
1mA
Ri
-
2
Rd
2R
+
Cf
EA
R
Rf
1
5
Error Amp compensation circuit for stabilizing any current-mode topology except
for boost and flyback converters operating with continuous inductor current.
From VO
+
2.5V
1mA
RP
Ri
2
CP
Rd
2R
+
Cf
Rf
-
EA
R
1
5
D95IN351
Error Amp compensation circuit for stabilizing current-mode boost and flyback
topologies operating with continuous inductor current.
10/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 22: External Clock Synchronization.
VREF
8
R
BIAS
RT
R
4
EXTERNAL
SYNC INPUT
OSC
+
CT
0.01µF
2R
+
47Ω
-
2
EA
R
1
5
D95IN352
The diode clamp is required if the Sync amplitude is large enough to cause
the bottom side of CT to go more than 300mV below ground
Figure 23: External Duty Cycle Clamp and Multi Unit Synchronization.
VREF
8
RA
R
RB
5K
8
6
+
5
5K
C
S
-
4
+
Q
+
R
3
R
-
2
BIAS
4
7
2
5K
NE555
1
OSC
2R
+
-
EA
R
1
5
f=
1.44
(RA + 2RB)C
Dmax =
RB
TO ADDITIONAL
UCX84XAs
D95IN353
RA + 2RB
11/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Figure 24: Soft-Start Circuit
8
5Vref
R
+
BIAS
-
R
4
OSC
+
S
1mA
2R
+
2
-
1MΩ
Q
+
EA
R
-
1V
R
1
C
5
D95IN354
Figure 25: Soft-Start and Error Amplifier Output Duty Cycle Clamp.
VCC
Vin
7
8
+
5Vref
R
-
+
BIAS
7
-
R
4
VClamp
1mA
2
R2
R
5
Q
+
EA
Q1
S
2R
+
-
6
OSC
+
R
1V
1
Comp/Latch
5
C
R1
RS
BC109
VCLAMP = ·
12/15
R1
R1 + R 2
where 0 <VCLAMP <1V
Ipk(max) =
VCLAMP
RS
D95IN355
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
mm
DIM.
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.25
a2
MAX.
0.069
0.004
0.010
1.65
0.065
a3
0.65
0.85
0.026
0.033
b
0.35
0.48
0.014
0.019
b1
0.19
0.25
0.007
0.010
C
0.25
0.5
0.010
0.020
c1
45° (typ.)
D (1)
4.8
5.0
0.189
0.197
E
5.8
6.2
0.228
0.244
e
1.27
e3
0.050
3.81
0.150
F (1)
3.8
4.0
0.15
0.157
L
0.4
1.27
0.016
0.050
M
S
OUTLINE AND
MECHANICAL DATA
0.6
0.024
SO8
8 ° (max.)
(1) D and F do not include mold flash or protrusions. Mold flash or
potrusions shall not exceed 0.15mm (.006inch).
13/15
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
mm
DIM.
MIN.
A
TYP.
inch
MAX.
MIN.
3.32
TYP.
MAX.
0.131
a1
0.51
B
1.15
1.65
0.045
0.065
b
0.356
0.55
0.014
0.022
b1
0.204
0.304
0.008
0.012
0.020
D
E
10.92
7.95
9.75
0.430
0.313
0.384
e
2.54
0.100
e3
7.62
0.300
e4
7.62
0.300
F
6.6
0.260
I
5.08
0.200
L
Z
14/15
3.18
OUTLINE AND
MECHANICAL DATA
3.81
1.52
0.125
0.150
0.060
Minidip
UC2842B/3B/4B/5B - UC3842B/3B/4B/5B
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com
15/15
Similar pages