Elpida EBD21RD4ABNA-10 2gb registered ddr sdram dimm Datasheet

PRELIMINARY DATA SHEET
2GB Registered DDR SDRAM DIMM
EBD21RD4ABNA (256M words × 72 bits, 2 Banks)
Description
Features
The EBD21RD4ABNA is a 256M words × 72 bits, 2
bank Double Data Rate (DDR) SDRAM Module,
mounted 36 pieces of DDR SDRAM sealed in TCP
package. Read and write operations are performed at
the cross points of the CK and the /CK. This highspeed data transfer is realized by the 2-bit prefetchpipelined architecture. Data strobe (DQS) both for
read and write are available for high speed and reliable
data bus design. By setting extended mode register,
the on-chip Delay Locked Loop (DLL) can be set
enable or disable. This module provides high density
mounting without utilizing surface mount technology.
Decoupling capacitors are mounted beside each TCP
on the module board.
• 184-pin socket type dual in line memory module
(DIMM)
 PCB height: 30.48mm
 Lead pitch: 1.27mm
• 2.5V power supply
• Data rate: 266Mbps/200Mbps (max.)
• 2.5 V (SSTL_2 compatible) I/O
• Double Data Rate architecture; two data transfers per
clock cycle
• Bi-directional, data strobe (DQS) is transmitted
/received with data, to be used in capturing data at
the receiver
• Data inputs and outputs are synchronized with DQS
• 4 internal banks for concurrent operation
(Component)
• DQS is edge aligned with data for READs; center
aligned with data for WRITEs
• Differential clock inputs (CK and /CK)
• LL aligns DQ and DQS transitions with CK
transitions
• Commands entered on each positive CK edge; data
referenced to both edges of DQS
• Auto precharge option for each burst access
• Programmable burst length: 2, 4, 8
• Programmable /CAS latency (CL): 2, 2.5
• Refresh cycles: (8192 refresh cycles /64ms)
 7.8µs maximum average periodic refresh interval
• 2 variations of refresh
 Auto refresh
 Self refresh
• 1 piece of PLL clock driver, 1 piece of register driver
and 1 piece of serial EEPROM (2k bits EEPROM) for
Presence Detect (PD)
Note: Do not push the cover or drop the modules in
order to avoid mechanical defects, which may
result in electrical defects.
Document No. E0273E20 (Ver. 2.0)
Date Published Aug 2002 (K) Japan
URL: http://www.elpida.com
Elpida Memory, Inc. 2002
EBD21RD4ABNA
Ordering Information
Part number
Data rate
Mbps (max.)
Component JEDEC speed bin*1
(CL-tRCD-tRP)
EBD21RD4ABNA-7A
EBD21RD4ABNA-7B
EBD21RD4ABNA-10
266
266
200
DDR266A (2-3-3)
DDR266B (2.5-3-3)
DDR200 (2-2-2)
Package
184-pin
DIMM
Contact
pad
Gold
Mounted devices
512M bits DDR
SDRAM TCP*2
Notes: 1. Module /CAS latency = component CL + 1
2. Please refer to 512Mb DDR TSOP product datasheet (E0237E) for electrical characteristics.
Pin Configurations
Front side
1 pin
52 pin 53 pin
93 pin
92 pin
144 pin 145 pin 184 pin
Back side
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
1
VREF
47
DQS8
93
VSS
139
VSS
2
DQ0
48
A0
94
DQ4
140
DM8/DQS17
3
VSS
49
CB2
95
DQ5
141
A10
4
DQ1
50
VSS
96
VDDQ
142
CB6
5
DQS0
51
CB3
97
DM0/DQS9
143
VDDQ
6
DQ2
52
BA1
98
DQ6
144
CB7
7
VDD
53
DQ32
99
DQ7
145
VSS
8
DQ3
54
VDDQ
100
VSS
146
DQ36
9
NC
55
DQ33
101
NC
147
DQ37
10
/RESET
56
DQS4
102
NC
148
VDD
11
VSS
57
DQ34
103
NC
149
DM4/DQS13
12
DQ8
58
VSS
104
VDDQ
150
DQ38
13
DQ9
59
BA0
105
DQ12
151
DQ39
14
DQS1
60
DQ35
106
DQ13
152
VSS
15
VDDQ
61
DQ40
107
DM1/DQS10
153
DQ44
16
NC
62
VDDQ
108
VDD
154
/RAS
17
NC
63
/WE
109
DQ14
155
DQ45
18
VSS
64
DQ41
110
DQ15
156
VDDQ
19
DQ10
65
/CAS
111
CKE1
157
/CS0
20
DQ11
66
VSS
112
VDDQ
158
/CS1
21
CKE0
67
DQS5
113
NC
159
DM5/DQS14
22
VDDQ
68
DQ42
114
DQ20
160
VSS
23
DQ16
69
DQ43
115
A12
161
DQ46
24
DQ17
70
VDD
116
VSS
162
DQ47
25
DQS2
71
NC
117
DQ21
163
NC
26
VSS
72
DQ48
118
A11
164
VDDQ
27
A9
73
DQ49
119
DM2/DQS11
165
DQ52
28
DQ18
74
VSS
120
VDD
166
DQ53
Preliminary Data Sheet E0273E20 (Ver. 2.0)
2
EBD21RD4ABNA
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
29
A7
75
NC
121
DQ22
167
NC
30
VDDQ
76
NC
122
A8
168
VDD
31
DQ19
77
VDDQ
123
DQ23
169
DM6/DQS15
32
A5
78
DQS6
124
VSS
170
DQ54
33
DQ24
79
DQ50
125
A6
171
DQ55
34
VSS
80
DQ51
126
DQ28
172
VDDQ
35
DQ25
81
VSS
127
DQ29
173
NC
36
DQS3
82
VDDID
128
VDDQ
174
DQ60
37
A4
83
DQ56
129
DM3/DQS12
175
DQ61
38
VDD
84
DQ57
130
A3
176
VSS
39
DQ26
85
VDD
131
DQ30
177
DM7/DQS16
40
DQ27
86
DQS7
132
VSS
178
DQ62
41
A2
87
DQ58
133
DQ31
179
DQ63
42
VSS
88
DQ59
134
CB4
180
VDDQ
43
A1
89
VSS
135
CB5
181
SA0
44
CB0
90
NC
136
VDDQ
182
SA1
45
CB1
91
SDA
137
CK0
183
SA2
46
VDD
92
SCL
138
/CK0
184
VDDSPD
Preliminary Data Sheet E0273E20 (Ver. 2.0)
3
EBD21RD4ABNA
Pin Description
Pin name
Function
A0 to A12
Address input
Row address
Column address
BA0, BA1
Bank select address
DQ0 to DQ63
Data input/output
CB0 to CB7
Check bit (Data input/output)
/RAS
Row address strobe command
/CAS
Column address strobe command
/WE
Write enable
/CS0, /CS1
Chip select
CKE0, CKE1
Clock enable
CK0
Clock input
A0 to A12
A0 to A9, A11, A12
/CK0
Differential clock input
DQS0 to DQS8
Input and output data strobe
DM0 to DM8/DQS9 to DQS17
Input and output data strobe
SCL
Clock input for serial PD
SDA
Data input/output for serial PD
SA0 to SA2
Serial address input
VDD
Power for internal circuit
VDDQ
Power for DQ circuit
VDDSPD
Power for serial EEPROM
VREF
Input reference voltage
VSS
Ground
VDDID
VDD identification flag
/RESET
Reset pin (forces register inputs low)
NC
No connection
Preliminary Data Sheet E0273E20 (Ver. 2.0)
4
EBD21RD4ABNA
1
Serial PD Matrix*
Byte No.
0
1
Function described
Number of bytes utilized by module
manufacturer
Total number of bytes in serial PD
device
Bit7
Bit6
Bit5 Bit4
Bit3
Bit2
Bit1 Bit0
Hex value
Comments
1
0
0
0
0
0
0
0
80H
128
0
0
0
0
1
0
0
0
08H
256 byte
2
Memory type
0
0
0
0
0
1
1
1
07H
SDRAM DDR
3
Number of row address
0
0
0
0
1
1
0
1
0DH
13
4
Number of column address
0
0
0
0
1
1
0
0
0CH
12
5
Number of DIMM banks
0
0
0
0
0
0
1
0
02H
2
6
Module data width
0
1
0
0
1
0
0
0
48H
72 bits
7
Module data width continuation
0
0
0
0
0
0
0
0
00H
0 (+)
8
Voltage interface level of this assembly 0
0
0
0
0
1
0
0
04H
SSTL 2.5V
9
DDR SDRAM cycle time, CL = X
-7A, -7B
0
1
1
1
0
1
0
1
75H
CL = 2.5*3
1
0
1
0
0
0
0
0
A0H
0
1
1
1
0
1
0
1
75H
0.75ns*3
1
0
0
0
0
0
0
0
80H
0.8ns*3
-10
10
SDRAM access from clock (tAC)
-7A, -7B
-10
11
DIMM configuration type
0
0
0
0
0
0
1
0
02H
ECC
12
Refresh rate/type
1
0
0
0
0
0
1
0
82H
7.8 µs
Self refresh
13
Primary SDRAM width
0
0
0
0
0
1
0
0
04H
×4
14
Error checking SDRAM width
0
0
0
0
0
1
0
0
04H
×4
0
0
0
0
0
0
0
1
01H
1 CLK
0
0
0
0
1
1
1
0
0EH
2, 4, 8
0
0
0
0
0
1
0
0
04H
4
0
0
0
0
1
1
0
0
0CH
2, 2.5
0
0
0
0
0
0
0
1
01H
0
0
0
0
0
0
0
1
0
02H
1
SDRAM module attributes
0
0
1
0
0
1
1
0
26H
Registered
22
SDRAM device attributes: General
1
1
0
0
0
0
0
0
C0H
± 0.2V
23
Minimum clock cycle time at CLX - 0.5
0
-7A
1
1
1
0
1
0
1
75H
CL = 2*3
1
0
1
0
0
0
0
0
A0H
24
Maximum data access time (tAC) from
clock at CLX - 0.5
0
-7A, -7B
1
1
1
0
1
0
1
75H
0.75ns*3
-10
1
0
0
0
0
0
0
0
80H
0.8ns*3
25
Minimum clock cycle time at CLX - 1
0
0
0
0
0
0
0
0
00H
26
Maximum data access time (tAC) from
0
clock at CLX - 1
0
0
0
0
0
0
0
00H
27
Minimum row precharge time (tRP)
0
1
0
1
0
0
0
0
50H
20ns
28
Minimum row active to row active
delay (tRRD)
0
0
1
1
1
1
0
0
3CH
15ns
29
Minimum /RAS to /CAS delay (tRCD)
0
1
0
1
0
0
0
0
50H
20ns
15
16
17
18
19
20
21
SDRAM device attributes:
Minimum clock delay back-to-back
column access
SDRAM device attributes:
Burst length supported
SDRAM device attributes: Number of
banks on SDRAM device
SDRAM device attributes:
/CAS latency
SDRAM device attributes:
/CS latency
SDRAM device attributes:
/WE latency
-7B, -10
Preliminary Data Sheet E0273E20 (Ver. 2.0)
5
EBD21RD4ABNA
Byte No.
Function described
Bit7
Bit6
Bit5 Bit4
Bit3
Bit2
Bit1 Bit0
Hex value
Comments
30
Minimum active to precharge time
(tRAS)
-7A, -7B
0
0
1
0
1
1
0
1
2DH
45ns
0
0
1
1
0
0
1
0
32H
50ns
-10
31
Module bank density
0
0
0
0
0
0
0
1
01H
2 banks
1GB
32
Address and command setup time
before clock (tIS)
-7A, -7B
1
0
0
1
0
0
0
0
90H
0.9ns*3
1
0
1
1
0
0
0
0
B0H
1.1ns*3
Address and command hold time after
clock (tIH)
1
-7A, -7B
0
0
1
0
0
0
0
90H
0.9ns*3
1
0
1
1
0
0
0
0
B0H
1.1ns*3
0
1
0
1
0
0
0
0
50H
0.5ns*3
0
1
1
0
0
0
0
0
60H
0.6ns*3
0
1
0
1
0
0
0
0
50H
0.5ns*3
0
1
1
0
0
0
0
0
60H
0.6ns*3
-10
33
-10
34
Data input setup time before clock
(tDS)
-7A, -7B
-10
35
Data input hold time after clock (tDH)
-7A, -7B
-10
36 to 40
Superset information
0
0
0
0
0
0
0
0
00H
Future use
41
Active command period (tRC)
-7A, -7B
0
1
0
0
0
0
1
1
43H
67.5ns*3
0
1
0
0
0
1
1
0
46H
70ns*3
0
1
0
0
1
0
1
1
4BH
75ns*3
0
1
0
1
0
0
0
0
50H
80ns*3
-10
42
Auto refresh to active/
Auto refresh command cycle (tRFC)
-7A, -7B
-10
43
SDRAM tCK cycle max. (tCK max.)
0
0
1
1
0
0
0
0
30H
12ns*3
44
Dout to DQS skew
-7A, -7B
0
0
1
1
0
0
1
0
32H
500ps*3
0
0
1
1
1
1
0
0
3CH
600ps*3
0
1
1
1
0
1
0
1
75H
750ps*3
1
0
1
0
0
0
0
0
A0H
1000ps*3
-10
45
Data hold skew (tQHS)
-7A, -7B
-10
46 to 61
Superset information
0
0
0
0
0
0
0
0
00H
Future use
62
SPD revision
0
0
0
0
0
0
0
0
00H
Initial
63
Checksum for bytes 0 to 62
-7A
1
0
0
0
1
1
0
1
8DH
141
-7B
1
0
1
1
1
0
0
0
B8H
184
-10
1
0
0
1
1
0
1
1
9BH
155
64
Manufacturer’s JEDEC ID code
0
1
1
1
1
1
1
1
7FH
65
Manufacturer’s JEDEC ID code
0
1
1
1
1
1
1
1
7FH
66
Manufacturer’s JEDEC ID code
1
1
1
1
1
1
1
0
FEH
67 to 71
Manufacturer’s JEDEC ID code
0
0
0
0
0
0
0
0
00H
72
Manufacturing location
×
×
×
×
×
×
×
×
××
*2 (ASCII-8bit
code)
73
Module part number
0
1
0
0
0
1
0
1
45H
E
74
Module part number
0
1
0
0
0
0
1
0
42H
B
75
Module part number
0
1
0
0
0
1
0
0
44H
D
76
Module part number
0
0
1
1
0
0
1
0
32H
2
Preliminary Data Sheet E0273E20 (Ver. 2.0)
6
Elpida Memory
EBD21RD4ABNA
Byte No.
Function described
Bit7
Bit6
Bit5 Bit4
Bit3
Bit2
Bit1 Bit0
Hex value
Comments
77
Module part number
0
0
1
1
0
0
0
1
31H
1
78
Module part number
0
1
0
1
0
0
1
0
52H
R
79
Module part number
0
1
0
0
0
1
0
0
44H
D
80
Module part number
0
0
1
1
0
1
0
0
34H
4
81
Module part number
0
1
0
0
0
0
0
1
41H
A
82
Module part number
0
1
0
0
0
0
1
0
42H
B
83
Module part number
0
1
0
0
1
1
1
0
4EH
N
84
Module part number
0
1
0
0
0
0
0
1
41H
A
85
Module part number
0
0
1
0
1
1
0
1
2DH
—
86
Module part number
-7A, -7B
0
0
1
1
0
1
1
1
37H
7
0
0
1
1
0
0
0
1
31H
1
0
1
0
0
0
0
0
1
41H
A
-7B
0
1
0
0
0
0
1
0
42H
B
-10
0
0
1
1
0
0
0
0
30H
0
-10
87
Module part number
-7A
88 to 90
Module part number
0
0
1
0
0
0
0
0
20H
(Space)
91
Revision code
0
0
1
1
0
0
0
0
30H
Initial
92
Revision code
0
0
1
0
0
0
0
0
20H
(Space)
Year code
(HEX)
Week code
(HEX)
93
Manufacturing date
×
×
×
×
×
×
×
×
××
94
Manufacturing date
×
×
×
×
×
×
×
×
××
95 to 98
Module serial number
99 to 127
Manufacturer specific data
2
*
Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High” These
SPD are based on JEDEC Committee Ballot JC-42.5-99-129.
2. Bytes 95 through 98 are assembly serial number.
3. These specifications are defined based on component specification, not module.
Preliminary Data Sheet E0273E20 (Ver. 2.0)
7
EBD21RD4ABNA
Block Diagram
VSS
/RCS1
/RCS0
RS
RS
DQS0
DM0/DQS9
4
RS
DQ0 to DQ3
DQS
/CS
DQ
D0
DM
DQS
/CS
DQ
D18
DM
4
RS
4
RS
DQS
/CS
DQ
D1
DM
DQS
/CS
DQ
D19
DM
4
RS
4
RS
DQS
/CS
DQ
D2
DM
DQS
/CS
DQ
D20
DM
4
4
RS
DQS
/CS
DQ
D3
DM
DQS
/CS
DQ
D21
DM
4
RS
DQ28 to DQ31
RS
D27
DM
DQS
/CS
DQ
D10
DM
DQS
/CS
DQ
D28
DM
DQS
/CS
DQ
D11
DM
DQS
/CS
DQ
D29
DM
DQS
/CS
DQ
D12
DM
DQS
/CS
DQ
D30
DM
RS
DM4/DQS13
4
RS
DQ32 to DQ35
DQS
/CS
DQ
D4
DM
DQS
/CS
DQ
D22
DM
4
RS
DQ36 to DQ39
RS
DQS
/CS
DQ
D13
DM
DQS
/CS
DQ
D31
DM
RS
DQS5
DM5/DQS14
4
RS
DQ40 to DQ43
DQS
/CS
DQ
D5
DM
DQS
/CS
DQ
D23
DM
4
RS
DQ44 to DQ47
RS
DQS
/CS
DQ
D14
DM
DQS
/CS
DQ
D32
DM
RS
DQS6
DM6/DQS15
4
RS
DQ48 to DQ51
DQS
/CS
DQ
D6
DM
DQS
/CS
DQ
D24
DM
4
RS
DQ52 to DQ55
RS
DQS
/CS
DQ
D15
DM
DQS
/CS
DQ
D33
DM
RS
DQS7
DM7/DQS16
4
RS
DQ56 to DQ59
DQS
/CS
DQ
D7
DM
DQS
/CS
DQ
D25
DM
4
RS
DQ60 to DQ63
RS
DQS
/CS
DQ
D16
DM
DQS
/CS
DQ
D34
DM
RS
DQS8
DM8/DQS17
4
RS
CB0 to CB3
/WE
/CS
DQ
RS
DQS4
CKE1
DQS
DM3/DQS12
DQ24 to DQ27
CKE0
RS
DQ20 to DQ23
RS
/CAS
DM
RS
DQS3
/RAS
D9
DM2/DQS11
DQ16 to DQ19
A0 to A12
RS
DQ12 to DQ15
DQS2
BA0 to BA1
/CS
DQ
DM1/DQS10
DQ8 to DQ11
/CS1
DQS
RS
DQS1
/CS0
RS
DQ4 to DQ7
RS
RS
RS
RS
RS
RS
RS
PCK
/PCK
/CS
DQ
D8
DM
DQS
/CS
DQ
D26
DM
4
CB4 to CB7
/RCS0 -> /CS: SDRAMs D0 to D17
RS
RS
DQS
R
E
G
I
S
T
E
R
/RCS1 -> /CS: SDRAMs D18 to D35
RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D35
RA0 to RA12 -> A0 to A12: SDRAMs D0 to D35
RS
DQS
/CS
DQ
D17
DM
DQS
/CS
DQ
D35
* D0 to D35: 512M bits DDR SDRAM TCP
U0: 2k bits EEPROM
RS: 22Ω (DQ, DQS)
PLL: CDCV857
Register: SSTV32852
Serial PD
/RRAS -> /RAS: SDRAMs D0 to D35
/RCAS -> /CAS: SDRAMs D0 to D35
SCL
SCL
RCKE0 -> CKE: SDRAMs D0 to D17
SDA
SDA
U0
RCKE1 -> CKE: SDRAMs D18 to D35
A0
/RWE -> /WE: SDRAMs D0 to D35
/RESET
VDD, VDDQ
D0 to D35
VREF
D0 to D35
VSS
D0 to D35
A1
A2
SA0 SA1 SA2
Notes:
1. The SDA pull-up resistor is required due to
the open-drain/open-collector output.
2. The SCL pull-up resistor is recommended
because of the normal SCL line inacitve
"high" state.
VDDID
open
CK0, /CK0
PLL*
Note: Wire per Clock loading table/Wiring diagrams.
Preliminary Data Sheet E0273E20 (Ver. 2.0)
8
DM
EBD21RD4ABNA
Differential Clock Net Wiring (CK0, /CK0)
0ns (nominal)
SDRAM
stack
PLL
120Ω
OUT1
SDRAM
stack
120Ω
CK0
IN
/CK0
240Ω
120Ω
OUT'N'
Register
C
Feedback
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl
be set to 0 ns (nominal).
2. Input, output and feedback clock lines are terminated from line to line as shown, and not
from line to ground.
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired
in a similar manner.
4. Termination resistors for feedback path clocks are located after the pins of the PLL.
Preliminary Data Sheet E0273E20 (Ver. 2.0)
9
EBD21RD4ABNA
Electrical Specifications
• All voltages are referenced to VSS (GND).
• After power up, wait more than 200 µs and then, execute power on sequence and auto refresh before proper
device operation is achieved.
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Voltage on any pin relative to VSS
VT
–1.0 to +3.6
V
Supply voltage relative to VSS
VDD, VDDQ
–1.0 to +3.6
V
Short circuit output current
IOUT
50
mA
Power dissipation
PT
18
W
Operating ambient temperature
TA
0 to +70
°C
Storage temperature
Tstg
–55 to +125
°C
Note
1
Note: 1. DDR SDRAM device specification
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = 0 to +70°C)
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Supply voltage
VDD,VDDQ
2.3
2.5
2.7
V
1
VSS
0
0
0
V
VREF
0.49 × VDDQ
0.50 × VDDQ
0.51 × VDDQ
V
Termination voltage
VTT
VREF – 0.04
VREF
VREF + 0.04
V
Input high voltage
VIH (DC)
VREF + 0.15
—
VDDQ + 0.3
V
2
Input low voltage
VIL (DC)
–0.3
—
VREF – 0.15
V
3
VIN (DC)
–0.3
—
VDDQ + 0.3
V
4
VIX (DC)
0.5 × VDDQ − 0.2V
0.5 × VDDQ
0.5 × VDDQ + 0.2V V
VID (DC)
0.36
—
VDDQ + 0.6
Input reference voltage
Input voltage level,
CK and /CK inputs
Input differential cross point
voltage, CK and /CK inputs
Input differential voltage,
CK and /CK inputs
V
5, 6
Notes: 1.VDDQ must be lower than or equal to VDD.
2. VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns.
3. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns.
4. VIN (DC) specifies the allowable dc execution of each differential input.
5. VID (dc) specifies the input differential voltage required for switching.
6. VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF – 0.18V
if measurement.
Preliminary Data Sheet E0273E20 (Ver. 2.0)
10
EBD21RD4ABNA
DC Characteristics 1 (TA = 0 to 70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
Parameter
Symbol
Operating current (ACTV-PRE)
IDD0
Operating current
(ACTV-READ-PRE)
IDD1
Idle power down standby current IDD2P
Floating idle
Standby current
Quiet idle
Standby current
Active power down standby
current
IDD2F
IDD2Q
IDD3P
Active standby current
IDD3N
Operating current
(Burst read operation)
Operating current
(Burst write operation)
IDD4R
IDD4W
Auto refresh current
IDD5
Self refresh current
IDD6
Operating current
(4 banks interleaving)
IDD7A
Grade
max.
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
3830
3550
4190
3910
427
420
1580
1390
-7A, -7B
-10
1220
1210
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
-7A, -7B
-10
1040
1030
2480
2290
4460
3820
4460
3820
6260
5800
463
457
7880
7240
Unit
mA
mA
Test condition
Notes
CKE ≥ VIH,
1, 2, 9
tRC = tRC (min.)
CKE ≥ VIH, BL = 4,
1, 2, 5
CL = 3.5, tRC = tRC (min.)
mA
CKE ≤ VIL
4
mA
CKE ≥ VIH, /CS ≥ VIH
DQ, DQS, DM = VREF
4, 5
mA
CKE ≥ VIH, /CS ≥ VIH
DQ, DQS, DM = VREF
4, 10
mA
CKE ≤ VIL
3
mA
mA
mA
mA
mA
mA
CKE ≥ VIH, /CS ≥ VIH
tRAS = tRAS (max.)
CKE ≥ VIH, BL = 2,
CL = 3.5
CKE ≥ VIH, BL = 2,
CL = 3.5
tRFC = tRFC (min.),
Input ≤ VIL or ≥ VIH
Input ≥ VDD – 0.2 V
Input ≤ 0.2 V
BL = 4
3, 5, 6
1, 2, 5, 6
1, 2, 5, 6
5, 6, 7
Notes. 1. These IDD data are measured under condition that DQ pins are not connected.
2. One bank operation.
3. One bank active.
4. All banks idle.
5. Command/Address transition once per one cycle.
6. Data/Data mask transition twice per one cycle.
7. 4 banks active. Only one bank is running at tRC = tRC (min.)
8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general.
9. Command/Address transition once per one every two clock cycles.
10. Command/Address stable at ≥ VIH or ≤ VIL.
DC Characteristics 2 (TA = 0 to 70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
Parameter
Symbol
min.
max.
Unit
Test condition
Input leakage current
IL
–2
2
µA
VDD ≥ VIN ≥ VSS
Output leakage current
IOZ
–5
5
µA
VDDQ ≥ VOUT ≥ VSS
Output high current
IOH
–15.2
—
mA
VOUT = 1.95V
Output low current
IOL
15.2
—
mA
VOUT = 0.35V
Preliminary Data Sheet E0273E20 (Ver. 2.0)
11
Notes
EBD21RD4ABNA
Pin Capacitance (TA = 25°C, VDD, VDDQ = 2.5V ± 0.2V)
Parameter
Symbol
Pins
Unit
Notes
Input capacitance
CI1
Address, /RAS, /CAS, /WE,
TBD
/CS, CKE
max.
pF
1, 3
Input capacitance
CI2
CK, /CK
TBD
pF
1, 3
Data and DQS input/output
capacitance
CO
DQ, DQS, CB, DM
TBD
pF
1, 2, 3
Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VDDQ/2, ∆VOUT = 0.2V.
2. Dout circuits are disabled.
3. This parameter is sampled and not 100% tested.
AC Characteristics (TA = 0 to +70°°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
(DDR SDRAM device Specification)
-7A
-7B
-10
Parameter
Symbol
min.
max
min.
max
min.
max
Unit
Notes
Clock cycle time
(CL = 2)
tCK
7.5
12
10
12
10
12
ns
10
(CL = 2.5)
tCK
7.5
12
7.5
12
10
12
ns
CK high-level width
tCH
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK low-level width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK half period
tHP
min
(tCH, tCL)
—
min
(tCH, tCL)
—
min
(tCH, tCL)
—
tCK
–0.75
0.75
–0.75
0.75
–0.8
0.8
ns
2, 11
–0.75
0.75
–0.75
0.75
–0.8
0.8
ns
2, 11
0.6
ns
3
DQ output access time from
tAC
CK, /CK
DQS output access time from CK,
tDQSCK
/CK
DQS to DQ skew
tDQSQ
—
0.5
—
0.5
—
DQ/DQS output hold time from
DQS
tQH
tHP – tQHS
—
tHP – tQHS
—
tHP – tQHS —
ns
Data hold skew factor
tQHS
—
0.75
—
0.75
—
1.0
ns
–0.75
0.75
–0.75
0.75
–0.8
0.8
ns
5, 11
–0.75
0.75
–0.75
0.75
–0.8
0.8
ns
6, 11
Data-out high-impedance time
tHZ
from CK, /CK
Data-out low-impedance time from
tLZ
CK, /CK
Read preamble
tRPRE
0.9
1.1
0.9
1.1
0.9
1.1
tCK
Read postamble
tRPST
0.4
0.6
0.4
0.6
0.4
0.6
tCK
DQ and DM input setup time
tDS
0.5
—
0.5
—
0.6
—
ns
8
DQ and DM input hold time
tDH
0.5
—
0.5
—
0.6
—
ns
8
DQ and DM input pulse width
tDIPW
1.75
—
1.75
—
2
—
ns
7
Write preamble setup time
tWPRES
0
—
0
—
0
—
ns
Write preamble
tWPRE
0.25
—
0.25
—
0.25
—
tCK
Write postamble
tWPST
0.4
0.6
0.4
0.6
0.4
0.6
tCK
Write command to first DQS
latching transition
tDQSS
0.75
1.25
0.75
1.25
0.75
1.25
tCK
DQS falling edge to CK setup time tDSS
0.2
—
0.2
—
0.2
—
tCK
DQS falling edge hold time from
CK
tDSH
0.2
—
0.2
—
0.2
—
tCK
DQS input high pulse width
tDQSH
0.35
—
0.35
—
0.35
—
tCK
DQS input low pulse width
tDQSL
0.35
—
0.35
—
0.35
—
tCK
Preliminary Data Sheet E0273E20 (Ver. 2.0)
12
9
EBD21RD4ABNA
-7A
Parameter
-7B
-10
Symbol
min.
max
min.
max
min.
max
Unit
Notes
tIS
0.9
—
0.9
—
1.1
—
ns
8
tIH
0.9
—
0.9
—
1.1
—
ns
8
tIPW
2.2
—
2.2
—
2.5
—
ns
7
tMRD
2
—
2
—
2
—
tCK
tRAS
45
120000
45
120000
50
120000
ns
tRC
67.5
—
67.5
—
70
—
ns
tRFC
75
—
75
—
80
—
ns
Active to Read/Write delay
tRCD
20
—
20
—
20
—
ns
Precharge to active command
period
tRP
20
—
20
—
20
—
ns
Active to auto precharge delay
tRAP
tRCD min. —
tRCD min. —
tRCD min. —
ns
Active to active command period
tRRD
15
—
15
—
15
—
ns
Write recovery time
tWR
15
—
15
—
15
—
ns
tDAL
(tWR/tCK)
—
+(tRP/tCK)
(tWR/tCK)
—
+(tRP/tCK)
(tWR/tCK)
—
+(tRP/tCK)
tCK
tWTR
1
—
1
—
1
—
tCK
tREF
—
7.8
—
7.8
—
7.8
µs
Address and control input setup
time
Address and control input hold
time
Address and control input pulse
width
Mode register set command cycle
time
Active to Precharge command
period
Active to Active/Auto refresh
command period
Auto refresh to Active/Auto refresh
command period
Auto precharge write recovery
and precharge time
Internal write to Read command
delay
Average periodic refresh interval
13
Notes: 1. On all AC measurements, we assume the test conditions shown in the next page. For timing parameter
definitions, see ‘Timing Waveforms’ section.
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal
transition is defined to occur when the signal level crossing VTT.
3. The timing reference level is VTT.
4. Output valid window is defined to be the period between two successive transition of data out or DQS
(read) signals. The signal transition is defined to occur when the signal level crossing VTT.
5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The
timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage
level, but specify when the device output stops driving.
6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This
parameter is not referred to a specific DOUT voltage level, but specify when the device output begins
driving.
7. Input valid windows is defined to be the period between two successive transition of data input or DQS
(write) signals. The signal transition is defined to occur when the signal level crossing VREF.
8. The timing reference level is VREF.
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific
reference voltage to judge this transition is not given.
10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not
assured.
11. tCK = tCK (min.) when these parameters are measured. Otherwise, absolute minimum values of these
values are 10% of tCK.
12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than
0.4V/400 cycle.
Preliminary Data Sheet E0273E20 (Ver. 2.0)
13
EBD21RD4ABNA
13. tDAL = (tWR/tCK)+(tRP/tCK)
For each of the terms above, if not already an integer, round to the next highest integer.
Example: For –7A Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns,
tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3)
tDAL = 5 clocks
Timing Parameter Measured in Clock Cycle for Registered DIMM
Number of clock cycle
Parameter
Symbol
min.
Write to pre-charge command delay (same bank)
tWPD
3 + BL/2
max.
Read to pre-charge command delay (same bank)
tRPD
BL/2
Write to read command delay (to input all data)
tWRD
2 + BL/2
Burst stop command to write command delay
(CL = 3)
tBSTW
2
(CL = 3.5)
tBSTW
3
Burst stop command to DQ High-Z
(CL = 3)
tBSTZ
3
3
(CL = 3.5)
tBSTZ
3.5
3.5
Read command to write command delay (to output all data)
(CL = 3)
tRWD
2 + BL/2
(CL = 3.5)
tRWD
3 + BL/2
Pre-charge command to High-Z
(CL = 3)
tHZP
3
(CL = 3.5)
tHZP
3.5
3.5
Write command to data in latency
tWCD
2
2
Write recovery
tWR
1
Register set command to active or register set command
tMRD
2
Self refresh exit to non-read command
tSNR
10
Self refresh exit to read command
tSRD
200
Power down entry
tPDEN
1
Power down exit to command input
tPDEX
1
Preliminary Data Sheet E0273E20 (Ver. 2.0)
14
3
1
EBD21RD4ABNA
Pin Functions
CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross
point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and
the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal
operations (bank active, burst operations, etc.) are held.
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.
See "Command operation".
A0 to A12 (input pins)
Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the
VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11, AY12) is loaded via theA0 to the
A9, the A11 and the A12 at the cross point of the CK rising edge and the VREF level in a read or a write command
cycle. This column address becomes the starting address of a burst operation.
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
BA0, BA1 (input pin)
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See
Bank Select Signal Table)
[Bank Select Signal Table]
BA0
BA1
Bank 0
L
L
Bank 1
H
L
Bank 2
L
H
Bank 3
H
H
Remark: H: VIH. L: VIL.
CKE (input pin)
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the
CKE is driven low and exited when it resumes to high.
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold
time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS provide the read data strobes (as output) and the write data strobes (as input).
Preliminary Data Sheet E0273E20 (Ver. 2.0)
15
EBD21RD4ABNA
VDD and VDDQ (power supply pins)
2.5V is applied. (VDD is for the internal circuit and VDDQ is for the output buffer.)
VDDSPD (power supply pin)
2.5V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.
/RESET (input pin)
LVCMOS reset input. When /RESET is low, all registers are reset and all outputs are low.
Detailed Operation Part, AC Characteristics and Timing Waveforms
Refer to the EDD5104AB, EDD5108AB datasheet (E0237E). DM pins of component device fixed to VSS level on
the module board. DIMM /CAS latency = component CL + 1 for registered type.
Preliminary Data Sheet E0273E20 (Ver. 2.0)
16
EBD21RD4ABNA
Physical Outline
Unit: mm
133.35 ± 0.15
128.95
4.80
4.00 min
(DATUM -A-)
(64.48)
2.30
Component area
(Front)
1
92
B
64.77
A
1.27 ± 0.10
49.53
4.00 ± 0.10
Component area
(Back)
R 2.00
30.48 ± 0.15
184
17.80
93
10.00
2 – φ 2.50 ± 0.10
3.00 min
Detail B
(DATUM -A-)
1.27 typ
6.62
0.20 ± 0.15
2.50 ± 0.20
Detail A
2.175
R 0.90
3.80
6.35
1.00 ± 0.05
1.80 ± 0.10
Note: Tolerance on all dimensions ± 0.13 unless otherwise specified.
ECA-TS2-0058-01
Preliminary Data Sheet E0273E20 (Ver. 2.0)
17
EBD21RD4ABNA
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to VDD or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
Preliminary Data Sheet E0273E20 (Ver. 2.0)
18
EBD21RD4ABNA
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be
used in a non-condensing environment.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
M01E0107
Preliminary Data Sheet E0273E20 (Ver. 2.0)
19
Similar pages