Cirrus EP7309-EV-C High performance low power system on chip enhanced digital audio interface Datasheet

EP7309 Data Sheet
FEATURES
High-Performance,
Low-Power System on Chip
Enhanced
Digital Audio Interface
■ ARM720T Processor
— ARM7TDMI CPU
— 8 KB of four-way set-associative cache
— MMU with 64-entry TLB
— Thumb code support enabled
■ Ultra low power
— 90 mW at 74 MHz typical
— 30 mW at 18 MHz typical
— 10 mW in the Idle State
— <1 mW in the Standby State
■ Advanced audio decoder/decompression capability
— Supports bit streams with adaptive bit rates
— Allows for support of multiple audio
decompression algorithms (MP3, WMA, AAC,
ADPCM, Audible, etc.)
OVERVIEW
The Maverick™ EP7309 is designed for ultra-low-power
applications such as digital music players, internet
appliances, smart cellular phones or any hand-held
device that features the added capability of digital audio
decompression. The core-logic functionality of the device
is built around an ARM720T processor with 8 KB of fourway set-associative unified cache and a write buffer.
Incorporated into the ARM720T is an enhanced memory
management unit (MMU) which allows for support of
sophisticated operating systems like Microsoft®
Windows® CE and Linux®.
(cont.)
(cont.)
BLOCK DIAGRAM
Serial
Interface
EPB Bus
Power
Management
Clocks &
Timers
ICE-JTAG
Interrupts,
PWM & GPIO
ARM720T
ARM7TDMI CPU Core
(2) UARTs
w/ IrDA
8 KB
Write
Cache
Buffer
MMU
Boot
ROM
Bus
Bridge
Keypad&
Touch
Screen I/F
Internal Data Bus
MaverickKeyTM
SRAM &
FLASH I/F
On-chip SRAM
48 KB
USER INTERFACE
SERIAL PORTS
Digital
Audio
Interface
LCD
Controller
MEMORY AND STORAGE
Copyright 2001 Cirrus Logic (All Rights Reserved)
P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
June ’01
DS507PP1
1
EP7309
High-Performance, Low-Power System on Chip
FEATURES (cont)
■ Dynamically programmable clock speeds of 18, 36, 49,
and 74 MHz
■ 48 KB of on-chip SRAM
■ MaverickKey™ IDs
— 32-bit unique ID can be used for SDMI compliance
— 128-bit random ID
■ LCD controller
— Interfaces directly to a single-scan panel
monochrome STN LCD
— Interfaces to a single-scan panel color STN LCD
with minimal external glue logic
■ Full JTAG boundary scan and Embedded ICE
support
■ Integrated Peripheral Interfaces
— 8/32/16-bit SRAM/FLASH/ROM Interface
— Digital Audio Interface providing glueless
interface to low-power DACs, ADCs and CODECs
— Two Synchronous Serial Interfaces (SSI1, SSI2)
— CODEC Sound Interface
— 8×8 Keypad Scanner
— 27 General Purpose Input/Output pins
— Dedicated LED flasher pin from the RTC
■ Internal Peripherals
— Two 16550 compatible UARTs
— IrDA Interface
— Two PWM Interfaces
— Real-time Clock
— Two general purpose 16-bit timers
— Interrupt Controller
— Boot ROM
■ Package
— 208-Pin LQFP
— 256-Ball PBGA
— 204-Ball TFBGA
■ The fully static EP7309 is optimized for low power
dissipation and is fabricated on a 0.25 micron CMOS
process
OVERVIEW (cont.)
The EP7309 is designed for ultra-low-power operation.
Its core operates at only 2.5 V, while its I/O has an
operation range of 2.5 V–3.3 V. The device has three basic
power states: operating, idle and standby.
MaverickKey unique hardware programmed IDs are a
solution to the growing concern over secure web content
and commerce. With Internet security playing an
important role in the delivery of digital media such as
books or music, traditional software methods are quickly
becoming unreliable. The MaverickKey unique IDs
provide OEMs with a method of utilizing specific
hardware IDs such as those assigned for SDMI (Secure
Digital Music Initiative) or any other authentication
mechanism.
The EP7309 integrates an interface to enable a direct
connection to many low cost, low power, high quality
audio converters. In particular, the DAI can directly
interface with the Crystal‚ CS43L41/42/43 low-power
audio DACs and the Crystal‚ CS53L32 low-power ADC.
Some of these devices feature digital bass and treble
boost, digital volume control and compressor-limiter
functions.
Simply by adding desired memory and peripherals to the
highly integrated EP7309 completes a low-power system
solution. All necessary interface logic is integrated onchip.
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this
document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied).
No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property
of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced, stored in a retrieval
system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Items from
any Cirrus Logic website or disk may be printed for use by the user. However, no part of the printout or electronic files may be copied, reproduced, stored in a retrieval
system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore,
no part of this publication may be used as a basis for manufacture or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus
Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective owners which may be registered in some
jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com.
2
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Processor Core - ARM720T
The EP7309 incorporates an ARM 32-bit RISC
microcontroller that controls a wide range of on-chip
peripherals. The processor utilizes a three-stage pipeline
consisting of fetch, decode and execute stages. Key
features include:
• ARM (32-bit) and Thumb (16-bit compressed)
instruction sets
• Enhanced MMU for Microsoft Windows CE and other
operating systems
• 8 KB of 4-way set-associative cache.
• Translation Look Aside Buffers with 64 Translated
Entries
Power Management
The EP7309 is designed for ultra-low-power operation.
Its core operates at only 2.5 V, while its I/O has an
operation range of 2.5 V–3.3 V allowing the device to
achieve a performance level equivalent to 60 MIPS. The
device has three basic power states:
• Operating — This state is the full performance
state. All the clocks and peripheral logic are
enabled.
• Idle — This state is the same as the Operating
State, except the CPU clock is halted while
waiting for an event such as a key press.
• Standby — This state is equivalent to the
computer being switched off (no display), and
the main oscillator shut down. An event such as
a key press can wake-up the processor.
Pin Mnemonic
I/O
Pin Description
Digital Music Initiative) or any other authentication
mechanism.
Both a specific 32-bit ID as well as a 128-bit random ID is
programmed into the EP7309 through the use of laser
probing technology. These IDs can then be used to match
secure copyrighted content with the ID of the target
device the EP7309 is powering, and then deliver the
copyrighted information over a secure connection. In
addition, secure transactions can benefit by also
matching device IDs to server IDs. MaverickKey IDs
provide a level of hardware security required for today’s
Internet appliances.
Memory Interfaces
The EP7309 is equiped with a ROM/SRAM/FLASHstyle interface that has programmable wait-state timings
and includes burst-mode capability, with six chip selects
decoding six 256 MB sections of addressable space. For
maximum flexibility, each bank can be specified to be 8-,
16-, or 32-bits wide. This allows the use of 8-bit-wide
boot ROM options to minimize overall system cost. The
on-chip boot ROM can be used in product manufacturing
to serially download system code into system FLASH
memory. To further minimize system memory
requirements and cost, the ARM Thumb instruction set is
supported, providing for the use of high-speed 32-bit
operations in 16-bit op-codes and yielding industryleading code density.
Pin Mnemonic
I/O
Pin Description
nCS[5:0]
O
Chip select out
A[27:0]
O
Address output
D[31:0]
I/O
Data I/O
nMOE
O
ROM expansion OP enable
I
Battery ok input
nMWE
O
ROM expansion write enable
nEXTPWR
I
External power supply sense
input
HALFWORD
O
Halfword access select
output
nPWRFL
I
Power fail sense input
WORD
O
Word access select output
nBATCHG
I
Battery changed sense input
WRITE
O
Transfer direction
BATOK
Table A. Power Management Pin Assignments
Table B. Static Memory Interface Pin Assignments
MaverickKey™ Unique ID
Digital Audio Capability
MaverickKey unique hardware programmed IDs are a
solution to the growing concern over secure web content
and commerce. With Internet security playing an
important role in the delivery of digital media such as
books or music, traditional software methods are quickly
becoming unreliable. The MaverickKey unique IDs
provide OEMs with a method of utilizing specific
hardware IDs such as those assigned for SDMI (Secure
The EP7309 uses its powerful 32-bit RISC processing
engine to implement audio decompression algorithms in
software. The nature of the on-board RISC processor, and
the availability of efficient C-compilers and other
software development tools, ensures that a wide range of
audio decompression algorithms can easily be ported to
and run on the EP7309
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
3
EP7309
High-Performance, Low-Power System on Chip
Universal Asynchronous
Receiver/Transmitters (UARTs)
The EP7309 includes two 16550-type UARTs for RS-232
serial communications, both of which have two 16-byte
FIFOs for receiving and transmitting data. The UARTs
support bit rates up to 115.2 kbps. An IrDA SIR protocol
encoder/decoder can be optionally switched into the
RX/TX signals to/from UART 1 to enable these signals
to drive an infrared communication interface directly.
Pin Mnemonic
I/O
Pin Description
TXD[1]
O
UART 1 transmit
RXD[1]
I
UART 1 receive
CTS
I
UART 1 clear to send
DCD
I
UART 1 data carrier detect
DSR
I
UART 1 data set ready
TXD[2]
O
UART 2 transmit
RXD[2]
I
UART 2 receive
LEDDRV
O
Infrared LED drive output
PHDIN
I
Photo diode input
Table C. Universal Asynchronous Receiver/Transmitters Pin
Assignments
Digital Audio Interface (DAI)
The EP7309 integrates an interface to enable a direct
connection to many low cost, low power, high quality
audio converters. In particular, the DAI can directly
interface with the Crystal‚ CS43L41/42/43 low-power
audio DACs and the Crystal‚ CS53L32 low-power ADC.
Some of these devices feature digital bass and treble
boost, digital volume control and compressor-limiter
functions.
Pin Mnemonic
I/O
Pin Description
SCLK
O
Serial bit clock
SDOUT
O
Serial data out
SDIN
I
Serial data in
LRCK
O
Sample clock
MCLKIN
I
Master clock input
MCLKOUT
O
Master clock output
CODEC Interface
The EP7309 includes an interface to telephony-type
CODECs for easy integration into voice-over-IP and
other voice communications systems. The CODEC
interface is multiplexed to the same pins as the DAI and
SSI2.
Pin Mnemonic
I/O
Pin Description
PCMCLK
O
Serial bit clock
PCMOUT
O
Serial data out
PCMIN
I
Serial data in
PCMSYNC
O
Frame sync
Table E. CODEC Interface Pin Assignments
Note:
See Table Q on page 7 for information on pin
multiplexes.
SSI2 Interface
An additional SPI/Microwire1-compatible interface is
available for both master and slave mode
communications. The SSI2 unit shares the same pins as
the DAI and CODEC interfaces through a multiplexer.
•
•
•
•
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for
asymmetric traffic
Pin Mnemonic
I/O
Pin Description
SSICLK
I/O
Serial bit clock
SSITXDA
O
Serial data out
SSIRXDA
I
Serial data in
SSITXFR
I/O
Transmit frame sync
SSIRXFR
I/O
Receive frame sync
Table F. SSI2 Interface Pin Assignments
Note:
See Table Q on page 7 for information on pin
multiplexes.
Table D. DAI Interface Pin Assignments
Note:
4
See Table Q on page 7 for information on pin
multiplexes.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Synchronous Serial Interface
• ADC (SSI) Interface: Master mode only; SPI and
Microwire1-compatible (128 kbps operation)
• Selectable serial clock polarity
Pin Mnemonic
I/O
Pin Description
ADCLK
O
SSI1 ADC serial clock
ADCIN
I
SSI1 ADC serial input
ADCOUT
O
SSI1 ADC serial output
nADCCS
O
SSI1 ADC chip select
SMPCLK
O
SSI1 ADC sample clock
• Column outputs can be individually set high with the
remaining bits left at high-impedance
• Column outputs can be driven all-low, all-high, or allhigh-impedance
• Keyboard interrupt driven by OR'ing together all Port
A bits
• Keyboard interrupt can be used to wake up the
system
• 8×8 keyboard matrix usable with no external logic,
extra keys can be added with minimal glue logic
Pin Mnemonic
O
Keyboard scanner column drive
Table I. Keypad Interface Pin Assignments
Interrupt Controller
A DMA address generator is provided that fetches video
display data for the LCD controller from memory. The
display frame buffer start address is programmable,
allowing the LCD frame buffer to be in SDRAM, internal
SRAM or external SRAM.
• Interfaces directly to a single-scan panel monochrome
STN LCD
• Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
• Panel width size is programmable from 32 to 1024
pixels in 16-pixel increments
• Video frame buffer size programmable up to
128 KB
• Bits per pixel of 1, 2, or 4 bits
Pin Mnemonic
Pin Description
COL[7:0]
Table G. Serial Interface Pin Assignments
LCD Controller
I/O
I/O
Pin Description
When unexpected events arise during the execution of a
program (i.e., interrupt or memory fault) an exception is
usually generated. When these exceptions occur at the
same time, a fixed priority system determines the order
in which they are handled. The EP7309 interrupt
controller has two interrupt types: interrupt request
(IRQ) and fast interrupt request (FIQ). The interrupt
controller has the ability to control interrupts from 22
different FIQ and IRQ sources.
• Supports 22 interrupts from a variety of sources (such
as UARTs, SSI1, and key matrix.)
• Routes interrupt sources to the ARM720T’s IRQ or
FIQ (Fast IRQ) inputs
• Five dedicated off-chip interrupt lines operate as level
sensitive interrupts
.
Pin Mnemonic
I/O
Pin Description
CL1
O
LCD line clock
CL2
O
LCD pixel clock out
nEINT[2:1]
I
External interrupt
DD[3:0]
O
LCD serial display data bus
EINT[3]
I
External interrupt
FRM
O
LCD frame synchronization pulse
nEXTFIQ
I
External Fast Interrupt input
M
O
LCD AC bias drive
nMEDCHG/nBROM
I
Media change interrupt input
Table J. Interrupt Controller Pin Assignments
Table H. LCD Interface Pin Assignments
Note:
64-Keypad Interface
Matrix keyboards and keypads can be easily read by the
EP7309. A dedicated 8-bit column driver output
generates strobes for each keyboard column signal. The
pins of Port A, when configured as inputs, can be
selectively OR'ed together to provide a keyboard
interrupt that is capable of waking the system from a
STANDBY or IDLE state.
DS507PP1
(Note)
Pins are multiplexed. See Table R on page 7 for more
information.
Real-Time Clock
The EP7309 contains a 32-bit Real Time Clock (RTC) that
can be written to and read from in the same manner as
the timer counters. It also contains a 32-bit output match
register which can be programmed to generate an
interrupt.
Copyright 2001 Cirrus Logic (All Rights Reserved)
5
EP7309
High-Performance, Low-Power System on Chip
• Driven byan external 32.768 kHz crystal oscillator
Pin Mnemonic
Pin Mnemonic
Pin Description
RTCIN
Real-Time Clock Oscillator Input
RTCOUT
Real-Time Clock Oscillator Output
VDDRTC
Real-Time Clock Oscillator Power
VSSRTC
Real-Time Clock Oscillator Ground
I/O
PA[7:0]
I
GPIO port A
PB[7:0]
I
GPIO port B
I/O
GPIO port D
I/O
GPIO port D
I/O
GPIO port D
PE[1:0]/BOOTSEL[1:0] (Note)
I
GPIO port E
PE[2]/CLKSEL
I
GPIO port E
PD[0]/LEDFLSH
(Note)
PD[5:1]
PD[7:6]/SDQM[1:0]
Table K. Real-Time Clock Pin Assignments
• Processor and Peripheral Clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
• Programmable clock speeds allow the peripheral bus
to run at 18 MHz when the processor is set to 18 MHz
and at 36 MHz when the processor is set to 36, 49 or
74 MHz
Pin Mnemonic
Note:
Main Oscillator Input
MOSCOUT
Main Oscillator Output
VDDOSC
Main Oscillator Power
VSSOSC
Main Oscillator Ground
Table L. PLL and Clocking Pin Assignments
• Provides two 96 kHz clock outputs with
programmable duty ratio (from 1-in-16 to 15-in-16)
that can be used to drive a positive or negative DC to
DC converter
I/O
I/O
I
Pin Description
PWM drive output
PWM feedback input
Table M. DC-to-DC Converter Interface Pin Assignments
Timers
• Internal (RTC) timer
• Two internal 16-bit programmable hardware countdown timers
Pin Mnemonic
6
I/O
Pin Description
TCLK
I
JTAG clock
TDI
I
JTAG data input
TDO
O
JTAG data output
nTRST
I
JTAG async reset input
TMS
I
JTAG mode select
Table O. Hardware Debug Interface Pin Assignments
LED Flasher
A dedicated LED flasher module can be used to generate
a low frequency signal on Port D pin 0 for the purpose of
blinking an LED without CPU intervention. The LED
flasher feature is ideal as a visual annunciator in battery
powered applications, such as a voice mail indicator on a
portable phone or an appointment reminder on a PDA.
•
•
•
•
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current
Pin Mnemonic
PD[0]/LEDFLSH
General Purpose Input/Output (GPIO)
• Three 8-bit and one 3-bit GPIO ports
• Supports scanning keyboard matrix
Pins are multiplexed. See Table R on page 7 for more
information.
• Full JTAG boundary scan and Embedded ICE
support
DC-to-DC converter interface (PWM)
FB[1:0]
(Note)
Hardware debug Interface
Pin Description
MOSCIN
DRIVE[1:0]
(Note)
Table N. General Purpose Input/Output Pin Assignments
PLL and Clocking
Pin Mnemonic
Pin Description
(Note)
I/O
O
Pin Description
LED flasher driver
Table P. LED Flasher Pin Assignments
Note:
Pins are multiplexed. See Table R on page 7 for more
information.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Internal Boot ROM
The internal 128 byte Boot ROM facilitates download of
saved code to the on-board SRAM/FLASH.
Packaging
The EP7309 is available in a 208-pin LQFP package, 256ball PBGA package or a 204-ball TFBGA package.
Pin Multiplexing
The following table shows the pin multiplexing of the
DAI, SSI2 and the CODEC. The selection between SSI2
and the CODEC is controlled by the state of the SERSEL
bit in SYSCON2. The choice between the SSI2, CODEC,
and the DAI is controlled by the DAISEL bit in SYSCON3
(see the EP7309 User’s Manual for more information).
Pin
Mnemonic
Pin
Mnemonic
I/O
DAI
SSI2
CODEC
SSITXFR
I/O
LRCK
SSITXFR
PCMSYNC
SSIRXFR
I
MCLKIN
SSIRXFR
p/u
BUZ
O
MCLKOUT
Table Q. DAI/SSI2/CODEC Pin Multiplexing
The following table shows the pins that have been
multiplexed in the EP7309.
Signal
Block
Signal
Block
RUN
System
Configuration
CLKEN
System
Configuration
nMEDCHG
Interrupt
Controller
nBROM
Boot ROM
select
I/O
DAI
SSI2
CODEC
PD[0]
GPIO
LEDFLSH
LED Flasher
SSICLK
I/O
SCLK
SSICLK
PCMCLK
PE[1:0]
GPIO
BOOTSEL[1:0]
System
Configuration
SSITXDA
O
SDOUT
SSITXDA
PCMOUT
PE[2]
GPIO
CLKSEL
SSIRXDA
I
SDIN
SSIRXDA
PCMIN
System
Configuration
Table Q. DAI/SSI2/CODEC Pin Multiplexing
DS507PP1
Table R. Pin Multiplexing
Copyright 2001 Cirrus Logic (All Rights Reserved)
7
EP7309
High-Performance, Low-Power System on Chip
System Design
As shown in system block diagram, simply adding
desired memory and peripherals to the highly integrated
CRYSTAL
MOSCIN
CRYSTAL
RTCIN
EP7309 completes a low-power system solution. All
necessary interface logic is integrated on-chip.
DD[0-3]
CL1
CL2
FRM
M
LCD
COL[0-7]
KEYBOARD
PA[0-7]
nCS[4]
PB0
EXPCLK
PB[0-7]
PD[0-7]
D[0-31]
PC CARD
CONTROLLER
A[0-27]
nMOE
WRITE
nCS[0]
nCS[1]
×16
FLASH
×16
FLASH
×16
FLASH
×16
FLASH
PE[0-2]
EP7309
PC CARD
SOCKET
nPOR
nPWRFL
BATOK
nEXTPWR
nBATCHG
RUN
WAKEUP
POWER
SUPPLY UNIT
AND
COMPARATORS
BATTERY
DRIVE[0-1]
DC-TO-DC
CONVERTERS
FB[0-1]
SSICLK
SSITXFR
SSITXDA
SSIRXDA
SSIRXFR
CODEC/SSI2/
DAI
IR LED AND
PHOTODIODE
LEDDRV
PHDIN
CS[n]
WORD
EXTERNAL MEMORYMAPPED EXPANSION
BUFFERS
nCS[2]
nCS[3]
ADDITIONAL I/O
BUFFERS
AND
LATCHES
LEDFLSH
RXD1/2
TXD1/2
DSR
CTS
DCD
DC
INPUT
2× RS-232
TRANSCEIVERS
ADCCLK
nADCCS
ADCOUT
ADCIN
SMPCLK
ADC
DIGITIZER
Figure 1. A Maximum EP7309 Based System
Note:
8
A system can only use one of the following peripheral
interfaces at any given time: SSI2,CODEC or DAI.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings
DC Core, PLL, and RTC Supply Voltage
2.9 V
DC I/O Supply Voltage (Pad Ring)
3.6 V
DC Pad Input Current
±10 mA/pin; ±100 mA cumulative
Storage Temperature, No Power
–40°C to +125°C
Recommended Operating Conditions
DC core, PLL, and RTC Supply Voltage
2.5 V ± 0.2 V
DC I/O Supply Voltage (Pad Ring)
2.3 V - 3.6 V
DC Input / Output Voltage
O–I/O supply voltage
Operating Temperature
Extended -20°C to +70°C; Commercial 0°C to +70°C;
Industrial -40°C to +85°C
DC Characteristics
All characteristics are specified at VDD = 2.5 V and VSS = 0 V over an operating temperature of 0°C to +70°C for all
frequencies of operation. The current consumption figures relate to typical conditions at 2.5 V, 18.432 MHz operation
with the PLL switched “on.”
Symbol
Parameter
Min
Typ
Max
Unit
Conditions
VIH
CMOS input high voltage
0.65 × VDDIO
VDDIO + 0.3
V
VDDIO = 2.5 V
VIL
CMOS input low voltage
-0.3
0.25 × VDDIO
V
VDDIO = 2.5 V
VT+
Schmitt trigger positive going
threshold
1.6 (Typ)
2.0
V
VT-
Schmitt trigger negative going
threshold
0.8
1.2 (Typ)
V
Vhst
Schmitt trigger hysteresis
0.1
0.4
V
VIL to VIH
V
V
V
IOH = 0.1 mA
IOH = 4 mA
IOH = 12 mA
Output drive 2a
0.3
0.5
0.5
V
V
V
IOL = –0.1 mA
IOL = –4 mA
IOL = –12 mA
Input leakage current
1.0
µA
VIN = VDD or GND
25
100
µA
VOUT = VDD or GND
8
10.0
pF
CMOS output high voltagea
VOH
VDD – 0.2
2.5
2.5
Output drive 1a
Output drive 2a
CMOS output low voltagea
VOL
IIN
IOZ
CIN
DS507PP1
Output drive 1a
Bidirectional 3-state leakage
currentb c
Input capacitance
Copyright 2001 Cirrus Logic (All Rights Reserved)
9
EP7309
High-Performance, Low-Power System on Chip
Symbol
Parameter
Min
Typ
Max
Unit
COUT
Output capacitance
8
10.0
pF
CI/O
Transceiver capacitance
8
10.0
pF
Standby current consumption
IDDstandby Core, Osc, RTC @2.5 V
I/O @ 3.3 V
IDDidle
TBD
TBD
Idle current consumption
Core, Osc, RTC @2.5 V
I/O @ 2.5 V
TBD
TBD
Operating current consumption
IDDoperatin Core, Osc, RTC @2.5 V
I/O @ 3.3 V
VDDstandby Standby supply voltage
TBD
4.2
µA
Only 32 kHz oscillator running,
Cache disabled, all other I/O
static, VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
mA
Both oscillators running, CPU
static, Cache disabled, LCD
refresh active, VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
At 13 MHz
mA
All system active, running typical
program, cache disabled, and
LCD inactive
V
Minimum standby voltage for
state retention and RTC
operation only
a.
See Table S on page 23.
b.
Assumes buffer has no pull-up or pull-down resistors.
c.
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.
Note:
10
TBD
TBD
300
Conditions
1) All power dissipation values can be derived from taking the particular IDD current and multiplying by 2.5 V.
2) The RTC of the EP7309 should be brought up at room temperature. This is required because the RTC OSC will NOT function
properly if it is brought up at –40°C. Once operational, it will continue to operate down to –20°C extended and 0°C
commercial.
3) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be
compatible with 3.3 V powered external logic.
4) Pull-up current = 50 µA typical at VDD = 3.3 V.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Timings
Timing Diagram Conventions
This data sheet contains one or more timing diagrams. The following key explains the components used in these
diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached
unless specifically stated.
Clock
High to Low
High/Low to High
Bus Change
Bus Valid
Undefined/Invalid
Valid Bus to Tristate
Bus/Signal Omission
Timing Conditions
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are
specified at VDD = 2.3 - 2.7 V and VSS = 0 V over an operating temperature of 0°C to +70°C. Those characteristics
marked with a # will be significantly different for 13 MHz mode because the EXPCLK is provided as an input rather
than generated internally. These timings are estimated at present. The timing values are referenced to 1/2 VDD.
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
11
EP7309
High-Performance, Low-Power System on Chip
Static Memory
Figure 2 through Figure 5 define the timings associated with all phases of the Static Memory. The following table
contains the values for the timings of each of the Static Memory modes.
Parameter
Symbol
Min
Typ
Max
Unit
EXPCLK rising edge to nCS assert delay time
tCSd
TBD
8
TBD
ns
EXPCLK falling edge to nCS deassert hold time
tCSh
TBD
4
TBD
ns
EXPCLK rising edge to A assert delay time
tAd
TBD
4
TBD
ns
EXPCLK falling edge to A deassert hold time
tAh
TBD
8
TBD
ns
EXPCLK rising edge to nMWE assert delay time
tMWd
TBD
4
TBD
ns
EXPCLK rising edge to nMWE deassert hold time
tMWh
TBD
4
TBD
ns
EXPCLK falling edge to nMOE assert delay time
tMOEd
TBD
4
TBD
ns
EXPCLK falling edge to nMOE deassert hold time
tMOEh
TBD
4
TBD
ns
EXPCLK falling edge to HALFWORD deassert delay time
tHWd
TBD
4
TBD
ns
EXPCLK falling edge to WORD assert delay time
tWDd
TBD
4
TBD
ns
EXPCLK rising edge to data valid delay time
tDv
TBD
20
TBD
ns
EXPCLK falling edge to data invalid delay time
tDnv
TBD
8
TBD
ns
Data setup to EXPCLK falling edge time
tDs
TBD
-
TBD
ns
EXPCLK falling edge to data hold time
tDh
TBD
-
TBD
ns
EXPCLK rising edge to WRITE assert delay time
tWRd
TBD
8
TBD
ns
EXPREADY setup to EXPCLK falling edge time
tEXs
TBD
-
TBD
ns
EXPCLK falling edge to EXPREADY hold time
tEXh
TBD
-
TBD
ns
12
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Static Memory Single Read Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
A
nMWE
tMOEd
tMOEh
nMOE
tHWd
HALF
WORD
tWDd
WORD
tDs
tDh
D
tEXs
tEXh
EXPRDY
tWRd
WRITE
Figure 2. Static Memory Single Read Cycle Timing Measurement
Note:
DS507PP1
1. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
Copyright 2001 Cirrus Logic (All Rights Reserved)
13
EP7309
High-Performance, Low-Power System on Chip
Static Memory Single Write Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
A
tMWd
tMWh
nMWE
nMOE
tHWd
HALF
WORD
tWDd
WORD
tDv
D
tEXs
tEXh
EXPRDY
WRITE
Figure 3. Static Memory Single Write Cycle Timing Measurement
Note:
14
1. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Static Memory Burst Read Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
tAh
tAh
tAh
A
nMWE
tMOEd
tMOEh
nMOE
tHWd
HALF
WORD
tWDd
WORD
tDs tDh
tDs tDh
tDs tDh
tDs tDh
D
tEXs
tEXh
EXPRDY
tWRd
WRITE
Figure 4. Static Memory Burst Read Cycle Timing Measurement
Note:
DS507PP1
1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion
cycles. This improves performance so the SQAEN bit should always be set where possible.
Copyright 2001 Cirrus Logic (All Rights Reserved)
15
EP7309
High-Performance, Low-Power System on Chip
Static Memory Burst Write Cycle
EXPCLK
tCSd
tCSh
nCS
tAh
tAd
tAh
tAh
A
tMWd
tMWd
tMWd
tMWh
nMWE
tMWd
tMWh
tMWh
tMWh
nMOE
tHWd
HALF
WORD
WORD
tWDd
tDv
tDnv
tDv
tDnv
tDv
tDnv
tDv
D
tEXs
tEXh
EXPRDY
WRITE
Figure 5. Static Memory Burst Write Cycle Timing Measurement
Note:
16
1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (27 ns at 36 MHz, 54 ns at 18.432 MHz, and
77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on
the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where
EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
SSI1 Interface
Parameter
Symbol
Min
Max
Unit
ADCCLK falling edge to nADCCSS deassert delay time
tCd
TBD
TBD
ns
ADCIN data setup to ADCCLK rising edge time
tINs
TBD
TBD
ns
ADCIN data hold from ADCCLK rising edge time
tINh
TBD
TBD
ns
ADCCLK falling edge to data valid delay time
tOvd
TBD
TBD
ns
ADCCLK falling edge to data invalid delay time
tOd
TBD
TBD
ns
ADC
CLK
tCd
nADC
CSS
tINs
tINh
ADCIN
tOvd
tOd
ADC
OUT
Figure 6. SSI1 Interface Timing Measurement
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
17
EP7309
High-Performance, Low-Power System on Chip
SSI2 Interface
Parameter
Symbol
Min
Max
Unit
SSICLK period (slave mode)
tclk_per
0
512
ns
SSICLK high time
tclk_high
925
1025
ns
SSICLK low time
tclk_low
925
1025
ns
SSICLK rise/fall time
tclkrf
7
ns
SSICLK rising edge to RX and/or TX frame sync high time
tFRd
528
ns
SSICLK rising edge to RX and/or TX frame sync low time
tFRa
448
ns
tFR_per
750
ns
SSIRXDA setup to SSICLK falling edge time
tRXs
30
ns
SSIRXDA hold from SSICLK falling edge time
tRXh
40
ns
SSICLK rising edge to SSITXDA data valid delay time
tTXd
SSITXDA valid time
tTXv
SSIRXFR and/or SSITXFR period
tclk_per
80
ns
ns
tclk_high
tclk_low
SSI
CLK
tclkrf
tFRd
tFRa
tFR_per
SSIRXFR/
SSITXFR
tRXh
tRXs
SSI
RXDA
D7
D2
D1
D0
D7
D2
D1
D0
tTXd
SSI
TXDA
tTXv
Figure 7. SSI2 Interface Timing Measurement
18
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
LCD Interface
Parameter
Symbol
Min
Max
Unit
tclk
200
6,950
ns
LCD CL[2] low time
tclk_low
80
3,475
ns
LCD CL[2] high time
tclk_high
80
3,475
ns
CL[2] falling to CL[1] rising delay time
tCL1d
0
25
ns
CL[1] falling to CL[2] rising delay time
tCL2d
80
3,475
ns
LCD CL[1] high time
tCL2h
80
3,475
ns
CL[1] falling to FRM transition time
tFRMd
300
10,425
ns
CL[1] falling to M transition time
tMd
− 10
20
ns
CL[2] rising to DD (display data) transition time
tDDd
− 10
20
ns
tclk_low
tclk_high
CL[1] falling to CL[2] falling time
tclk
CL[2]
tCL1d
tCL2d
tCL2h
CL[1]
tFRMd
FRM
tMd
M
tDDd
DD [3:0]
Figure 8. LCD Controller Timing Measurement
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
19
EP7309
High-Performance, Low-Power System on Chip
JTAG
Parameter
Symbol
Min
Max
Units
TCK clock period
tclk_per
100
-
ns
TCK clock high time
tclk_high
50
-
ns
TCK clock low time
tclk_low
50
-
ns
JTAG port setup time
tJPs
20
-
ns
JTAG port hold time
tJPh
45
-
ns
JTAG port clock to output
tJPco
-
25
ns
JTAG port high impedance to valid output
tJPzx
-
25
ns
JTAG port valid output to high impedance
tJPxz
-
25
ns
tclk_per
tclk_high
tclk_low
TCK
tJPs
tJPh
TMS
TDI
tJPzx
tJPco
tJPxz
TDO
Figure 9. JTAG Timing Measurement
20
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Packages
208-Pin LQFP Package Characteristics
208-Pin LQFP Package Specifications
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
EP7309
29.60 (1.165)
30.40 (1.197)
208-Pin LQFP
0.50
(0.0197)
BSC
Pin 1 Indicator
Pin 208
Pin 1
0.45 (0.018)
0.75 (0.030)
1.35 (0.053)
1.45 (0.057)
1.00 (0.039) BSC
0.09 (0.004)
0.20 (0.008)
0° MIN
7° MAX
1.40 (0.055)
1.60 (0.063)
0.05 (0.002)
0.15 (0.006)
Figure 10. 208-Pin LQFP Package Outline Drawing
Note:
DS507PP1
1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2) Drawing above does not reflect exact package pin count.
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
4) For pin locations, please see Figure 11. For pin descriptions see the EP7309 User’s Manual.
Copyright 2001 Cirrus Logic (All Rights Reserved)
21
EP7309
High-Performance, Low-Power System on Chip
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
nURESET
nMEDCHG/nBROM
nPOR
BATOK
nEXTPWR
nBATCHG
D[7]
VSSIO
A[7]
D[8]
A[8]
D[9]
A[9]
D[10]
A[10]
D[11]
VSSIO
VDDIO
A[11]
D[12]
A[12]
D[13]
A[13]
D[14]
A[14]
D[15]
A[15]
D[16]
A[16]
D[17]
A[17]
nTRST
VSSIO
VDDIO
D[18]
A[18
D[19]
A[19]
D[20]
A[20]
VSSIO
D[21]
A[21]
D[22]
A[22]
D[23]
A[23]
D[24]
VSSIO
VDDIO
A[24]
HALFWORD
208-Pin LQFP Pin Diagram
N/C
N/C
N/C
N/C
VDDIO
VSSIO
N/C
N/C
EP7309
208-Pin LQFP
(Top View)
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
D[25]
A[25]
D[26]
A[26]
D[27]
A[27]
VSSIO
D[28]
D[29]
D[30]
D[31]
BUZ
COL[0]
COL[1]
TCLK
VDDIO
COL[2]
COL[3]
COL[4]
COL[5]
COL[6]
COL[7]
FB[0]
VSSIO
FB[1]
SMPCLK
ADCOUT
ADCCLK
DRIVE[0]
DRIVE[1]
VDDIO
VSSIO
VDDCORE
VSSCORE
nADCCS
ADCIN
SSIRXFR
SSIRXDA
SSITXDA
SSITXFR
VSSIO
SSICLK
PD[0]/LEDFLSH
PD[1]
PD[2]
PD[3]
TMS
VDDIO
PD[4]
PD[5]
PD[6]
PD[7]
nCS[5]
VDDIO
VSSIO
EXPCLK
WORD
WRITE
RUN/CLKEN
EXPRDY
TXD[2]
RXD[2]
TDI
VSSIO
PB[7]
PB[6]
PB[5]
PB[4]
PB[3]
PB[2]
PB[1]
PB[0]
VDDIO
TDO
PA[7]
PA[6]
PA[5]
PA[4]
PA[3]
PA[2]
PA[1]
PA[0]
LEDDRV
TXD[1]
VSSIO
PHDIN
CTS
RXD[1]
DCD
DSR
nTEST[1]
nTEST[0]
EINT[3]
nEINT[2]
nEINT[1]
nEXTFIQ
PE[2]/CLKSEL
PE[1]BOOTSEL[1]
PE[0]BOOTSEL[0]
VSSRTC
RTCOUT
RTCIN
VDDRTC
N/C
nMWE
nMOE
VSSIO
nCS[0]
nCS[1]
nCS[2]
nCS[3]
nCS[4]
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
VDDOSC
MOSCIN
MOSCOUT
VSSOSC
WAKEUP
nPWRFL
A[6]
D[6]
A[5]
D[5]
VDDIO
VSSIO
A[4]
D[4]
A[3]
D[3]
A[2]
VSSIO
D[2]
A[1]
D[1]
A[0]
D[0]
VSSCORE
VDDCORE
VSSIO
VDDIO
CL[2]
CL[1]
FRM
M
DD[3]
DD[2]
VSSIO
DD[1]
DD[0]
Figure 11. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
Note:
22
1. N/C should not be grounded but left as no connects.
2. Pin differences between the EP7212 and the EP7309 are bolded.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
208-Pin LQFP Numeric Pin Listing
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)
Table S. 208-Pin LQFP Numeric Pin Listing
Pin
No.
Signal
Type
38
DSR
I
39
nTEST[1]
I
With p/u*
40
nTEST[0]
I
With p/u*
41
EINT[3]
I
42
nEINT[2]
I
43
nEINT[1]
I
44
nEXTFIQ
I
45
PE[2]/CLKSEL
I/O
1
Input
46
PE[1]/
BOOTSEL[1]
I/O
1
Input
47
PE[0]/
BOOTSEL[0]
I/O
1
Input
48
VSSRTC
RTC Gnd
Input
49
RTCOUT
O
1
Input
50
RTCIN
I
I/O
1
Input
51
VDDRTC
RTC power
PB[4]
I/O
1
Input
52
N/C
17
PB[3]
I/O
1
Input
53
PD[7]
I/O
1
Low
18
PB[2]
I/O
1
Input
54
PD[6]
I/O
1
Low
19
PB[1]/PRDY2
I/O
1
Input
55
PD[5]
I/O
1
Low
20
PB[0]/PRDY1
I/O
1
Input
56
PD[4]
I/O
1
Low
21
VDDIO
Pad Pwr
57
VDDIO
Pad Pwr
22
TDO
O
1
Three state
58
TMS
I
with p/u*
23
PA[7]
I/O
1
Input
59
PD[3]
I/O
1
Low
24
PA[6]
I/O
1
Input
60
PD[2]
I/O
1
Low
25
PA[5]
I/O
1
Input
61
PD[1]
I/O
1
Low
26
PA[4]
I/O
1
Input
62
PD[0]/LEDFLSH
I/O
1
Low
27
PA[3]
I/O
1
Input
63
SSICLK
I/O
1
Input
28
PA[2]
I/O
1
Input
64
VSSIO
Pad Gnd
29
PA[1]
I/O
1
Input
65
SSITXFR
I/O
1
Low
30
PA[0]
I/O
1
Input
66
SSITXDA
O
1
Low
31
LEDDRV
O
1
Low
67
SSIRXDA
I
32
TXD[1]
O
1
High
68
SSIRXFR
I/O
33
VSSIO
Pad Gnd
1
High
69
ADCIN
I
34
PHDIN
I
70
nADCCS
O
35
CTS
I
71
VSSCORE
Core Gnd
36
RXD[1]
I
72
VDDCORE
Core Pwr
37
DCD
I
73
VSSIO
Pad Gnd
Pin
No.
Signal
Type
Strength
Reset
State
1
nCS[5]
O
1
High
2
VDDIO
Pad Pwr
3
VSSIO
Pad Gnd
4
EXPCLK
I/O
1
5
WORD
Out
1
Low
6
WRITE
Out
1
Low
7
RUN/CLKEN
O
1
Low
8
EXPRDY
I
1
9
TXD[2]
O
1
10
RXD[2]
I
11
TDI
I
12
VSSIO
Pad Gnd
13
PB[7]
I/O
1
14
PB[6]
I/O
15
PB[5]
16
DS507PP1
High
with p/u*
Copyright 2001 Cirrus Logic (All Rights Reserved)
Strength
Reset
State
Input
1
High
23
EP7309
High-Performance, Low-Power System on Chip
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
74
VDDIO
Pad Pwr
75
DRIVE[1]
I/O
Strength
Reset
State
2
High /
Low
76
DRIVE[0]
I/O
2
High /
Low
77
ADCCLK
O
1
Low
78
ADCOUT
O
1
Low
79
SMPCLK
O
1
Low
80
FB[1]
I
81
VSSIO
Pad Gnd
82
FB[0]
I
83
COL[7]
O
1
High
84
COL[6]
O
1
High
85
COL[5]
O
1
High
86
COL[4]
O
1
High
87
COL[3]
O
1
High
88
COL[2]
O
1
High
89
VDDIO
Pad Pwr
90
TCLK
I
91
COL[1]
O
1
High
92
COL[0]
O
1
High
93
BUZ
O
1
Low
94
D[31]
I/O
1
Low
95
D[30]
I/O
1
Low
96
D[29]
I/O
1
Low
97
D[28]
I/O
1
Low
98
VSSIO
Pad Gnd
99
A[27]
O
2
Low
100
D[27]
I/O
1
Low
101
A[26]
O
2
Low
102
D[26]
I/O
1
Low
103
A[25]
O
2
Low
104
D[25]
I/O
1
Low
105
HALFWORD
O
1
Low
106
A[24]
O
1
Low
107
VDDIO
Pad Pwr
—
108
VSSIO
Pad Gnd
—
109
D[24]
I/O
1
Low
110
A[23]
O
1
Low
24
Pin
No.
Signal
Type
Strength
Reset
State
111
D[23]
I/O
1
Low
112
A[22]
O
1
Low
113
D[22]
I/O
1
Low
114
A[21]
O
1
Low
115
D[21]
I/O
1
Low
116
VSSIO
Pad Gnd
117
A[20]
O
1
Low
118
D[20]
I/O
1
Low
119
A[19]
O
1
Low
120
D[19]
I/O
1
Low
121
A[18]
O
1
Low
122
D[18]
I/O
1
Low
123
VDDIO
Pad Pwr
124
VSSIO
Pad Gnd
125
nTRST
I
126
A[17]
O
1
Low
127
D[17]
I/O
1
Low
128
A[16]
O
1
Low
129
D[16]
I/O
1
Low
130
A[15]
O
1
Low
131
D[15]
I/O
1
Low
132
A[14]
O
1
Low
133
D[14]
I/O
1
Low
134
A[13]
O
1
Low
135
D[13]
I/O
1
Low
136
A[12]
O
1
Low
137
D[12]
I/O
1
Low
138
A[11]
O
1
Low
139
VDDIO
Pad Pwr
140
VSSIO
Pad Gnd
141
D[11]
I/O
1
Low
142
A[10]
O
1
Low
143
D[10]
I/O
1
Low
144
A[9]
O
1
Low
145
D[9]
I/O
1
Low
146
A[8]
O
1
Low
147
D[8]
I/O
1
Low
148
A[7]
O
1
Low
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)
Table S. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Pin
No.
Signal
Type
Strength
Reset
State
149
VSSIO
Pad Gnd
187
M
O
1
Low
150
D[7]
I/O
188
DD[3]
I/O
1
Low
151
nBATCHG
I
189
DD[2]
I/O
1
Low
152
nEXTPWR
I
190
VSSIO
Pad Gnd
153
BATOK
I
191
DD[1]
I/O
1
Low
154
nPOR
I
192
DD[0]
I/O
1
Low
155
nMEDCHG/
nBROM
I
193
N/C
O
1
High
194
N/C
O
1
High
156
nURESET
I
195
N/C
I/O
2
Low
157
VDDOSC
Osc Pwr
196
N/C
I/O
2
Low
158
MOSCIN
Osc
197
VDDIO
Pad Pwr
159
MOSCOUT
Osc
198
VSSIO
Pad Gnd
160
VSSOSC
Osc Gnd
199
N/C
I/O
2
Low
161
WAKEUP
I
200
N/C
I/O
2
Low
162
nPWRFL
I
201
nMWE
O
1
High
163
A[6]
O
1
Low
202
nMOE
O
1
High
164
D[6]
I/O
1
Low
203
VSSIO
Pad Gnd
165
A[5]
Out
1
Low
204
nCS[0]
O
1
High
166
D[5]
I/O
1
Low
205
nCS[1]
O
1
High
167
VDDIO
Pad Pwr
206
nCS[2]
O
1
High
168
VSSIO
Pad Gnd
207
nCS[3]
O
1
High
169
A[4]
O
1
Low
208
nCS[4]
O
1
High
170
D[4]
I/O
1
Low
171
A[3]
O
2
Low
172
D[3]
I/O
1
Low
173
A[2]
O
2
Low
174
VSSIO
Pad Gnd
175
D[2]
I/O
1
Low
176
A[1]
O
2
Low
177
D[1]
I/O
1
Low
178
A[0]
O
2
Low
179
D[0]
I/O
1
Low
180
VSS CORE
Core Gnd
181
VDD CORE
Core Pwr
182
VSSIO
Pad Gnd
183
VDDIO
Pad Pwr
184
CL[2]
O
1
Low
185
CL[1]
O
1
Low
186
FRM
O
1
Low
DS507PP1
Strength
1
Reset
State
Low
Schmitt
Schmitt
Schmitt
*With p/u’ means with internal pull-up on the pin.
Copyright 2001 Cirrus Logic (All Rights Reserved)
25
EP7309
High-Performance, Low-Power System on Chip
204-Ball TFBGA Package Characteristics
204-Ball TFBGA Package Specifications
TOP VIEW
BOTTOM VIEW
Ø0.08 M C
Ø0.15 M C A B
A1 CORNER
A1 CORNER
Ø0.25~0.35(204X)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
12.35
13±0.05
0.65
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
A
0.65
12.35
13±0.05
0.20 C
0.15(4X) C
0.10 C
0.53±0.05
B
Ball Pitch :
SEATING PLANE
Ball Diameter :
1.20 MAX.
C
0.20~0.30
0.36
0.65
Substrate Thickness :
0.36
Mold Thickness :
0.3
0.53
Figure 12. 204-Ball TFBGA Package
26
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
204-Ball TFBGA Pinout (Top View)
1
2
3
A VDDR
EXPCLK
nCS3
B WORD
VDDR
C
4
5
6
7
8
9
10
11
12
13
14
15
nCS1 nMWE
N/C
N/C
DD2
FRM
CL1
GNDD
D1
A2
D4
A5
nCS5
nCS2
nMOE
N/C
N/C
DD1
M
CL2
D0
A1
D3
A4
D6
RUN/
EXPRDY VDDR
CLKEN
nCS4
nCS0
N/C
N/C
DD0
DD3
VDDD
A0
D2
A3
D5
A6
16
18
19
20
nPWRFL MOSCOUT
GNDR
GNDR
GNDR
WAKEUP MOSCIN
GNDR
GNDR nURESET B
GNDR
BATOK
nPOR
C
GNDR
nBATCHG
A7
D
nMEDCHG
nEXTPWR
/nBROM
D9
E
GNDO
17
VDDO
A
D
PB7
RXD2
VDDR
E
PB4
TXD2
WRITE
F
PB3
PB6
TDI
D7
A8
D10
F
G
PB1
PB2
PB5
D8
A9
D11
G
H
PA7
TDO
PB0
A10
D12
A12
H
J
PA4
PA5
PA6
A11
D13
A13
J
K
PA1
PA2
VDDR
D14
A14
D15
K
L
TXD1
LEDDRV
PA3
VDDR
D16
A16
L
CTS
PA0
A15
A17
nTEST1 PHDIN
D17
D19
A18
N
P EINT3
nEINT2
D18
A20
D20
P
R nEXTFIQ
PE2/
nTEST0
CLKSEL
A19
D22
A21
R
D21
D23
A22
T
HALF
WORD
D24
A23
U
M RXD1
N
T
DSR
PE1/
BOOT
SEL1
U GNDC
PE0/
BOOT
SEL0
DCD
nEINT1
RTCOUT RTCIN
V VDDC
GNDR
GNDR
PD7
PD4
PD2
W GNDR
GNDR
GNDR
PD6
TMS
PD1
Y GNDR
GNDR
GNDR
PD5
PD3
PD0/
LED SSITXDA ADCIN
FLSH
DS507PP1
SSICLK SSIRXDA nADCCS VDDR ADCCLK COL7
SSITXFR SSIRXFR GNDD1 DRIVE1 ADCOUT
VDD1 DRIVE0 SMPLCK
nTRST M
COL4 TCLK
BUZ
D29
A26
VDDR
VDDR
A24
V
FB0
COL5 COL2
COL0
D30
A27
D26
VDDR
D25
W
FB1
COL6 COL3
COL1
D31
D28
D27
A25
VDDR
Y
Copyright 2001 Cirrus Logic (All Rights Reserved)
27
EP7309
High-Performance, Low-Power System on Chip
TFBGA Ball List
Table T. 204-Ball TFBGA Ball List (Continued)
Table T. 204-Ball TFBGA Ball List
Die Pad
28
Bond Pad Package Ball
Signal
U2.1
1
B3
nCS5
U2.2
2
Y20
VDDR
U2.3
3
B18
GNDR
U2.4
4
A2
EXPCLK
U2.5
5
B1
WORD
U2.6
6
E3
WRITE
U2.7
7
C1
RUN/CLKEN
U2.8
8
C2
EXPRDY
U2.9
9
E2
TXD2
U2.10
10
D2
RXD2
U2.11
11
F3
TDI
U2.12
12
B18
GNDR
U2.13
13
D1
PB7
U2.14
14
F2
PB6
U2.15
15
G3
PB5
U2.16
16
E1
PB4
U2.17
17
F1
PB3
U2.18
18
G2
PB2
U2.19
19
G1
PB1
U2.20
20
H3
PB0
U2.21
21
Y20
VDDR
U2.22
22
H2
TDO
U2.23
23
H1
PA7
U2.24
24
J3
PA6
U2.25
25
J2
PA5
U2.26
26
J1
PA4
U2.27
27
L3
PA3
U2.28
28
K2
PA2
U2.29
29
K1
PA1
U2.30
30
M3
PA0
U2.31
31
L2
LEDDRV
U2.32
32
L1
TXD1
U2.33
33
B18
GNDR
U2.34
34
N3
PHDIN
U2.35
35
M2
CTS
U2.36
36
M1
RXD1
U2.37
37
P3
DCD
Die Pad
Bond Pad Package Ball
Signal
U2.38
38
N1
DSR
U2.39
39
N2
nTEST1
U2.40
40
R3
nTEST0
U2.41
41
P1
EINT3
U2.42
42
P2
nEINT2
U2.43
43
T3
nEINT1
U2.44
44
R1
nEXTFIQ
U2.45
45
R2
PE2/CLKSEL
U2.46
46
T1
PE1/BOOTSEL1
U2.47
47
T2
PE0/BOOTSEL0
U2.48
48
U1
GNDC
U2.49
49
U2
RTCOUT
U2.50
50
U3
RTCIN
U2.51
51
V1
VDDC
U2.53
52
V4
PD7
U2.54
53
W4
PD6
U2.55
54
Y4
PD5
U2.56
55
V5
PD4
U2.57
56
L18
VDDR
U2.58
57
W5
TMS
U2.59
58
Y5
PD3
U2.60
59
V6
PD2
U2.61
60
W6
PD1
U2.62
61
Y6
PD0/LEDFLSH
U2.63
62
V7
SSICLK
U2.64
63
D18
GNDR
U2.65
64
W7
SSITXFR
U2.66
65
Y7
SSITXDA
U2.67
66
V8
SSIRXDA
U2.68
67
W8
SSIRXFR
U2.69
68
Y8
ADCIN
U2.70
69
V9
nADCCS
U2.71
70
W9
GNDD1
U2.72
71
Y9
VDD1
U2.73
72
W3
GNDR
U2.74
73
V10
VDDR
U2.75
74
L18
VDDR
U2.76
75
W10
DRIVE1
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Table T. 204-Ball TFBGA Ball List (Continued)
Die Pad
Bond Pad Package Ball
Table T. 204-Ball TFBGA Ball List (Continued)
Signal
Die Pad
Bond Pad Package Ball
Signal
U2.77
76
Y10
DRIVE0
U2.116
115
T18
D21
U2.78
77
V11
ADCCLK
U2.117
116
Y3
GNDR
U2.79
78
W11
ADCOUT
U2.118
117
P19
A20
U2.80
79
Y11
SMPLCK
U2.119
118
P20
D20
U2.81
80
Y12
FB1
U2.120
119
R18
A19
U2.82
81
Y3
GNDR
U2.121
120
N19
D19
U2.83
82
W12
FB0
U2.122
121
N20
A18
U2.84
83
V12
COL7
U2.123
122
P18
D18
U2.85
84
Y13
COL6
U2.124
123
A1
VDDR
U2.86
85
W13
COL5
U2.125
124
Y3
GNDR
U2.87
86
V13
COL4
U2.126
125
M20
nTRST
U2.88
87
Y14
COL3
U2.127
126
M19
A17
U2.89
88
W14
COL2
U2.128
127
N18
D17
U2.90
89
A1
VDDR
U2.129
128
L20
A16
U2.91
90
V14
TCLK
U2.130
129
L19
D16
U2.92
91
Y15
COL1
U2.131
130
M18
A15
U2.93
92
W15
COL0
U2.132
131
K20
D15
U2.94
93
V15
BUZ
U2.133
132
K19
A14
U2.95
94
Y16
D31
U2.134
133
K18
D14
U2.96
95
W16
D30
U2.135
134
J20
A13
U2.97
96
V16
D29
U2.136
135
J19
D13
U2.98
97
Y17
D28
U2.137
136
H20
A12
U2.99
98
Y3
GNDR
U2.138
137
H19
D12
U2.100
99
W17
A27
U2.139
138
J18
A11
U2.101
100
Y18
D27
U2.140
139
K3
VDDR
U2.102
101
V17
A26
U2.141
140
Y3
GNDR
U2.103
102
W18
D26
U2.142
141
G20
D11
U2.104
103
Y19
A25
U2.143
142
H18
A10
U2.105
104
W20
D25
U2.144
143
F20
D10
U2.106
105
U18
HALFWORD
U2.145
144
G19
A9
U2.107
106
V20
A24
U2.146
145
E20
D9
U2.108
107
A1
VDDR
U2.147
146
F19
A8
U2.109
108
Y3
GNDR
U2.148
147
G18
D8
U2.110
109
U19
D24
U2.149
148
D20
A7
U2.111
110
U20
A23
U2.150
149
Y3
GNDR
U2.112
111
T19
D23
U2.151
150
F18
D7
U2.113
112
T20
A22
U2.152
151
D19
nBATCHG
U2.114
113
R19
D22
U2.153
152
E19
nEXTPWR
U2.115
114
R20
A21
U2.154
153
C19
BATOK
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
29
EP7309
High-Performance, Low-Power System on Chip
Table T. 204-Ball TFBGA Ball List (Continued)
Die Pad
30
Bond Pad Package Ball
Table T. 204-Ball TFBGA Ball List (Continued)
Signal
Die Pad
Bond Pad Package Ball
Signal
U2.155
154
C20
nPOR
U2.194
193
A7
N/C
U2.156
155
E18
nMEDCHG/nBROM
U2.195
194
B7
N/C
U2.157
156
B20
nURESET
U2.196
195
C7
N/C
U2.158
157
C17
VDDO
U2.197
196
A6
N/C
U2.159
158
B17
MOSCIN
U2.198
197
V18
VDDR
U2.160
159
A17
MOSCOUT
U2.199
198
B18
GNDR
U2.161
160
C16
GNDO
U2.200
199
B6
N/C
U2.162
161
B16
WAKEUP
U2.201
200
C6
N/C
U2.163
162
A16
nPWRFL
U2.202
201
A5
nMWE
U2.164
163
C15
A6
U2.203
202
B5
nMOE
U2.165
164
B15
D6
U2.204
203
B18
GNDR
U2.166
165
A15
A5
U2.205
204
C5
nCS0
U2.167
166
C14
D5
U2.206
205
A4
nCS1
U2.168
167
A1
VDDR
U2.207
206
B4
nCS2
U2.169
168
Y3
GNDR
U2.208
207
A3
nCS3
U2.170
169
B14
A4
U2.209
208
C4
nCS4
U2.171
170
A14
D4
A1
VDDR
U2.172
171
C13
A3
B2
VDDR
U2.173
172
B13
D3
C3
VDDR
U2.174
173
A13
A2
D3
VDDR
U2.175
174
Y3
GNDR
K3
VDDR
U2.176
175
C12
D2
L18
VDDR
U2.177
176
B12
A1
V18
VDDR
U2.178
177
A12
D1
V19
VDDR
U2.179
178
C11
A0
W19
VDDR
U2.180
179
B11
D0
Y20
VDDR
U2.181
180
A11
GNDD
A18
GNDR
U2.182
181
C10
VDDD
A19
GNDR
U2.183
182
Y3
GNDR
A20
GNDR
U2.184
183
Y20
VDDR
B18
GNDR
U2.185
184
B10
CL2
B19
GNDR
U2.186
185
A10
CL1
C18
GNDR
U2.187
186
A9
FRM
D18
GNDR
U2.188
187
B9
M
V2
GNDR
U2.189
188
C9
DD3
V3
GNDR
U2.190
189
A8
DD2
W1
GNDR
U2.191
190
Y3
GNDR
W2
GNDR
U2.192
191
B8
DD1
W3
GNDR
U2.193
192
C8
DD0
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Table T. 204-Ball TFBGA Ball List (Continued)
Die Pad
Bond Pad Package Ball
Signal
Y1
GNDR
Y2
GNDR
Y3
GNDR
256-Ball PBGA Package Characteristics
256-Ball PBGA Package Specifications
Figure 13. 256-Ball PBGA Package
Note:
DS507PP1
1) For pin locations see Table U.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7309 design, contact Cirrus Logic for the latest package information.
Copyright 2001 Cirrus Logic (All Rights Reserved)
31
EP7309
High-Performance, Low-Power System on Chip
0.85 (0.034)
±0.05 (.002)
17.00 (0.669)
±0.20 (.008)
Pin 1 Corner
D1
0.40 (0.016)
±0.05 (.002)
15.00 (0.590)
±0.20 (.008)
30° TYP
Pin 1 Indicator
17.00 (0.669)
±0.20 (.008)
E1
15.00 (0.590)
±0.20 (.008)
2 Layer
0.36 (0.014)
±0.09 (0.004)
TOP VIEW
SIDE VIEW
D
17.00 (0.669)
Pin 1 Corner
1.00 (0.040)
1.00 (0.040)
REF
E
16 15 14 13 12 11 10 9 8 7
6 5
1.00 (0.040)
REF
32
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1.00 (0.040)
0.50
R
3 Places
4 3 2
17.00 (0.669)
BOTTOM VIEW
JEDEC #: MO-151
Ball Diameter: 0.50 mm ± 0.10 mm
17 ¥ 17 ¥ 1.61 mm body
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
256-Ball PBGA Pinout (Top View))
1
2
3
4
5
6
7
8
9
10
11
12
13
A
VDDIO
nCS[4]
nCS[1]
N/C
N/C
DD[1]
M
VDDIO
D[0]
D[2]
A[3]
VDDIO
A[6]
B
nCS[5]
VDDIO
nCS[3]
nMOE
VDDIO
N/C
DD[2]
CL[1]
VDDCORE
D[1]
A[2]
A[4]
A[5]
WAKEUP
VDDIO
nURESET B
C
VDDIO
EXPCLK
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
nPOR
nEXTPWR C
D
WRITE
EXPRDY
VSSIO
VDDIO
nCS[2]
nMWE
N/C
CL[2]
VSSRTC
D[4]
nPWRFL
MOSCIN
VDDIO
VSSIO
D[7]
D[8]
D
E
RXD[2]
PB[7]
TDI
WORD
VSSIO
nCS[0]
N/C
FRM
A[0]
D[5]
VSSOSC
VSSIO
nMEDCHG/
nBROM
VDDIO
D[9]
D[10]
E
F
PB[5]
PB[3]
VSSIO
TXD[2]
RUN/
CLKEN
VSSIO
N/C
DD[3]
A[1]
D[6]
VSSRTC
BATOK
nBATCHG
VSSIO
D[11]
VDDIO
F
G
PB[1]
VDDIO
TDO
PB[4]
PB[6]
VSSRTC
VSSRTC
DD[0]
D[3]
VSSRTC
A[7]
A[8]
A[9]
VSSIO
D[12]
D[13]
G
H
PA[7]
PA[5]
VSSIO
PA[4]
PA[6]
PB[0]
PB[2]
VSSRTC
VSSRTC
A[10]
A[11]
A[12]
A[13]
VSSIO
D[14]
D[15]
H
J
PA[3]
PA[1]
VSSIO
PA[2]
PA[0]
TXD[1]
CTS
VSSRTC
VSSRTC
A[17]
A[16]
A[15]
A[14]
nTRST
D[16]
D[17]
J
PHDIN
VSSIO
DCD
nTEST[1]
EINT[3]
VSSRTC
ADCIN
COL[4]
TCLK
D[20]
D[19]
D[18]
VSSIO
VDDIO
VDDIO
K
DSR
VDDIO
nEINT[1]
PE[2]/
CLKSEL
VSSRTC
COL[6]
D[31]
VSSRTC
A[22]
A[21]
VSSIO
A[18]
A[19]
L
nEINT[2]
VDDIO
PE[0]/
BOOTSEL[0]
TMS
VDDIO
SSITXFR
DRIVE[1]
FB[0]
COL[0]
D[27]
VSSIO
A[23]
VDDIO
A[20]
D[21]
M
VDDIO
PD[5]
PD[2]
SSIRXDA
ADCCLK
SMPCLK
COL[2]
D[29]
D[26]
HALFWORD
VSSIO
D[22]
D[23]
N
K LEDDRV
L
RXD[1]
M nTEST[0]
N nEXTFIQ
PE[1]/
VSSIO
BOOTSEL[1]
P VSSRTC
R
PD[0]/
VSSRTC
LEDFLSH
14
15
16
MOSCOUT VDDOSC
VSSIO
A
RTCOUT
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
D[24]
VDDIO
P
VDDIO
PD[4]
PD[1]
SSITXDA
nADCCS
VDDIO
ADCOUT
COL[7]
COL[3]
COL[1]
D[30]
A[27]
A[25]
VDDIO
A[24]
R
PD[7]
PD[6]
PD[3]
SSICLK
FB[1]
COL[5]
VDDIO
BUZ
D[28]
A[26]
D[25]
VSSIO
T
RTCIN
T VDDRTC
SSIRXFR VDDCORE DRIVE[0]
256-Ball PBGA Ball Listing
The list is ordered by ball location.
Table U. 256-Ball PBGA Ball Listing (Continued)
Table U. 256-Ball PBGA Ball Listing
Ball Location
Name
Type
A1
VDDIO
Pad power
Ball Location
Name
Type
Description
A12
VDDIO
Pad power
A13
A[6]
O
System byte address
A14
MOSCOUT
O
Main oscillator out
A15
VDDOSC
Oscillator
power
A16
VSSIO
Description
Digital I/O power, 3.3V
Digital I/O power, 3.3V
A2
nCS[4]
O
Chip select out
A3
nCS[1]
O
Chip select out
Oscillator power in, 2.5V
A4
N/C
O
A5
N/C
O
A6
DD[1]
O
LCD serial display data
B1
nCS[5]
O
A7
M
O
LCD AC bias drive
B2
VDDIO
Pad power
A8
VDDIO
Pad power
Digital I/O power, 3.3V
B3
nCS[3]
O
Chip select out
A9
D[0]
I/O
Data I/O
B4
nMOE
O
ROM, expansion OP enable
A10
D[2]
I/O
Data I/O
B5
VDDIO
Pad power
A11
A[3]
O
System byte address
B6
N/C
O
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
Pad ground I/O ground
Chip select out
I/O ground
Digital I/O power, 3.3V
33
EP7309
High-Performance, Low-Power System on Chip
Table U. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
B7
DD[2]
O
LCD serial display data
E7
N/C
O
B8
CL[1]
O
LCD line clock
E8
FRM
O
LCD frame synchronization pulse
B9
VDDCORE
B10
D[1]
I/O
Data I/O
Core power Digital core power, 2.5V
B11
A[2]
O
System byte address
B12
A[4]
O
System byte address
B13
A[5]
O
System byte address
B14
WAKEUP
I
B15
VDDIO
Pad power
B16
nURESET
I
C1
VDDIO
C2
C3
Ball Location
Name
Type
Description
E9
A[0]
O
System byte address
E10
D[5]
I/O
Data I/O
E11
VSSOSC
Oscillator
ground
E12
VSSIO
System wake up input
E13
nMEDCHG/nBROM
I
Digital I/O power, 3.3V
E14
VDDIO
Pad power
User reset input
E15
D[9]
I/O
Data I/O
Pad power
Digital I/O power, 3.3V
E16
D[10]
I/O
Data I/O
EXPCLK
I
Expansion clock input
F1
PB[5]
I
GPIO port B
VSSIO
Pad ground
I/O ground
F2
PB[3]
I
GPIO port B
C4
VDDIO
Pad power
Digital I/O power, 3.3V
F3
VSSIO
C5
VSSIO
Pad ground
I/O ground
F4
TXD[2]
O
UART 2 transmit data output
C6
VSSIO
Pad ground
I/O ground
F5
RUN/CLKEN
O
Run output / clock enable output
C7
VSSIO
Pad ground
I/O ground
F6
VSSIO
C8
VDDIO
Pad power
Digital I/O power, 3.3V
F7
N/C
C9
VSSIO
Pad ground
I/O ground
F8
DD[3]
O
LCD serial display data
C10
VSSIO
Pad ground
I/O ground
F9
A[1]
O
System byte address
C11
VSSIO
Pad ground
I/O ground
F10
D[6]
I/O
Data I/O
C12
VDDIO
Pad power
Digital I/O power, 3.3V
F11
VSSRTC
C13
VSSIO
Pad ground
I/O ground
F12
BATOK
I
Battery ok input
C14
VSSIO
Pad ground
I/O ground
F13
nBATCHG
I
Battery changed sense input
VSSIO
PLL ground
Pad ground I/O ground
Media change interrupt input / internal
rom boot enable
Digital I/O power, 3.3V
Pad ground I/O ground
Pad ground I/O ground
O
RTC ground Real time clock ground
C15
nPOR
I
Power-on reset input
F14
C16
nEXTPWR
I
External power supply sense input
F15
D[11]
I/O
D1
WRITE
O
Transfer direction
F16
VDDIO
Pad power
D2
EXPRDY
I
Expansion port ready input
G1
PB[1]/PRDY[2]
I
D3
VSSIO
Pad ground
I/O ground
D4
VDDIO
Pad power
Digital I/O power, 3.3V
G2
VDDIO
Pad power
G3
TDO
O
G4
PB[4]
I
GPIO port B
G5
PB[6]
I
GPIO port B
G6
VSSRTC
Core ground Real time clock ground
G7
VSSRTC
RTC ground Real time clock ground
G8
DD[0]
O
LCD serial display data
G9
D[3]
I/O
Data I/O
G10
VSSRTC
G11
A[7]
O
System byte address
G12
A[8]
O
System byte address
G13
A[9]
O
System byte address
G14
VSSIO
G15
D[12]
I/O
Data I/O
G16
D[13]
I/O
Data I/O
H1
PA[7]
I
GPIO port A
H2
PA[5]
I
GPIO port A
H3
VSSIO
H4
PA[4]
I
GPIO port A
H5
PA[6]
I
GPIO port A
D5
nCS[2]
O
Chip select out
D6
nMWE
O
ROM, expansion write enable
D7
N/C
D8
CL[2]
D9
VSSRTC
D10
D[4]
D11
nPWRFL
O
O
LCD pixel clock out
Core ground Real time clock ground
I/O
I
Data I/O
Power fail sense input
D12
MOSCIN
I
D13
VDDIO
Pad power
Digital I/O power, 3.3V
D14
VSSIO
Pad ground
I/O ground
D15
D[7]
I/O
Main oscillator input
Data I/O
D16
D[8]
I/O
E1
RXD[2]
I
UART 2 receive data input
E2
PB[7]
I
GPIO port B
E3
E4
34
Description
Table U. 256-Ball PBGA Ball Listing (Continued)
TDI
WORD
I
O
E5
VSSIO
Pad ground
E6
nCS[0]
O
Data I/O
JTAG data input
Word access select output
I/O ground
Chip select out
Pad ground I/O ground
Data I/O
Digital I/O power, 3.3V
GPIO port B / CL-PS6700 interface
signal
Digital I/O power, 3.3V
JTAG data out
RTC ground Real time clock ground
Copyright 2001 Cirrus Logic (All Rights Reserved)
Pad ground I/O ground
Pad ground I/O ground
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Table U. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
H6
PB[0]/PRDY[1]
I
H7
PB[2]
H8
VSSRTC
H9
VSSRTC
I
Description
GPIO port B / CL-PS6700 interface
signal
O
System byte address
A[11]
O
System byte address
H12
A[12]
O
System byte address
O
VSSIO
Pad ground
H15
D[14]
I/O
Data I/O
H16
D[15]
I/O
Data I/O
PA[3]
I
GPIO port A
J2
PA[1]
I
GPIO port A
J3
VSSIO
Pad ground
J4
PA[2]
I
PA[0]
I
GPIO port A
TXD[1]
O
UART 1 transmit data out
J9
VSSRTC
A[17]
I
O
O
System byte address
O
System byte address
O
I
D[16]
I/O
Data I/O
D[17]
I/O
Data I/O
K1
LEDDRV
O
IR LED drivet
K2
PHDIN
I
Photodiode input
K3
VSSIO
Pad ground
K4
DCD
I
nTEST[1]
I
Test mode select input
EINT[3]
I
External interrupt
I
COL[4]
O
Keyboard scanner column drive
TCLK
I
JTAG clock
K11
D[20]
I/O
Data I/O
K12
D[19]
I/O
Data I/O
I/O
VSSIO
Pad ground
I/O ground
K15
VDDIO
Pad power
Digital I/O power, 3.3V
K16
VDDIO
Pad power
Digital I/O power, 3.3V
L1
RXD[1]
I
UART 1 receive data input
L2
DSR
I
UART 1 data set ready input
L3
VDDIO
Pad power
Digital I/O power, 3.3V
L4
nEINT[1]
I
External interrupt input
DS507PP1
PE[2]/CLKSEL
L12
A[22]
O
System byte address
L13
A[21]
O
System byte address
L14
VSSIO
L15
A[18]
O
L16
A[19]
O
System byte address
M1
nTEST[0]
I
Test mode select input
M2
nEINT[2]
I
External interrupt input
M3
VDDIO
Pad power
Digital I/O power, 3.3V
M4
PE[0]/BOOTSEL[0]
I
GPIO port E / Boot mode select
M5
TMS
I
JTAG mode select
M6
VDDIO
Pad power
M7
SSITXFR
I/O
M8
DRIVE[1]
I/O
M9
FB[0]
I
M10
COL[0]
O
Keyboard scanner column drive
M11
D[27]
I/O
Data I/O
M12
VSSIO
M13
A[23]
O
M14
VDDIO
Pad power
M15
A[20]
O
M16
D[21]
I/O
N1
nEXTFIQ
I
External fast interrupt input
N2
PE[1]/BOOTSEL[1]
I
GPIO port E / boot mode select
N3
VSSIO
Pad ground I/O ground
N4
VDDIO
Pad power
N5
PD[5]
I/O
GPIO port D
N6
PD[2]
I/O
GPIO port D
N7
SSIRXDA
I/O
DAI/CODEC/SSI2 serial data input
RTC ground Real time clock ground
Pad ground I/O ground
System byte address
Digital I/O power, 3.3V
DAI/CODEC/SSI2 frame sync
PWM drive output
PWM feedback input
Pad ground I/O ground
System byte address
Digital I/O power, 3.3V
System byte address
Data I/O
Digital I/O power, 3.3V
I
N8
ADCCLK
O
SSI1 ADC serial clock
N9
SMPCLK
O
SSI1 ADC sample clock
N10
COL[2]
O
Keyboard scanner column drive
N11
D[29]
I/O
Data I/O
N12
D[26]
I/O
Data I/O
N13
HALFWORD
O
Halfword access select output
N14
VSSIO
N15
D[22]
Data I/O
K14
L5
VSSRTC
SSI1 ADC serial input
K9
D[18]
L11
RTC ground Real time clock ground
K10
K13
Data I/O
UART 1 data carrier detect
K6
ADCIN
I/O
I/O ground
K5
K8
Keyboard scanner column drive
D[31]
JTAG async reset input
J16
VSSRTC
O
L10
Core ground Real time clock ground
System byte address
J15
K7
COL[6]
System byte address
A[15]
nTRST
VSSRTC
L9
GPIO port D / LED blinker output
RTC ground Real time clock ground
A[16]
J14
L8
I/O
UART 1 clear to send input
J12
A[14]
RTC ground Real time clock ground
RTC ground Real time clock ground
J11
J13
PD[0]/LEDFLSH
GPIO port A
J6
J10
VSSRTC
L7
I/O ground
J5
CTS
L6
I/O ground
J1
VSSRTC
Description
System byte address
H14
J8
Type
RTC ground Real time clock ground
A[10]
J7
Name
RTC ground Real time clock ground
H11
A[13]
Ball Location
GPIO port B
H10
H13
Table U. 256-Ball PBGA Ball Listing (Continued)
Pad ground I/O ground
I/O
Data I/O
I/O
Data I/O
N16
D[23]
P1
VSSRTC
P2
RTCOUT
P3
VSSIO
Pad ground I/O ground
P4
VSSIO
Pad ground I/O ground
P5
VDDIO
Pad power
RTC ground Real time clock ground
O
Real time clock oscillator output
Digital I/O power, 3.3V
GPIO port E / clock input mode select
Copyright 2001 Cirrus Logic (All Rights Reserved)
35
EP7309
High-Performance, Low-Power System on Chip
Table U. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
P6
VSSIO
Pad ground
I/O ground
P7
VSSIO
Pad ground
I/O ground
P8
VDDIO
Pad power
Digital I/O power, 3.3V
P9
VSSIO
Pad ground
I/O ground
P10
VDDIO
Pad power
Digital I/O power, 3.3V
P11
VSSIO
Pad ground
I/O ground
P12
VSSIO
Pad ground
I/O ground
P13
VDDIO
Pad power
Digital I/O power
P14
VSSIO
Pad ground
I/O ground
P15
D[24]
I/O
P16
VDDIO
Pad power
R1
RTCIN
I/O
R2
VDDIO
Pad power
R3
PD[4]
I/O
R4
PD[1]
I/O
GPIO port D
R5
SSITXDA
O
DAI/CODEC/SSI2 serial data output
R6
nADCCS
O
SSI1 ADC chip select
R7
VDDIO
Pad power
Digital I/O power, 3.3V
R8
ADCOUT
O
SSI1 ADC serial data output
R9
COL[7]
O
Keyboard scanner column drive
R10
COL[3]
O
Keyboard scanner column drive
R11
COL[1]
O
Keyboard scanner column drive
R12
D[30]
I/O
Data I/O
R13
A[27]
O
System byte address
System byte address
36
R14
A[25]
O
R15
VDDIO
Pad power
Description
Data I/O
Digital I/O power, 3.3V
Real time clock oscillator input
Digital I/O power, 3.3V
GPIO port D
Digital I/O power, 3.3V
R16
A[24]
O
T1
VDDRTC
RTC power
System byte address
T2
PD[7]
I/O
GPIO port D
T3
PD[6]
I/O
GPIO port D
T4
PD[3]
I/O
GPIO port D
T5
SSICLK
I/O
DAI/CODEC/SSI2 serial clock
–
DAI/CODEC/SSI2 frame sync
Real time clock power, 2.5V
T6
SSIRXFR
T7
VDDCORE
T8
DRIVE[0]
I/O
T9
FB[1]
I
PWM feedback input
T10
COL[5]
O
Keyboard scanner column drive
T11
VDDIO
Pad power
Core power Core power, 2.5V
PWM drive output
Digital I/O power, 3.3V
T12
BUZ
O
T13
D[28]
I/O
Buzzer drive output
Data I/O
T14
A[26]
O
System byte address
T15
D[25]
I/O
Data I/O
T16
VSSIO
Pad ground
I/O ground
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
JTAG Boundary Scan Signal Ordering
Table V. JTAG Boundary Scan Signal Ordering
DS507PP1
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
1
B3
B1
nCS[5]
O
1
4
A2
C2
EXPCLK
I/O
3
5
B1
E4
WORD
O
6
6
E3
D1
WRITE
O
8
7
C1
F5
RUN/CLKEN
O
10
8
C2
D2
EXPRDY
I
13
9
E2
F4
TXD2
O
14
10
D2
E1
RXD2
I
16
13
F3
E2
PB[7]
I/O
17
14
D1
G5
PB[6]
I/O
20
15
F2
F1
PB[5]
I/O
23
16
G3
G4
PB[4]
I/O
26
17
E1
F2
PB[3]
I/O
29
18
F1
H7
PB[2]
I/O
32
19
G2
G1
PB[1]/PRDY2
I/O
35
20
G1
H6
PB[0]/PRDY1
I/O
38
23
H3
H1
PA[7]
I/O
41
24
H1
H5
PA[6]
I/O
44
25
J3
H2
PA[5]
I/O
47
26
J2
H4
PA[4]
I/O
50
27
J1
J1
PA[3]
I/O
53
28
L3
J4
PA[2]
I/O
56
29
K2
J2
PA[1]
I/O
59
30
K1
J5
PA[0]
I/O
62
31
M3
K1
LEDDRV
O
65
32
L2
J6
TXD1
O
67
34
L1
K2
PHDIN
I
69
35
N3
J7
CTS
I
70
36
M2
L1
RXD1
I
71
37
M1
K4
DCD
I
72
38
P3
L2
DSR
I
73
39
N1
K5
nTEST1
I
74
40
N2
M1
nTEST0
I
75
41
R3
K6
EINT3
I
76
42
P1
M2
nEINT2
I
77
43
P2
L4
nEINT1
I
78
Copyright 2001 Cirrus Logic (All Rights Reserved)
37
EP7309
High-Performance, Low-Power System on Chip
Table V. JTAG Boundary Scan Signal Ordering (Continued)
38
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
44
T3
N1
nEXTFIQ
I
79
45
R1
L5
PE[2]/CLKSEL
I/O
80
46
R2
N2
PE[1]/BOOTSEL1
I/O
83
47
T1
M4
PE[0]/BOOTSEL0
I/O
86
53
T2
T2
PD[7]
I/O
89
54
V4
T3
PD[6]
I/O
92
55
W4
N5
PD[5]
I/O
95
56
Y4
R3
PD[4]
I/O
98
59
V5
T4
PD[3]
I/O
101
60
W5
N6
PD[2]
I/O
104
61
Y5
R4
PD[1]
I/O
107
62
V6
L7
PD[0]/LEDFLSH
O
110
68
W6
T6
SSIRXFR
I/O
122
69
Y6
K8
ADCIN
I
125
70
W8
R6
nADCCS
O
126
75
Y8
M8
DRIVE1
I/O
128
76
V9
T8
DRIVE0
I/O
131
77
W10
N8
ADCCLK
O
134
78
Y10
R8
ADCOUT
O
136
79
V11
N9
SMPCLK
O
138
80
W11
T9
FB1
I
140
82
Y11
M9
FB0
I
141
83
Y12
R9
COL7
O
142
84
W12
L9
COL6
O
144
85
V12
T10
COL5
O
146
86
Y13
K9
COL4
O
148
87
W13
R10
COL3
O
150
88
V13
N10
COL2
O
152
91
Y14
R11
COL1
O
154
92
W14
M10
COL0
O
156
93
A1
T12
BUZ
O
158
94
V14
L10
D[31]
I/O
160
95
Y15
R12
D[30]
I/O
163
96
W15
N11
D[29]
I/O
166
97
V15
T13
D[28]
I/O
169
99
Y16
R13
A[27]
Out
172
100
W16
M11
D[27]
I/O
174
101
V16
T14
A[26]
O
177
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Table V. JTAG Boundary Scan Signal Ordering (Continued)
DS507PP1
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
102
Y17
N12
D[26]
I/O
179
103
W17
R14
A[25]
O
182
104
Y18
T15
D[25]
I/O
184
105
V17
N13
HALFWORD
O
187
106
W18
R16
A[24]
O
189
109
Y19
P15
D[24]
I/O
191
110
W20
M13
A[23]
O
194
111
U18
N16
D[23]
I/O
196
112
V20
L12
A[22]
O
199
113
U19
N15
D[22]
I/O
201
114
U20
L13
A[21]
O
204
115
T19
M16
D[21]
I/O
206
117
T20
M15
A[20]
O
209
118
R19
K11
D[20]
I/O
211
119
R20
L16
A[19]
O
214
120
T18
K12
D[19]
I/O
216
121
P19
L15
A[18]
O
219
122
P20
K13
D[18]
I/O
221
126
R18
J10
A[17]
O
224
127
N19
J16
D[17]
I/O
226
128
N20
J11
A[16]
O
229
129
P18
J15
D[16]
I/O
231
130
M19
J12
A[15]
O
234
131
N18
H16
D[15]
I/O
236
132
L20
J13
A[14]
O
239
133
L19
H15
D[14]
I/O
241
134
M18
H13
A[13]
O
244
135
K20
G16
D[13]
I/O
246
136
K19
H12
A[12]
O
249
137
K18
G15
D[12]
I/O
251
138
J20
H11
A[11]
O
254
141
J19
F15
D[11]
I/O
256
142
H20
H10
A[10]
O
259
143
H19
E16
D[10]
I/O
261
144
J18
G13
A[9]
O
264
145
K3
E15
D[9]
I/O
266
146
Y3
G12
A[8]
O
269
147
G20
D16
D[8]
I/O
271
Copyright 2001 Cirrus Logic (All Rights Reserved)
39
EP7309
High-Performance, Low-Power System on Chip
Table V. JTAG Boundary Scan Signal Ordering (Continued)
40
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
148
H18
G11
A[7]
O
274
150
F20
D15
D[7]
I/O
276
151
G19
F13
nBATCHG
I
279
152
E20
C16
nEXTPWR
I
280
153
F19
F12
BATOK
I
281
154
G18
C15
nPOR
I
282
155
D20
E13
nMEDCHG/nBROM
I
283
156
F18
B16
nURESET
I
284
161
D19
B14
WAKEUP
I
285
162
E19
D11
nPWRFL
I
286
163
C19
A13
A[6]
O
287
164
C20
F10
D[6]
I/O
289
165
E18
B13
A[5]
O
292
166
B20
E10
D[5]
I/O
294
169
B16
B12
A[4]
O
297
170
A16
D10
D[4]
I/O
299
171
C15
A11
A[3]
O
302
172
B15
G9
D[3]
I/O
304
173
A15
B11
A[2]
O
307
175
C14
A10
D[2]
I/O
309
176
B14
F9
A[1]
O
312
177
A14
B10
D[1]
I/O
314
178
C13
E9
A[0]
O
317
179
B13
A9
D[0]
I/O
319
184
A13
D8
CL2
O
322
185
C12
B8
CL1
O
324
186
B12
E8
FRM
O
326
187
A12
A7
M
O
328
188
C11
F8
DD[3]
I/O
330
189
B11
B7
DD[2]
I/O
333
191
B10
A6
DD[1]
I/O
336
192
A10
G8
DD[0]
I/O
339
193
A9
B6
N/C
O
342
194
B9
D7
N/C
O
344
195
C9
A5
N/C
I/O
346
196
A8
E7
N/C
I/O
349
199
B8
F7
N/C
I/O
352
200
C8
A4
N/C
I/O
355
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
Table V. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
201
A7
D6
nMWE
O
358
202
B7
B4
nMOE
O
360
204
C7
E6
nCS[0]
O
362
205
A6
A3
nCS[1]
O
364
206
B6
D5
nCS[2]
O
366
207
C6
B3
nCS[3]
O
368
208
A5
A2
nCS[4]
O
370
1) See EP7309 Users’ Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input,
output, then enable as applicable.
DS507PP1
Copyright 2001 Cirrus Logic (All Rights Reserved)
41
EP7309
High-Performance, Low-Power System on Chip
CONVENTIONS
Table W. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
This section presents acronyms, abbreviations, units of
measurement, and conventions used in this data sheet.
Acronyms and Abbreviations
Table W lists abbreviations and acronyms used in this
data sheet.
Table W. Acronyms and Abbreviations
Acronym/
Abbreviation
Definition
TAP
test access port
TLB
translation lookaside buffer
UART
universal asynchronous receiver
Units of Measurement
Table X. Unit of Measurement
Definition
Symbol
Unit of Measure
A/D
analog-to-digital
ADC
analog-to-digital converter
°C
degree Celsius
CODEC
coder / decoder
fs
sample frequency
D/A
digital-to-analog
Hz
hertz (cycle per second)
DMA
direct-memory access
kbps
kilobits per second
EPB
embedded peripheral bus
KB
kilobyte (1,024 bytes)
FCS
frame check sequence
kHz
kilohertz
FIFO
first in / first out
kΩ
kilohm
FIQ
fast interrupt request
Mbps
megabits (1,048,576 bits) per second
GPIO
general purpose I/O
MB
megabyte (1,048,576 bytes)
ICT
in circuit test
MBps
megabytes per second
IR
infrared
MHz
megahertz (1,000 kilohertz)
IRQ
standard interrupt request
µA
microampere
IrDA
Infrared Data Association
µF
microfarad
JTAG
Joint Test Action Group
µW
microwatt
LCD
liquid crystal display
µs
microsecond (1,000 nanoseconds)
LED
light-emitting diode
mA
milliampere
LQFP
low profile quad flat pack
mW
milliwatt
LSB
least significant bit
ms
millisecond (1,000 microseconds)
MIPS
millions of instructions per second
ns
nanosecond
MMU
memory management unit
V
volt
MSB
most significant bit
W
watt
PBGA
plastic ball grid array
PCB
printed circuit board
PDA
personal digital assistant
PLL
phase locked loop
p/u
pull-up resistor
RISC
reduced instruction set computer
RTC
Real-Time Clock
SIR
slow (9600–115.2 kbps) infrared
SRAM
static random access memory
SSI
synchronous serial interface
42
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
EP7309
High-Performance, Low-Power System on Chip
General Conventions
Pin Description Conventions
Hexadecimal numbers are presented with all letters in
uppercase and a lowercase “h” appended or with a 0x at
the beginning. For example, 0x14 and 03CAh are
hexadecimal numbers. Binary numbers are enclosed in
single quotation marks when in text (for example, ‘11’
designates a binary number). Numbers not indicated by
an “h”, 0x or quotation marks are decimal.
Abbreviations used for signal directions are listed in
Table Y.
Registers are referred to by acronym, with bits listed in
brackets separated by a colon (:) (for example,
CODR[7:0]), and are described in the EP7309 User’s
Manual. The use of “TBD” indicates values that are “to
be determined,” “n/a” designates “not available,” and
“n/c” indicates a pin that is a “no connect.”
DS507PP1
Table Y. Pin Description Conventions
Abbreviation
Direction
I
Input
O
Output
I/O
Input or Output
Copyright 2001 Cirrus Logic (All Rights Reserved)
43
EP7309
High-Performance, Low-Power System on Chip
ORDERING INFORMATION
The order number for the device is:
EP7309 — CV — C
Revision †
Package Type:
V = Low Profile Quad Flat Pack
B = Plastic Ball Grid Array (17 mm x 17 mm)
R = Reduced Ball Grid Array (13 mm x 13 mm)
Part Number
Product Line:
Embedded Processor
Note:
44
Temperature Range:
C = Commercial
E = Extended Operating Version
I = Industrial Operating Version
Contact Cirrus Logic for up-to-date information on revisions. Go to the Cirrus Logic Internet site at
http://cirrus.com/corporate/contacts to find contact information for your local sales representative.
Copyright 2001 Cirrus Logic (All Rights Reserved)
DS507PP1
• Notes •
Similar pages