Fairchild HUFA75545P3 75a, 80v, 0.010 ohm, n-channel, ultrafet power mosfet Datasheet

HUFA75545P3, HUFA75545S3S
Data Sheet
December 2001
75A, 80V, 0.010 Ohm, N-Channel,
UltraFET® Power MOSFET
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
Features
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
GATE
SOURCE
DRAIN
(FLANGE)
HUFA75545P3
HUFA75545S3S
• Ultra Low On-Resistance
- rDS(ON) = 0.010Ω, VGS = 10V
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.fairchild.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Symbol
D
Ordering Information
PART NUMBER
G
S
Absolute Maximum Ratings
PACKAGE
BRAND
HUFA75545P3
TO-220AB
75545P
HUFA75545S3S
TO-263AB
75545S
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-263AB variant in tape and reel, e.g., HUFA75545S3ST.
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
NOTES:
HUFA75545P3, HUFA75545S3S
80
80
±20
UNITS
V
V
V
75
73
Figure 4
Figure 6
270
1.8
-55 to 175
A
A
W
W/oC
oC
300
260
oC
oC
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy
of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.mtp.fairchild.com/automotive.html.
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2001 Fairchild Semiconductor Corporation
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
80
-
-
V
VDS = 75V, VGS = 0V
-
-
1
µA
VDS = 70V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 75A, VGS = 10V (Figure 9)
-
0.0082
0.010
Ω
TO-220 and TO-263
-
-
0.55
oC/W
-
-
62
oC/W
-
-
210
ns
-
14
-
ns
tr
-
125
-
ns
td(OFF)
-
40
-
ns
tf
-
90
-
ns
tOFF
-
-
195
ns
-
195
235
nC
-
105
125
nC
-
6.8
8.2
nC
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
tON
td(ON)
VDD = 40V, ID = 75A
VGS = 10V,
RGS = 2.5Ω
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
VDD = 40V,
ID = 75A,
Ig(REF) = 1.0mA
(Figure 13)
Gate to Source Gate Charge
Qgs
-
15
-
nC
Gate to Drain “Miller” Charge
Qgd
-
43
-
nC
-
3750
-
pF
-
1100
-
pF
-
350
-
pF
MIN
TYP
MAX
UNITS
ISD = 75A
-
-
1.25
V
ISD = 35A
-
-
1.00
V
trr
ISD = 75A, dISD/dt = 100A/µs
-
-
100
ns
QRR
ISD = 75A, dISD/dt = 100A/µs
-
-
300
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
©2001 Fairchild Semiconductor Corporation
SYMBOL
VSD
TEST CONDITIONS
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
Typical Performance Curves
80
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
60
VGS = 10V
40
20
0.2
0
0
25
50
75
100
150
125
0
175
25
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
2000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
1000
I = I25
175 - TC
150
VGS = 10V
100
50
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
©2001 Fairchild Semiconductor Corporation
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
Typical Performance Curves
(Continued)
600
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
600
100
100µs
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
1ms
10ms
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
1
1
10
100
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
100
STARTING TJ = 150oC
10
0.001
200
0.01
0.1
10
1
tAV, TIME IN AVALANCHE (ms)
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
150
120
90
60
TJ = 175oC
30
TJ = 25oC
120
VGS =5V
90
60
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
TJ = -55oC
0
0
2
3
4
5
6
0
1
2
3
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
4
FIGURE 8. SATURATION CHARACTERISTICS
1.2
2.5
PULSE DURATION = 80µs VGS = 10V, ID = 75A
DUTY CYCLE = 0.5% MAX
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
VGS = 7V
VGS = 6V
VGS = 20V
VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
150
2.0
1.5
1.0
1.0
0.8
0.6
0.4
0.5
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
©2001 Fairchild Semiconductor Corporation
200
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
Typical Performance Curves
(Continued)
10000
ID = 250µA
CISS = CGS + CGD
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.1
1.0
0.9
0.8
COSS ≅ CDS + CGD
1000
CRSS = CGD
VGS = 0V, f = 1MHz
100
-80
-40
0
40
80
120
160
200
0.1
TJ , JUNCTION TEMPERATURE (oC)
1
10
80
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VGS , GATE TO SOURCE VOLTAGE (V)
10
VDD = 40V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 75A
ID = 35A
2
0
0
30
60
90
120
Qg, GATE CHARGE (nC)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
©2001 Fairchild Semiconductor Corporation
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
IAS
+
RG
VDS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
VGS = 10V
VGS
DUT
VGS = 2V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tr
RL
VDS
tf
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
©2001 Fairchild Semiconductor Corporation
10%
50%
50%
PULSE WIDTH
FIGURE 19. SWITCHING TIME WAVEFORM
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
PSPICE Electrical Model
.SUBCKT HUFA75545 2 1 3 ;
rev 21 May 1999
CA 12 8 5.4e-9
CB 15 14 5.3e-9
CIN 6 8 3.4e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
+
17
EBREAK 18
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 4.80e-3
RGATE 9 20 0.87
RLDRAIN 2 5 10
RLGATE 1 9 51
RLSOURCE 3 7 44
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1.6e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
ESG
LDRAIN 2 5 1.0e-9
LGATE 1 9 5.1e-9
LSOURCE 3 7 4.4e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 87.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S1A
12
S2A
13
8
14
13
S1B
CA
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RBREAK
15
VBAT
5
8
EDS
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*320),3))}
.MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.1e-3 TRS1 = 1.5e-3 TRS2 = 5.1e-6 CJO = 4.6e-9 TT = 3.3e-8 M = 0.55)
.MODEL DBREAKMOD D (RS = 2.3e-1 TRS1 = 0 TRS2 = -1.8e-5)
.MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10 VJ = 1 M = 0.8)
.MODEL MMEDMOD NMOS (VTO = 3.04 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.87)
.MODEL MSTROMOD NMOS (VTO = 3.5 KP = 105 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.7 )
.MODEL RBREAKMOD RES (TC1 = 1.3e-3 TC2 = -1e-6)
.MODEL RDRAINMOD RES (TC1 = 9e-3 TC2 = 2.8e-5)
.MODEL RSLCMOD RES (TC1 = 1.53e-3 TC2 = 2e-5)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 5e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5 VOFF= -3)
VON = -3 VOFF= -5)
VON = -1.5 VOFF= 0.5)
VON = 0.5 VOFF= -1.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corporation
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
SABER Electrical Model
REV 21
may 1999
template HUFA75545 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 3.6e-12, cjo = 4.6e-9, tt = 3.3e-8, m = 0.55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 4.8e-9, is = 1e-30, vj=1.0, m = 0.8 )
m..model mmedmod = (type=_n, vto = 3.04, kp = 6, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.5, kp = 105, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.65, kp = 0.12, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3, voff = -5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.5)
LDRAIN
DPLCAP
10
RSLC1
51
RLDRAIN
RDBREAK
RSLC2
c.ca n12 n8 = 5.4e-9
c.cb n15 n14 = 5.3e-9
c.cin n6 n8 = 3.4e-9
72
ISCL
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
i.it n8 n17 = 1
GATE
1
EVTEMP
RGATE + 18 22
9
20
21
DBODY
EBREAK
+
17
18
MSTRO
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -1e-6
res.rdbody n71 n5 = 2.1e-3, tc1 = 1.5e-3, tc2 = 5.1e-6
res.rdbreak n72 n5 = 2.3e-1, tc1 = 0, tc2 = -1.8e-5
res.rdrain n50 n16 = 4.8e-3, tc1 = 9e-3, tc2 = 2.8e-5
res.rgate n9 n20 = 0.87
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 51
res.rlsource n3 n7 = 44
res.rslc1 n5 n51 = 1e-6, tc1 = 1.53e-3, tc2 = 2e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.6e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -2.9e-3, tc2 = 5e-7
res.rvthres n22 n8 = 1, tc1 = -2.3e-3, tc2 = -1.2e-5
MWEAK
MMED
CIN
71
11
16
6
RLGATE
RDBODY
DBREAK
50
-
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.1e-9
l.lsource n3 n7 = 4.4e-9
DRAIN
2
5
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 87.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/320))** 3))
}
}
©2001 Fairchild Semiconductor Corporation
HUFA75545P3, HUFA75545S3S Rev. B
HUFA75545P3, HUFA75545S3S
SPICE Thermal Model
th
JUNCTION
REV 21 May 1999
HUFA75545T
CTHERM1 th 6 6.4e-3
CTHERM2 6 5 3.0e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.6e-2
CTHERM5 3 2 5.5e-2
CTHERM6 2 tl 1.5
RTHERM1
RTHERM1 th 6 3.2e-3
RTHERM2 6 5 8.1e-3
RTHERM3 5 4 2.3e-2
RTHERM4 4 3 1.3e-1
RTHERM5 3 2 1.8e-1
RTHERM6 2 tl 3.8e-2
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUFA75545T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 6.4e-3
ctherm.ctherm2 6 5 = 3.0e-2
ctherm.ctherm3 5 4 = 1.4e-2
ctherm.ctherm4 4 3 = 1.6e-2
ctherm.ctherm5 3 2 = 5.5e-2
ctherm.ctherm6 2 tl = 1.5
rtherm.rtherm1 th 6 = 3.2e-3
rtherm.rtherm2 6 5 = 8.1e-3
rtherm.rtherm3 5 4 = 2.3e-2
rtherm.rtherm4 4 3 = 1.3e-1
rtherm.rtherm5 3 2 = 1.8e-1
rtherm.rtherm6 2 tl = 3.8e-2
}
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2001 Fairchild Semiconductor Corporation
CASE
HUFA75545P3, HUFA75545S3S Rev. B
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DenseTrench™
DOME™
EcoSPARK™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET 
VCX™
STAR*POWER is used under license
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
systems which, (a) are intended for surgical implant into
support device or system whose failure to perform can
the body, or (b) support or sustain life, or (c) whose
be reasonably expected to cause the failure of the life
failure to perform when properly used in accordance
support device or system, or to affect its safety or
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4
Similar pages