IRF IRF6638PBF Directfet power mosfet Datasheet

PD - 97239
IRF6638PbF
IRF6638TRPbF
DirectFET™ Power MOSFET ‚
RoHs Compliant 
Typical values (unless otherwise specified)
l Lead-Free (Qualified up to 260°C Reflow)
VDSS
VGS
RDS(on)
RDS(on)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
30V max ±20V max 2.2mΩ@ 10V 3.0mΩ@ 4.5V
l Low Conduction Losses
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
l High Cdv/dt Immunity
30nC
11nC
3.2nC
27nC 18.4nC 1.8V
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6638PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6638PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6638PbF has been optimized for parameters that are critical in synchronous buck
including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6638PbF offers particularly low Rds(on) and high Cdv/dt
immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (mΩ)
10
ID = 25A
8
6
4
T J = 125°C
2
T J = 25°C
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance Vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
30
±20
25
20
140
200
37
20
V
A
mJ
A
6.0
ID= 20A
5.0
4.0
VDS= 24V
VDS= 15V
VDS= 6.0V
3.0
2.0
1.0
0.0
0
5
10
15
20
25
30
35
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.19mH, RG = 25Ω, IAS = 20A.
1
07/13/06
IRF6638PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
22
–––
Static Drain-to-Source On-Resistance
–––
2.2
2.9
–––
3.0
3.9
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 25A i
VGS = 4.5V, ID = 20A i
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-5.6
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
VDS = VGS, ID = 100µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
105
–––
–––
Total Gate Charge
–––
30
45
Qgs1
Pre-Vth Gate-to-Source Charge
–––
6.7
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
3.2
–––
Qgd
Gate-to-Drain Charge
–––
11
–––
ID = 20A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
9.1
–––
See Fig. 15
Qsw
–––
14.2
–––
Qoss
Output Charge
–––
18.4
–––
nC
Ω
gfs
Qg
S
VDS = 15V, ID = 20A
VDS = 15V
nC
RG
Gate Resistance
–––
1.3
–––
td(on)
Turn-On Delay Time
–––
19
–––
tr
Rise Time
–––
45
–––
td(off)
Turn-Off Delay Time
–––
28
–––
tf
Fall Time
–––
6.2
–––
Ciss
Input Capacitance
–––
3770
–––
Coss
Output Capacitance
–––
810
–––
Crss
Reverse Transfer Capacitance
–––
410
–––
Min.
Typ. Max. Units
VGS = 4.5V
VDS = 16V, VGS = 0V
VDD = 16V, VGS = 4.5Vc
ID = 20A
ns
Clamped Inductive Load
See Fig. 16 & 17
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
–––
–––
3.5
–––
–––
200
(Body Diode)
ISM
Pulsed Source Current
Conditions
MOSFET symbol
A
showing the
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 20A, VGS = 0V i
trr
Reverse Recovery Time
–––
19
29
ns
TJ = 25°C, IF = 20A
Qrr
Reverse Recovery Charge
–––
27
41
nC
di/dt = 300A/µs iSee Fig. 18
(Body Diode)g
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6638PbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
em
km
lm
fm
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
τJ
τ1
R2
R2
R3
R3
R4
R4
τA
τ2
τ1
τ2
τ3
τ4
τ3
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τ4
τA
Ri (°C/W) τi (sec)
1.280114 0.000322
8.725568 0.164798
21.75
2.2576
13.25114
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
‰ Used double sided cooling , mounting pad.
Š Mounted on minimum footprint full size board with metalized
‹ Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
Š Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6638PbF
1000
1000
100
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
≤60µs PULSE WIDTH
Tj = 25°C
1
BOTTOM
100
2.5V
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
2.5V
≤60µs PULSE WIDTH
Tj = 150°C
0.1
1
0.1
1
10
100
0.1
1.6
VDS = 15V
≤60µs PULSE WIDTH
ID = 25A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
100
Fig 5. Typical Output Characteristics
1000
100
10
T J = 150°C
T J = 25°C
T J = -40°C
1
0.1
1.4
1.2
1.0
V GS = 10V
0.8
V GS = 4.5V
0.6
1
2
3
4
5
30
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
TJ = 25°C
25
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
10
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Crss
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
20
15
10
5
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
1
0
20 40 60 80 100 120 140 160 180 200 220
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6638PbF
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
100µsec
1msec
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Fig 10. Typical Source-Drain Diode Forward Voltage
10
100
Fig11. Maximum Safe Operating Area
150
Typical VGS(th) Gate threshold Voltage (V)
2.5
125
ID, Drain Current (A)
1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
100
75
50
25
0
2.0
ID = 250µA
1.5
1.0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
150
ID
5.5A
6.5A
BOTTOM 20A
TOP
125
100
75
50
25
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6638PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6638PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
Re-Applied
Voltage
+
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Board Footprint, MX Outline ƒ
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6638PbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.35
6.25
B
4.80 5.05
C
3.95
3.85
D
0.45
0.35
E
0.72
0.68
F
0.72
0.68
1.42
G
1.38
H
0.84
0.80
J
0.42
0.38
K
0.88 1.01
L
2.41
2.28
M
0.616 0.676
R
0.020 0.080
P
0.17
0.08
IMPERIAL
MIN
MAX
0.246 0.250
0.189 0.201
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.032 0.033
0.015 0.017
0.035 0.039
0.090 0.095
0.0235 0.0274
0.0008 0.0031
0.003 0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6638PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6638TRPBF). For 1000 parts on 7"
reel, order IRF6638TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
METRIC
MIN
MAX
MIN
CODE
MAX
MIN
MIN
MAX
MAX
12.992
N.C
6.9
A
N.C
177.77 N.C
330.0
N.C
0.795
0.75
B
N.C
19.06
20.2
N.C
N.C
N.C
0.504
0.53
C
0.50
13.5
12.8
0.520
12.8
13.2
0.059
0.059
D
1.5
N.C
1.5
N.C
N.C
N.C
3.937
2.31
E
58.72
N.C
100.0
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.488
0.47
11.9
N.C
12.4
0.567
12.01
14.4
H
0.469
0.47
11.9
N.C
11.9
0.606
12.01
15.4
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages