Vishay IRF740ASTRLPBF Power mosfet Datasheet

IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
• Fully
Characterized
Capacitance
and
Avalanche Voltage and Current
• Effective Coss specified (AN 1001)
• Lead (Pb)-free Available
400
RDS(on) (Ω)
VGS = 10 V
0.55
Qg (Max.) (nC)
36
Qgs (nC)
9.9
Qgd (nC)
16
Configuration
Single
Available
RoHS*
COMPLIANT
D
I2PAK (TO-262)
APPLICATIONS
D2PAK (TO-263)
G
• Switch Mode Power Supply (SMPS)
• Uninterruptible Power Supply
• High speed Power Switching
G
D
TYPICAL SMPS TOPOLOGIES
S
• Single Transistor Flyback Xfmr. Reset
• Single Transistor Forward Xfmr. Reset
(Both for US Line Input Only)
S
N-Channel MOSFET
ORDERING INFORMATION
Package
Lead (Pb)-free
SnPb
D2PAK (TO-263)
D2PAK (TO-263)
D2PAK (TO-263)
I2PAK (TO-262)
IRF740ASPbF
IRF740ASTRLPbFa
IRF740ASTRRPbFa
IRF740ALPbF
SiHF740AS-E3
SiHF740ASTL-E3a
SiHF740ASTR-E3a
SiHF740AL-E3
IRF740AS
IRF740ASTRLa
IRF740ASTRRa
IRF740AL
SiHF740AS
SiHF740ASTLa
SiHF740ASTRa
SiHF740AL
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
VDS
VGS
400
± 30
10
6.3
40
1.0
630
10
12.5
3.1
125
5.9
- 55 to + 150
300d
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Currente
VGS at 10 V
TC = 25 °C
TC = 100 °C
ID
Pulsed Drain Currenta, e
Linear Derating Factor
Single Pulse Avalanche Energyb, e
Avalanche Currenta
Repetiitive Avalanche Energya
IDM
EAS
IAR
EAR
TA = 25 °C
TC = 25 °C
Maximum Power Dissipation
Peak Diode Recovery dV/dtc, e
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
PD
dV/dt
TJ, Tstg
for 10 s
UNIT
V
A
W/°C
mJ
A
mJ
W
V/ns
°C
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 12.6 mH, RG = 25 Ω, IAS = 10 A (see fig. 12).
c. ISD ≤ 10 A, dI/dt ≤ 330 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
e. Uses IRF740A/SiHF740A data and test conditions.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
WORK-IN-PROGRESS
www.vishay.com
1
IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
THERMAL RESISTANCE RATINGS
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient (PCB
Mounted, steady-state)a
PARAMETER
RthJA
-
40
Maximum Junction-to-Case (Drain)
RthJC
-
1.0
UNIT
°C/W
Note
a. When mounted on 1" square PCB (FR-4 or G-10 material).
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 µA
400
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mAd
-
0.48
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 30 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 400 V, VGS = 0 V
-
-
25
VDS = 320 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
0.55
Ω
4.9
-
-
S
-
1030
-
-
170
-
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 6.0 Ab
VGS = 10 V
VDS = 50 V, ID = 6.0
Ad
µA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Effective Output Capacitance
Coss
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5d
VGS = 0 V
Coss eff.
-
7.7
-
VDS = 1.0 V, f = 1.0 MHz
-
1490
-
VDS = 320 V, f = 1.0 MHz
-
52
-
VDS = 0 V to 400 Vc, d
-
61
-
-
-
36
ID = 10 A, VDS = 320 V,
see fig. 6 and 13b, d
-
-
9.9
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
-
-
16
Turn-On Delay Time
td(on)
-
10
-
tr
-
35
-
-
24
-
-
22
-
-
-
10
-
-
40
Rise Time
Turn-Off Delay Time
Fall Time
td(off)
VGS = 10 V
VDD = 200 V, ID = 10 A,
RG = 10 Ω, RD = 19.5 Ω, see fig. 10b, d
tf
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulsed Diode Forward Currenta
Body Diode Voltage
IS
ISM
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 10 A, VGS = 0
S
Vb
TJ = 25 °C, IF = 10 A, dI/dt = 100 A/µsb, d
-
-
2.0
V
-
240
360
ns
-
1.9
2.9
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
d. Uses IRF740A/SiHF740A data and test conditions.
www.vishay.com
2
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
1
0.1
4.5V
20μs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
100
10
1
TJ = 25 ° C
0.1
4.0
Fig. 1 - Typical Output Characteristics
I D , Drain-to-Source Current (A)
10
1
4.5V
20μs PULSE WIDTH
TJ = 150 ° C
10
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
5.0
6.0
7.0
8.0
9.0
10.0
Fig. 3 - Typical Transfer Characteristics
TOP
0.1
0.1
V DS = 50V
20μs PULSE WIDTH
VGS , Gate-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
100
TJ = 150 ° C
ID = 10A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
VDS , Drain-to-Source Voltage (V)
TJ , Junction Temperature ( °C)
Fig. 2 - Typical Output Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
www.vishay.com
3
IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
10000
Coss = Cds + Cgd
Ciss
1000
Coss
100
10
Crss
100
ISD , Reverse Drain Current (A)
100000
1
1
10
100
10
TJ = 150 ° C
TJ = 25 ° C
1
0.1
0.2
1000
0.8
1.0
1.2
1.4
Fig. 7 - Typical Source-Drain Diode Forward Voltage
100
ID = 10A
OPERATION IN THIS AREA LIMITED
BY RDS(on)
VDS = 320V
VDS = 200V
VDS = 80V
16
10us
ID , Drain Current (A)
VGS , Gate-to-Source Voltage (V)
20
0.6
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
V GS = 0 V
0.4
12
8
100us
10
1ms
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
10
20
30
40
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
VDS , Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
RD
VDS
10.0
VGS
ID , Drain Current (A)
D.U.T.
RG
8.0
+
- VDD
10 V
6.0
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
4.0
VDS
90 %
2.0
0.0
25
50
75
100
125
10 %
VGS
150
TC , Case Temperature ( ° C)
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
PDM
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
0.01
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
tp
L
VDS
D.U.T
RG
IAS
20 V
tp
Driver
+
A
- VDD
IAS
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
TOP
1200
BOTTOM
ID
4.5A
6.3A
10A
1000
800
600
400
200
580
V DSav , Avalanche Voltage ( V )
EAS , Single Pulse Avalanche Energy (mJ)
1400
560
540
520
500
480
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
IAV , Avalanche Current ( A)
Fig. 12d - Typlical Drain-to-Source Voltage
vs. Avalanche Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
VGS
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
IRF740AS, IRF740AL, SiHF740AS, SiHF740AL
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91052.
Document Number: 91052
S-Pending-Rev. A, 19-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1
Similar pages