IRF IRF9388TRPBF Adaptor input switch for notebook pc Datasheet

PD - 97521
IRF9388PbF
HEXFET® Power MOSFET
VDS
-30
±25
V
V
11.9
mΩ
-12
A
VGS max
RDS(on) max
(@VGS = -10V)
ID
(@TA = 25°C)
6
'
6
'
6
'
*
'
SO-8
Applications
• Adaptor Input Switch for Notebook PC
Features and Benefits
Features
Resulting Benefits
25V VGS max
Direct Drive at High V G S
Industry-Standard SO8 Package
Multi-Vendor Compatibility
RoHS Compliant Containing no Lead, no Bromide and no Halogen
Environmentally Friendlier
Orderable part number
Package Type
IRF9388PbF
IRF9388TRPbF
SO8
SO8
Standard Pack
Form
Quantity
Tube/Bulk
95
4000
Tape and Reel
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
-30
VGS
± 25
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
-9.6
IDM
Pulsed Drain Current
-96
PD @TA = 25°C
PD @TA = 70°C
f
Power Dissipation f
Power Dissipation
c
Units
V
-12
2.5
1.6
Linear Derating Factor
0.02
TJ
Operating Junction and
-55 to + 150
TSTG
Storage Temperature Range
A
W
W/°C
°C
Notes  through † are on page 2
www.irf.com
1
6/4/10
IRF9388PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
VGS(th)
ΔVGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
IDSS
IGSS
gfs
Qg
Qg
Qgs
Qgd
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
-30
–––
–––
–––
-1.3
–––
–––
–––
–––
–––
20
–––
–––
0.021
8.5
10
-1.8
-5.8
–––
–––
–––
–––
–––
18
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
35
5.3
8.5
15
19
57
80
66
1680
350
220
Static Drain-to-Source On-Resistance
h
h
h
h
h
Conditions
Min. Typ. Max. Units
–––
V VGS = 0V, ID = -250μA
––– V/°C Reference to 25°C, ID = -1mA
VGS = -20V, ID = -12A
–––
mΩ
VGS = -10V, ID = -12A
11.9
-2.4
V
VDS = VGS, ID = -25μA
––– mV/°C
VDS = -24V, VGS = 0V
-1.0
μA
VDS = -24V, VGS = 0V, TJ = 125°C
-150
VGS = -25V
10
μA
VGS = 25V
10
–––
S VDS = -10V, ID = -9.6A
–––
nC VDS = -15V, VGS = -4.5V, ID = - 9.6A
VGS = -10V
52
nC VDS = -15V
–––
ID = -9.6A
–––
e
e
–––
–––
–––
–––
–––
–––
–––
–––
Ω
ns
pF
VDD = -15V, VGS = -4.5V
ID = -1.0A
RG = 6.8Ω
e
See Figs. 20a &20b
VGS = 0V
VDS = -25V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
EAS
IAR
Single Pulse Avalanche Energy
Avalanche Current
Diode Characteristics
c
d
Parameter
IS
ISM
Typ.
Max.
Units
–––
–––
120
-9.6
mJ
A
Conditions
Min. Typ. Max. Units
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
c
–––
–––
-2.5
–––
–––
-96
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
D
G
S
e
VSD
Diode Forward Voltage
–––
–––
-1.2
V
TJ = 25°C, IS = -2.5A, VGS = 0V
trr
Reverse Recovery Time
–––
51
76
ns
TJ = 25°C, IF = -2.5A, VDD = -24V
Qrr
Reverse Recovery Charge
–––
35
53
nC
di/dt = 100A/μs
Thermal Resistance
Parameter
RθJL
RθJA
Junction-to-Drain Lead
Junction-to-Ambient
f
g
e
Typ.
Max.
Units
–––
–––
20
50
°C/W
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 2.6mH, RG = 25Ω, IAS = -9.6A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C.
† For DESIGN AID ONLY, not subject to production testing.
2
www.irf.com
IRF9388PbF
100
10
TOP
1
BOTTOM
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
100
VGS
-10V
-5.0V
-4.5V
-4.0V
-3.5V
-3.0V
-2.8V
-2.5V
0.1
-2.5V
≤60μs PULSE WIDTH
Tj = 25°C
0.01
10
1
≤60μs PULSE WIDTH
Tj = 150°C
1
10
100
0.1
-V DS, Drain-to-Source Voltage (V)
1
10
100
-V DS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
100
-ID, Drain-to-Source Current (A)
BOTTOM
-2.5V
0.1
0.1
10
TJ = 150°C
1
TJ = 25°C
0.1
V DS = -10V
≤ 60μs PULSE WIDTH
0.01
1.0
2.0
3.0
4.0
5.0
6.0
1.2
1.0
0.8
0.6
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
14
-V GS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + Cgd, C ds SHORTED
C rss = C gd
C oss = C ds + Cgd
Ciss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
10000
ID = -12A
V GS = -10V
1.4
-V GS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
-10V
-5.0V
-4.5V
-4.0V
-3.5V
-3.0V
-2.8V
-2.5V
TOP
Coss
Crss
ID= -9.6A
12
V DS= -24V
V DS= -15V
10
V DS= -6.0V
8
6
4
2
0
100
1
10
100
-V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
8
16
24
32
40
48
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF9388PbF
1000
-ID, Drain-to-Source Current (A)
-ISD, Reverse Drain Current (A)
100
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
TJ = 150°C
10
1
TJ = 25°C
1msec
10
10msec
1
TA = 25°C
Tj = 150°C
Single Pulse
V GS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
0.1
1
-V SD, Source-to-Drain Voltage (V)
10
100
-V DS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
12
-V GS(th) , Gate threshold Voltage (V)
2.5
10
-ID, Drain Current (A)
DC
0.1
8
6
4
2
0
2.0
ID = -25μA
1.5
1.0
25
50
75
100
125
150
-75 -50 -25
TA , Ambient Temperature (°C)
0
25
50
75 100 125 150
TJ , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Thermal Response ( Z thJA ) °C/W
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
0.1
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + TA
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
50
RDS(on), Drain-to -Source On Resistance ( mΩ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRF9388PbF
ID = -12A
40
30
20
TJ = 125°C
10
TJ = 25°C
0
0
5
10
15
50
40
30
V GS = -4.5V
20
10
V GS = -10V
0
0
20
10
20
30
50
60
Fig 13. Typical On-Resistance vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
500
1000
ID
TOP
-2.3A
-3.3A
BOTTOM -9.6A
800
Single Pulse Power (W)
400
300
200
600
400
100
200
0
0
25
50
75
100
125
1E-5
150
1E-4
Fig 14. Maximum Avalanche Energy vs. Drain Current
D.U.T *
1E-2
Driver Gate Drive
+
‚
-
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
www.irf.com
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
Reverse Polarity of D.U.T for P-Channel
P.W.
Period
*

•
•
•
•
1E+0
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
„
D=
Period
P.W.
-
1E-1
Fig 16. Typical Power vs. Time
+
ƒ
RG
1E-3
Time (sec)
Starting TJ , Junction Temperature (°C)
*
40
-ID, Drain Current (A)
-V GS, Gate -to -Source Voltage (V)
EAS , Single Pulse Avalanche Energy (mJ)
60
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs
5
IRF9388PbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
SS
Qgodr
Fig 18a. Gate Charge Test Circuit
I AS
D.U.T
RG
IAS
-V
GS
-20V
tp
Qgs2 Qgs1
Fig 18b. Gate Charge Waveform
L
VDS
Qgd
VDD
A
DRIVER
0.01Ω
tp
V(BR)DSS
15V
Fig 19b. Unclamped Inductive Waveforms
Fig 19a. Unclamped Inductive Test Circuit
VDS
RD
td(on)
VGS
RG
t d(off)
tf
VGS
D.U.T.
-
+
10%
V DD
-VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 20a. Switching Time Test Circuit
6
tr
90%
VDS
Fig 20b. Switching Time Waveforms
www.irf.com
IRF9388PbF
SO-8 Package Outline(Mosfet & Fetky)
Dimensions are shown in milimeters (inches)
'
,1&+(6
0,1
0$;
$ $ E F
' ( H
%$6,&
H %$6,&
+ . / \
ƒ
ƒ
',0
%
$
+
>@
(
$
; H
H
;E
>@
$
.[ƒ
&
\
>@
$
0,//,0(7(56
0,1
0$;
%$6,&
%$6,&
ƒ
ƒ
;/
;F
& $ %
)22735,17
127(6
',0(16,21,1* 72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5) 026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'( <::
3 ',6*1$7(6/($')5((
352'8&7 237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRF9388PbF
SO-8 Tape and Reel (Dimensions are shown in milimeters (inches))
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
†
Qualification Information
Consumer ††
Qualification level
Moisture Sensitivity Level
RoHS Compliant
†
††
†††
(per JEDEC JESD47F††† guidelines)
MSL1
SO-8
(per JEDEC J-STD-020D†††)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.6/2010
8
www.irf.com
Similar pages