IRF IRFP4242PBF Pdp mosfet Datasheet

PD - 96966A
IRFP4242PbF
PDP MOSFET
Features
l Advanced process technology
l Key parameters optimized for PDP Sustain &
Energy Recovery applications
l Low EPULSE rating to reduce the power
dissipation in Sustain & ER applications
l Low QG for fast response
l High repetitive peak current capability for
reliable operation
l Short fall & rise times for fast switching
l175°C operating junction temperature for
improved ruggedness
l Repetitive avalanche capability for robustness
and reliability
Key Parameters
VDS min
300
V
VDS (Avalanche) typ.
360
RDS(ON) typ. @ 10V
49
V
m:
IRP max @ TC= 100°C
93
A
TJ max
175
°C
D
D
G
G
S
D
S
TO-247AC
G
D
S
G a te
D ra in
S o u rc e
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Max.
Units
Gate-to-Source Voltage
±30
V
A
Parameter
VGS
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
46
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
33
IDM
Pulsed Drain Current
190
IRP @ TC = 100°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
430
PD @TC = 100°C
Power Dissipation
210
Linear Derating Factor
2.9
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
c
g
93
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
W
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
Notes  through
www.irf.com
Junction-to-Case
f
Typ.
Max.
Units
–––
0.35
°C/W
are on page 8
1
7/25/05
IRFP4242PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Conditions
Min.
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
300
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
220
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
49
59
mΩ
VGS = 10V, ID = 33A e
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
V
VDS = VGS, ID = 250µA
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-15
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
5.0
µA
V
mV/°C Reference to 25°C, ID = 1mA
–––
–––
150
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
78
–––
–––
S
Qg
Total Gate Charge
–––
165
247
nC
Qgd
Gate-to-Drain Charge
–––
61
–––
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
Energy per Pulse
–––
1960
–––
–––
3740
–––
VDS = 240V, VGS = 0V
VDS = 240V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage
IGSS
VGS = 0V, ID = 250µA
nA
VGS = 20V
VGS = -20V
ns
VDS = 25V, ID = 33A
VDD = 150V, ID = 33A, VGS = 10Ve
VDD = 240V, VGS = 15V, RG= 5.1Ω
L = 220nH, C= 0.4µF, VGS = 15V
µJ
VDS = 240V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 240V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
Ciss
Input Capacitance
–––
7370
–––
Coss
Output Capacitance
–––
520
–––
Crss
Reverse Transfer Capacitance
–––
220
–––
ƒ = 1.0MHz,
pF
VDS = 25V
See Fig.9
Coss eff.
Effective Output Capacitance
–––
320
–––
VGS = 0V, VDS = 0V to 240V
LD
Internal Drain Inductance
–––
5.0
–––
Between lead,
nH
LS
Internal Source Inductance
–––
13
–––
D
6mm (0.25in.)
G
from package
S
and center of die contact
Avalanche Characteristics
Typ.
Max.
Units
EAS
Single Pulse Avalanche Energyd
–––
700
mJ
EAR
Repetitive Avalanche Energy c
–––
43
mJ
VDS(Avalanche)
Repetitive Avalanche Voltagec
360
–––
V
IAS
Avalanche Currentd
–––
33
A
Parameter
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
46
showing the
integral reverse
190
p-n junction diode.
(Body Diode)c
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 33A, VGS = 0V e
trr
Reverse Recovery Time
–––
300
450
ns
TJ = 25°C, IF = 33A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
2330
3500
nC
di/dt = 100A/µs e
2
www.irf.com
IRFP4242PbF
1000
1000
BOTTOM
TOP
100
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
7.0V
10
BOTTOM
100
7.0V
10
≤ 60µs PULSE WIDTH
Tj = 175°C
≤ 60µs PULSE WIDTH
Tj = 25°C
1
1
0.1
1
10
0.1
100
1
Fig 1. Typical Output Characteristics
100
Fig 2. Typical Output Characteristics
3.5
RDS(on) , Drain-to-Source On Resistance
1000.0
100.0
TJ = 175°C
TJ = 25°C
10.0
VDS = 30V
≤ 60µs PULSE WIDTH
1.0
4.0
5.0
6.0
7.0
ID = 33A
3.0
VGS = 10V
2.5
(Normalized)
ID, Drain-to-Source Current(Α)
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
2.0
1.5
1.0
0.5
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
4000
4000
3000
Energy per pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
3500
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
2500
2000
1500
L = 220nH
C = Variable
100°C
25°C
3000
2000
1000
1000
500
0
180
200
220
240
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
170
180
190
200
210
220
230
240
250
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFP4242PbF
5000
1000.0
Energy per pulse (µJ)
4000
ISD , Reverse Drain Current (A)
L = 220nH
C= 0.4µF
C= 0.3µF
C= 0.2µF
3000
2000
1000
100.0
TJ = 175°C
10.0
1.0
TJ = 25°C
VGS = 0V
0
25
50
75
100
125
0.1
150
0.2
Temperature (°C)
20
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
Coss = Cds + Cgd
8000
Ciss
6000
4000
2000
Crss
1
1.2
ID= 33A
VDS = 240V
16
VDS= 150V
VDS= 60V
12
8
4
0
10
100
0
1000
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
48
1000
ID, Drain-to-Source Current (A)
42
36
ID , Drain Current (A)
1.0
Coss
0
30
24
18
12
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
1µsec
10
100µsec
0
10µsec
1
Tc = 25°C
Tj = 175°C
Single Pulse
6
0.1
25
50
75
100
125
150
175
TC , CaseTemperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.8
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
0.6
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical EPULSE vs.Temperature
12000
0.4
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
3000
600
EAS, Single Pulse Avalanche Energy (mJ)
RDS (on), Drain-to -Source On Resistance (mΩ)
IRFP4242PbF
ID = 33A
500
400
300
200
TJ = 125°C
100
TJ = 25°C
ID
4.9A
6.3A
BOTTOM 33A
TOP
2500
2000
1500
1000
500
0
0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
25
VGS, Gate-to-Source Voltage (V)
100
125
150
175
Fig 14. Maximum Avalanche Energy Vs. Temperature
5.0
140
4.5
120
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
75
Starting TJ, Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
4.0
50
ID = 250µA
3.5
3.0
2.5
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
100
80
60
40
20
2.0
0
1.5
-75
-50
-25
0
25
50
75
25
100 125 150 175
50
75
100
125
150
175
Case Temperature (°C)
TJ , Temperature ( °C )
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
R1
R1
0.05
0.01
τJ
0.02
0.01
τJ
τ1
R2
R2
τ2
τ1
τC
τ
τ2
Ri (°C/W) τi (sec)
0.1315 0.000555
0.2186
0.023373
Ci= τi/Ri
Ci i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP4242PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current

RG
P.W.
Period
*
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
•
•
•
•
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFP4242PbF
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
www.irf.com
7
IRFP4242PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2000
IN THE AS SEMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
IRFPE30
56
035H
57
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.28mH,
RG = 25Ω, IAS = 33A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
Half sine wave with duty cycle = 0.25, ton=1µsec.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/05
8
www.irf.com
Similar pages