Kersemi IRFR210TRLA Power mosfet Datasheet

IRFR210, IRFU210, SiHFR210, SiHFU210
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Dynamic dV/dt Rating
200
RDS(on) (Ω)
VGS = 10 V
1.5
• Repetitive Avalanche Rated
• Surface Mount (IRFR210/SiHFR210)
Qg (Max.) (nC)
8.2
Qgs (nC)
1.8
• Straight Lead (IRFU210/SiHFU210)
4.5
• Available in Tape and Reel
Qgd (nC)
Configuration
Available
RoHS*
COMPLIANT
• Fast Switching
Single
• Ease of Paralleling
D
• Lead (Pb)-free Available
DPAK
(TO-252)
IPAK
(TO-251)
DESCRIPTION
G
S
N-Channel MOSFET
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The DPAK is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU/SiHFU series) is for through-hole
mounting applications. Power dissipation levels up to 1.5 W
are possible in typical surface mount applications.
ORDERING INFORMATION
Package
Lead (Pb)-free
SnPb
DPAK (TO-252)
IRFR210PbF
SiHFR210-E3
IRFR210
SiHFR210
DPAK (TO-252)
IRFR210TRLPbFa
SiHFR210TL-E3a
IRFR210TRLa
SiHFR210TLa
DPAK (TO-252)
IRFR210TRPbFa
SiHFR210T-E3a
IRFR210TRa
SiHFR210Ta
DPAK (TO-252)
IRFR210TRRa
SiHFR210TRa
IPAK (TO-251)
IRFU210PbF
SiHFU210-E3
IRFU210
SiHFU210
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
Currenta
SYMBOL
VDS
VGS
VGS at 10 V
TC = 25 °C
TC = 100 °C
ID
Pulsed Drain
IDM
Linear Derating Factor
Linear Derating Factor (PCB Mount)e
EAS
Single Pulse Avalanche Energyb
Avalanche Currenta
IAR
EAR
Repetitive Avalanche Energya
Maximum Power Dissipation
TC = 25 °C
PD
TA = 25 °C
Maximum Power Dissipation (PCB Mount)e
Peak Diode Recovery dV/dtc
dV/dt
Operating Junction and Storage Temperature Range
TJ, Tstg
Soldering Recommendations (Peak Temperature)
for 10 s
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 50 V, starting TJ = 25 °C, L = 28 mH, RG = 25 Ω, IAS = 2.6 A (see fig. 12).
c. ISD ≤ 2.6 A, dI/dt ≤ 70 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
e. When mounted on 1" square PCB (FR-4 or G-10 material).
LIMIT
200
± 20
2.6
1.7
10
0.20
0.020
130
2.7
2.5
25
2.5
5.0
- 55 to + 150
260d
UNIT
V
A
W/°C
mJ
A
mJ
W
V/ns
°C
www.kersemi.com
1
IRFR210, IRFU210, SiHFR210, SiHFU210
THERMAL RESISTANCE RATINGS
SYMBOL
MIN.
TYP.
MAX.
Maximum Junction-to-Ambient
PARAMETER
RthJA
-
-
110
Maximum Junction-to-Ambient
(PCB Mount)a
RthJA
-
-
50
Maximum Junction-to-Case (Drain)
RthJC
-
-
5.0
UNIT
°C/W
Note
a. When mounted on 1" square PCB (FR-4 or G-10 material).
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0 V, ID = 250 µA
200
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.30
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 200 V, VGS = 0 V
-
-
25
VDS = 160 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
1.5
Ω
0.80
-
-
S
-
140
-
-
53
-
-
15
-
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 1.6 Ab
VGS = 10 V
VDS = 50 V, ID = 1.6
Ab
µA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
-
-
8.2
-
-
1.8
Qgd
-
-
4.5
td(on)
-
8.2
-
tr
-
17
-
-
14
-
-
8.9
-
-
4.5
-
-
7.5
-
-
-
2.6
-
-
10
td(off)
VGS = 10 V
ID = 3.3 A, VDS = 160 V,
see fig. 6 and 13b
VDD = 100 V, ID = 3.3 A,
RG = 24 Ω, RD = 30 Ω, see fig. 10b
tf
Internal Drain Inductance
LD
Internal Source Inductance
LS
Between lead,
6 mm (0.25") from
package and center of
die contact
D
pF
nC
ns
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
A
G
S
TJ = 25 °C, IS = 2.6 A, VGS = 0 Vb
TJ = 25 °C, IF = 3.3 A, dI/dt = 100 A/µsb
-
-
2.0
V
-
150
310
ns
-
0.60
1.4
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
www.kersemi.com
2
D
IRFR210, IRFU210, SiHFR210, SiHFU210
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
Fig. 1 - Typical Output Characteristics, TC = 25 °C
Fig. 2 - Typical Output Characteristics, TC = 150 °C
Fig. 3 - Typical Transfer Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
www.kersemi.com
3
IRFR210, IRFU210, SiHFR210, SiHFU210
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.kersemi.com
4
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 8 - Maximum Safe Operating Area
IRFR210, IRFU210, SiHFR210, SiHFU210
VDS
VGS
RD
D.U.T.
RG
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
VDS
90 %
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
tr
td(off) tf
Fig. 10b - Switching Time Waveforms
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5
IRFR210, IRFU210, SiHFR210, SiHFU210
L
Vary tp to obtain
required IAS
VDS
VDS
tp
VDD
D.U.T
RG
+
-
I AS
V DD
VDS
10 V
0.01 Ω
tp
Fig. 12a - Unclamped Inductive Test Circuit
IAS
Fig. 12b - Unclamped Inductive Waveforms
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.kersemi.com
6
Fig. 13b - Gate Charge Test Circuit
IRFR210, IRFU210, SiHFR210, SiHFU210
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
www.kersemi.com
7
Similar pages