IRF IRGB4B60K

PD - 94633A
IRGB4B60K
IRGS4B60K
IRGSL4B60K
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
Maximum Junction Temperature rated at 175°C.
C
VCES = 600V
IC = 6.8A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
Benefits
n-channel
VCE(on) typ. = 2.1V
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220
IRGB4B60K
D2Pak
IRGS4B60K
TO-262
IRGSL4B60K
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
12
IC @ TC = 100°C
Continuous Collector Current
6.8
ICM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
24
ILM
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
63
W
c
24
PD @ TC = 100°C Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
31
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
Units
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
2.4
°C/W
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient
–––
–––
62
d
RθJA
Junction-to-Ambient (PCB Mount, steady state)
–––
–––
40
Wt
Weight
–––
1.44
–––
www.irf.com
g
1
8/4/03
IRGB/S/SL4B60K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
VCE(on)
Collector-to-Emitter Voltage
—
—
0.28
—
—
2.1
2.5
—
2.5
2.8
—
2.6
2.8
VGE(th)
Gate Threshold Voltage
3.5
4.5
5.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-8.1
—
gfe
Forward Transconductance
—
1.7
—
—
1.0
150
ICES
Zero Gate Voltage Collector Current
—
54
300
—
300
800
IGES
Gate-to-Emitter Leakage Current
—
—
±100
V
Conditions
Ref.Fig.
VGE = 0V, IC = 500µA
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 4.0A, VGE = 15V, TJ = 25°C
V
5,6,7
IC = 4.0A, VGE = 15V, TJ = 150°C
9,10,11
IC = 4.0A, VGE = 15V, TJ = 175°C
V
VCE = VGE, IC = 250µA
9,10,11
mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
S VCE = 50V, IC = 4.0A, PW = 80µs
12
VGE = 0V, VCE = 600V
µA
VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Qg
Total Gate Charge (turn-on)
—
12
—
Qge
Gate-to-Emitter Charge (turn-on)
—
1.7
—
Qgc
Gate-to-Collector Charge (turn-on)
—
6.5
—
Eon
Turn-On Switching Loss
—
73
80
Eoff
Turn-Off Switching Loss
—
47
53
Conditions
nC
23
VCC = 400V
CT1
VGE = 15V
IC = 4.0A, VCC = 400V
µJ
e
Etot
Total Switching Loss
—
120
130
TJ = 25°C
Turn-On delay time
—
22
28
IC = 4.0A, VCC = 400V
tr
Rise time
—
18
23
Turn-Off delay time
—
100
110
ns
CT4
VGE = 15V, RG = 100Ω, L = 2.5mH
td(on)
td(off)
Ref.Fig.
IC = 4.0A
VGE = 15V, RG = 100Ω, L = 2.5mH
CT4
TJ = 25°C
tf
Fall time
—
66
80
Eon
Turn-On Switching Loss
—
130
150
Eoff
Turn-Off Switching Loss
—
83
140
Etot
Total Switching Loss
—
220
280
TJ = 150°C
td(on)
Turn-On delay time
—
22
27
IC = 4.0A, VCC = 400V
tr
Rise time
—
18
22
td(off)
Turn-Off delay time
—
120
130
tf
Fall time
—
79
89
Cies
Input Capacitance
—
190
—
Coes
Output Capacitance
—
25
—
Cres
Reverse Transfer Capacitance
—
6.2
—
RBSOA
Reverse Bias Safe Operating Area
IC = 4.0A, VCC = 400V
µJ
ns
CT4
VGE = 15V, RG = 100Ω, L = 2.5mH
e
13,15
WF1,WF2
14,16
VGE = 15V, RG = 100Ω, L = 2.5mH
CT4
TJ = 150°C
WF1
WF2
VGE = 0V
pF
FULL SQUARE
VCC = 30V
22
f = 1.0MHz
TJ = 150°C, IC = 24A, Vp = 600V
4
VCC=500V,VGE = +15V to 0V,RG = 100Ω
SCSOA
Short Circuit Safe Operating Area
10
—
—
µs
CT3
VCC=360V,VGE = +15V to 0V
WF3
Note  to ƒ are on page 16
2
CT2
TJ = 150°C, Vp = 600V, RG = 100Ω
www.irf.com
IRGB/S/SL4B60K
12
70
10
60
50
Ptot (W)
IC (A)
8
6
40
30
4
20
2
10
0
0
0
20
40
60
80 100 120 140 160 180
0
T C (°C)
20
40
60
80 100 120 140 160 180
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
10
IC A)
IC (A)
100µs
1
1ms
1
10ms
0.1
DC
0.01
0
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB/S/SL4B60K
30
25
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
20
ICE (A)
20
ICE (A)
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
15
15
10
10
5
5
0
0
0
2
4
6
8
10
12
0
2
VCE (V)
4
6
8
10
12
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
25
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
20
15
10
5
0
0
2
4
6
8
10
12
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
www.irf.com
20
20
18
18
16
16
14
14
12
10
ICE = 2.0A
ICE = 4.0A
8
ICE = 8.0A
VCE (V)
VCE (V)
IRGB/S/SL4B60K
12
10
ICE = 2.0A
ICE = 4.0A
8
ICE = 8.0A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
20
30
ID, Drain-to-Source Current (Α)
18
16
VCE (V)
14
12
10
ICE = 2.0A
ICE = 4.0A
8
ICE = 8.0A
6
4
25
T J = 25°C
20
15
TJ = 150°C
10
5
2
0
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGS , Gate-to-Source Voltage (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 360V; tp = 10µs
5
IRGB/S/SL4B60K
350
1000
300
Swiching Time (ns)
Energy (µJ)
td OFF
EON
250
200
150
EOFF
100
tF
100
tdON
10
tR
50
0
1
1
2
3
4
5
6
7
8
9
10
0
2
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=2.5mH; VCE= 400V,
RG= 100Ω; VGE= 15V
6
8
10
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=2.5mH; VCE= 400V
RG= 100Ω; VGE= 15V
350
1000
300
EON
Swiching Time (ns)
250
Energy (µJ)
4
IC (A)
IC (A)
200
EOFF
150
100
tdOFF
100
tF
tdON
50
tR
0
10
0
100
200
300
400
RG ( Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=2.5mH; VCE= 400V
ICE= 4.0A; VGE= 15V
6
500
0
100
200
300
400
500
RG ( Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 150°C; L=2.5mH; VCE= 400V
ICE= 4.0A; VGE= 15V
www.irf.com
IRGB/S/SL4B60K
1000
16
14
Cies
300V
400V
100
10
VGE (V)
Capacitance (pF)
12
Coes
6
Cres
10
8
4
2
1
0
0
20
40
60
80
100
0
2
VCE (V)
4
6
8
10
12
14
Q G , Total Gate Charge (nC)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 4.0A; L = 3150µH
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R3
R3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.0429 0.000001
1.3417
0.000178
1.0154
0.000627
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGB/S/SL4B60K
L
L
VCC
DUT
80 V
+
-
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGB/S/SL4B60K
700
14
700
12
600
14
tf
600
tr
12
Vce
Vce
500
10
Ice
500
90% Ice
8
400
6
5% Ice
200
Vce (V)
Ice (A)
Vce (V)
5% Vce
10% Ice
5% Vce
300
8
6
4
200
4
100
2
100
2
0
0
0
Ice (A)
400
300
10
90% Ice
Ice
0
Eon
Loss
Eoff Loss
-100
-2
0.4
0.6
0.8
1
-100
0.35
1.2
0.45
Time (uS)
0.65
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
400
40
Vce
350
35
300
30
25
250
200
20
I(A)
CE (A)
Ice
150
15
I
VCE (V)
-2
0.55
100
10
50
5
0
0
-5
-50
30
40
50
60
70
Time (uS)
Fig. WF3- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
www.irf.com
9
IRGB/S/SL4B60K
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1 - GATE
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1 - GATE
2 -COLLECTOR
3
2 - DRAIN
3 EMITTER
3 - SOURCE
4 - DRAIN
4 - COLLECTOR
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
www.irf.com
IRGB/S/SL4B60K
D2Pak Package Outline
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
LOT CODE 8024
ASS EMBLED ON WW 02, 2000
IN T HE ASS EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
www.irf.com
PART NUMBER
F 530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
11
IRGB/S/SL4B60K
TO-262 Package Outline
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE ASS EMBLY LINE "C"
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
12
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
www.irf.com
IRGB/S/SL4B60K
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
0.368 (.0145)
0.342 (.0135)
11.60 (.457)
11.40 (.449)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
3
4
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 50Ω.
‚ When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques
refer to application note #AN-994.
ƒ Energy losses include "tail" and diode reverse recovery, using Diode FD059H06A5.
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 8/03
www.irf.com
13