IRF IRGI4086PBF

PD - 96223
IRGI4086PbF
PDP TRENCH IGBT
Features
Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
Circuits in PDP Applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for Improved Panel Efficiency
l High Repetitive Peak Current Capability
l Lead Free Package
l
Key Parameters
VCE min
VCE(ON) typ. @ IC = 25A
IRP max @ TC= 25°C
TJ max
300
1.29
c
V
V
A
°C
230
150
C
E
C
G
G
TO-220AB
Full-Pak
E
n-channel
G
G ate
C
C ollector
E
E m itter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Continuous Collector, VGE @ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
c
Max.
Units
±30
25
V
12
230
A
43
17
W
0.34
-40 to + 150
Linear Derating Factor
Operating Junction and
°C
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
W/°C
x
300
x
10lb in (1.1N m)
N
Thermal Resistance
RθJC
www.irf.com
Junction-to-Case
d
Parameter
Typ.
Max.
Units
–––
2.9
°C/W
1
02/02/09
IRGI4086PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Gate-to-Emitter Forward Leakage
Gate-to-Emitter Reverse Leakage
Forward Transconductance
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
300
–––
–––
–––
–––
–––
–––
–––
2.6
–––
–––
–––
–––
–––
–––
–––
–––
–––
—
—
—
—
—
—
—
—
–––
0.29
1.10
1.29
1.49
1.90
2.57
2.27
–––
-11
2.0
5.0
100
–––
–––
29
65
22
36
31
112
65
30
33
145
tst
Shoot Through Blocking Time
100
98
–––
EPULSE
Energy per Pulse
–––
1075
–––
1432
–––
–––
–––
–––
2250
110
58
5.0
BVCES
Collector-to-Emitter Breakdown Voltage
∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient
VCE(on)
Static Collector-to-Emitter Voltage
VGE(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
∆VGE(th)/∆TJ
ICES
IGES
Ciss
Coss
Crss
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
e
e
e
e
e
e
ƒ = 1.0MHz,
–––
–––
nH
LE
Internal Emitter Inductance
Notes:
 Half sine wave with duty cycle = 0.1, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
2
–––
13
Conditions
–––
V VGE = 0V, ICE = 1 mA
–––
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 12A
1.36
VGE = 15V, ICE = 25A
1.55
VGE = 15V, ICE = 40A
1.67
V
VGE = 15V, ICE = 70A
2.10
VGE = 15V, ICE = 120A
2.96
VGE = 15V, ICE = 70A, TJ = 150°C
–––
5.0
V VCE = VGE, ICE = 500µA
––– mV/°C
25
µA VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 100°C
–––
VCE = 300V, VGE = 0V, TJ = 150°C
–––
100
nA VGE = 30V
VGE = -30V
-100
–––
S VCE = 25V, ICE = 25A
–––
nC VCE = 200V, IC = 25A, VGE = 15V
–––
IC = 25A, VCC = 196V
—
—
ns RG = 10Ω, L=200µH, LS= 200nH
TJ = 25°C
—
—
IC = 25A, VCC = 196V
—
—
ns RG = 10Ω, L=200µH, LS= 200nH
TJ = 150°C
—
—
–––
ns VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
–––
µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
–––
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
–––
–––
pF VCE = 30V
–––
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
www.irf.com
IRGI4086PbF
240
240
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
200
200
160
VGE = 8.0V
VGE = 6.0V
120
ICE (A)
ICE (A)
160
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
120
80
80
40
40
0
VGE = 8.0V
VGE = 6.0V
0
0
4
8
12
16
0
4
8
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
160
VGE = 8.0V
VGE = 6.0V
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
200
ICE (A)
ICE (A)
240
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
160
16
Fig 2. Typical Output Characteristics @ 75°C
240
200
12
VCE (V)
120
80
80
40
40
0
VGE = 8.0V
VGE = 6.0V
0
0
4
8
12
16
0
4
8
VCE (V)
12
16
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
240
10
IC = 25A
200
8
T J = 25°C
T J = 150°C
VCE (V)
ICE (A)
160
120
TJ = 25°C
TJ = 150°C
6
4
80
2
40
0
0
2
4
6
8
10
12
14
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
16
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGI4086PbF
240
30
ton= 2µs
Duty cycle <= 0.05
Half Sine Wave
220
25
Repetitive Peak Current (A)
200
IC (A)
20
15
10
5
180
160
140
120
100
80
60
40
20
0
0
25
50
75
100
125
0
150
25
T C (°C)
75
100
125
150
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1600
1500
1400
VCC = 240V
1300
L = 220nH
C = variable
L = 220nH
C = 0.4µF
1400
100°C
1200
Energy per Pulse (µJ)
Energy per Pulse (µJ)
50
1100
1000
900
800
25°C
700
600
100°C
1200
1000
800
25°C
600
400
500
200
400
160
170
180
190
200
210
220
150 160 170 180 190 200 210 220 230 240
230
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
2000
1000
VCC = 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
100
10µsec
1200
100µsec
IC (A)
Energy per Pulse (µJ)
1600
C= 0.3µF
800
10
1
400
C= 0.2µF
Tc = 25°C
Tj = 150°C
Single Pulse
0
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
1msec
150
0.1
1
10
100
1000
VCE (V)
Fig 12. Forward Bias Safe Operating Area
www.irf.com
IRGI4086PbF
25
VGE, Gate-to-Source Voltage (V)
10000
Capacitance (pF)
Cies
1000
100
Coes
Cres
ID= 25A
VDS = 240V
VDS = 200V
VDS = 150V
20
15
10
5
0
10
0
100
200
0
300
20
40
60
80
100
QG Total Gate Charge (nC)
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
τJ
0.01
0.01
0.001
1E-006
0.0001
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ3
τ2
τ3
τ4
τi (sec)
Ri (°C/W)
R4
R4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R1
R1
0.12489
0.00005
0.35135
0.001807
1.07738
0.133584
1.34638
2.34
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
5
IRGI4086PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
VCC
DUT
0
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGI4086PbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5),*
.
'$7(&2'(
<($5 :((.
/,1(.
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification
to all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers
are encouraged to and responsible for qualifying product to
their own use and their own application environments,
especially where particular features are critical to operational
performance or safety. Please contact your IR representative
if you have specific design or use requirements or for further
information.
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2009
www.irf.com
7