IRF IRHNB4260 Radiation hardened power mosfet surface mount(smd-3) Datasheet

PD - 91798A
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT(SMD-3)
IRHNB7260
200V, N-CHANNEL
®
™
RAD Hard HEXFET TECHNOLOGY
Product Summary
Part Number Radiation Level
IRHNB7260
100K Rads (Si)
IRHNB3260
300K Rads (Si)
IRHNB4260
600K Rads (Si)
IRHNB8260
1000K Rads (Si)
R DS(on)
0.070Ω
0.070Ω
0.070Ω
0.070Ω
ID
43A
43A
43A
43A
SMD-3
International Rectifier’s RADHard HEXFET® technology provides high performance power MOSFETs for
space applications. This technology has over a decade of proven performance and reliability in satellite
applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE).
The combination of low Rdson and low gate charge
reduces the power losses in switching applications
such as DC to DC converters and motor control. These
devices retain all of the well established advantages
of MOSFETs such as voltage control, fast switching,
ease of paralleling and temperature stability of electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Surface Mount
Light Weight
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ➁
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt ➂
Operating Junction
Storage Temperature Range
Package Mounting Surface Temperature
Weight
Units
43
27
172
300
2.4
±20
500
43
30
5.7
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
300 (for 5 Sec.)
3.5 (Typical )
C
g
For footnotes refer to the last page
www.irf.com
1
12/7/01
IRHNB7260
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Min
Typ Max Units
200
—
—
V
—
0.26
—
V/°C
—
—
2.0
9.0
—
—
—
—
—
—
—
—
0.070
0.077
4.0
—
25
250
Ω
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.0
100
-100
290
42
120
50
200
200
130
—
C iss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
5300
1200
360
—
—
—
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
VGS = 12V, ID =27A ➃
VGS = 12V, ID = 43A
VDS = VGS, ID = 1.0mA
VDS > 15V, IDS = 27A ➃
VDS= 160V ,VGS=0V
VDS = 160V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID =43A
VDS = 100V
V
S( )
Ω
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
∆BVDSS/∆TJ Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
µA
nA
nC
VDD = 100V, ID =43A
VGS =12V, RG = 2.35Ω
ns
nH
Measured from the center of
drain pad to center of source pad
VGS = 0V, VDS = 25V
f = 1.0MHz
pF
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
43
172
1.8
820
8.5
Test Conditions
A
V
nS
µC
Tj = 25°C, IS = 43A, VGS = 0V ➃
Tj = 25°C, IF = 43A, di/dt ≤ 100A/µs
VDD ≤ 50V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
R thJC
RthJ-PCB
Junction-to-Case
Junction-to-PC board
Min Typ Max Units
—
—
—
1.6
0.42
—
Test Conditions
°C/W
Soldered to a 1” sq. copper-clad board
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHNB7260
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
100K Rads (Si)1
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source ➃
On-State Resistance (TO-3)
Static Drain-to-Source ➃
On-State Resistance (SMD-3)
Diode Forward Voltage ➃
300 - 1000K Rads (Si)2
Test Conditions
Units
Min
Max
Min
Max
200
2.0
—
—
—
—
—
4.0
100
-100
25
0.070
200
1.25
—
—
—
—
—
4.5
100
-100
50
0.110
µA
Ω
VGS = 0V, ID = 1.0mA
VGS = VDS, ID = 1.0mA
VGS = 20V
VGS = -20 V
VDS=160V, VGS =0V
VGS = 12V, ID =27A
—
0.070
—
0.110
Ω
VGS = 12V, ID =27A
—
1.8
—
1.8
V
V
nA
VGS = 0V, IS = 43A
1. Part number IRHNB7260
2. Part numbers IRHNB3260, IRHNB4260 and IRHNB8260
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
VD S(V)
Ion
LE T
MeV/(mg/cm²))
Energy
(MeV)
Range
(µm)
Cu
28
285
43
190
180
170
125
—
Br
36.8
305
39
100
100
100
50
—
@VGS=0V
@VGS=-5V @VGS=-10V
@VGS=-15V
@VGS=-20V
200
VDS
150
Cu
100
Br
50
0
0
-5
-10
-15
-20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHNB7260
Pre-Irradiation
1000
1000
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
100
100
20µs PULSE WIDTH
T = 25 C
5.0V
J
10
1
5.0V
°
10
100
1
3.0
TJ = 150 ° C
V DS = 50V
20µs PULSE WIDTH
6
7
8
9
10
11
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
12
R DS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
5
10
100
Fig 2. Typical Output Characteristics
1000
10
°
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
20µs PULSE WIDTH
T = 150 C
J
10
VDS , Drain-to-Source Voltage (V)
4
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 43A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
8000
C iss
6000
4000
C
oss
2000
C
rss
20
VGS , Gate-to-Source Voltage (V)
10000
C, Capacitance (pF)
IRHNB7260
ID = 43 A
16
12
8
4
0
FOR TEST CIRCUIT
SEE FIGURE 13
0
1
10
100
0
40
VDS , Drain-to-Source Voltage (V)
80
120
160
200
240
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ISD , Reverse Drain Current (A)
VDS = 160V
VDS = 100V
VDS = 40V
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
I D , Drain Current (A)
100
10us
100
TJ = 150 ° C
10
TJ = 25 ° C
100us
1ms
10
1
0.1
0.0
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
3.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
3.5
1
10ms
TC = 25 ° C
TJ = 150 ° C
Single Pulse
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHNB7260
Pre-Irradiation
50
RD
VDS
VGS
I D , Drain Current (A)
40
D.U.T.
RG
+
-VDD
30
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
VDS
10
90%
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.01
0.001
0.00001
0.20
0.10
0.05
0.02
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHNB7260
L
D .U .T
RG
IA S
VGS
20V
D R IV E R
+
- VD D
0 .0 1 Ω
tp
ID
19A
27A
BOTTOM 43A
TOP
1000
1 5V
VD S
EAS , Single Pulse Avalanche Energy (mJ)
1200
Fig 12a. Unclamped Inductive Test Circuit
A
800
600
400
200
0
25
V (B R )D S S
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHNB7260
Pre-Irradiation
Foot Notes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = 50V, starting TJ = 25°C, L=0.54mH
Peak IL = 43A, VGS =12V
➂ ISD ≤ 43A, di/dt ≤ 410A/µs,
VDD ≤ 200V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
➅ Total Dose Irradiation with VDS Bias.
160 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — SMD-3
PAD ASSIGNMENTS
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 12/01
8
www.irf.com
Similar pages