IRF IRHQ4214 Radiation hardened power mosfet surface mount (lcc-28) Datasheet

PD - 93828A
IRHQ7214
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (LCC-28)
250V, QUAD N-CHANNEL
®
™
RAD-Hard HEXFET
MOSFET TECHNOLOGY
Product Summary
Part Number Radiation Level
IRHQ7214
100K Rads (Si)
IRHQ3214
300K Rads (Si)
RDS(on)
2.25Ω
2.25Ω
ID
1.6A
1.6A
IRHQ4214
600K Rads (Si)
2.25Ω
1.6A
IRHQ8214
1000K Rads (Si)
2.25Ω
1.6A
TM
LCC-28
HEXFET®
International Rectifier’s RAD-Hard
MOSFET
technology provides high performance power MOSFETs
for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for
both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the
power losses in switching applications such as DC to DC
converters and motor control. These devices retain all of
the well established advantages of MOSFETs such as
voltage control, fast switching, ease of paralleling and
temperature stability of electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Surface Mount
Light Weight
Pre-Irradiation
Absolute Maximum Ratings ( Per Die)
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ➁
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt ➂
Operating Junction
Storage Temperature Range
Pckg. Mounting Surface Temp.
Weight
Units
1.6
1.0
6.4
12
0.1
±20
62
1.6
1.2
3.5
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (for 5s)
0.89 (Typical)
g
For footnotes refer to the last page
www.irf.com
1
04/22/03
IRHQ7214
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) (Per Die)
Parameter
Min
Drain-to-Source Breakdown Voltage
250
—
—
V
—
0.3
—
V/°C
—
—
2.0
0.9
—
—
—
—
—
—
—
—
2.25
Ω
4.0
—
25
250
V
S( )
∆BVDSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.1
100
-100
19
3.4
7.0
15
7.0
39
42
—
Ciss
C oss
C rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
280
70
18
—
—
—
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
VGS = 12V, ID = 1.0A
➃
VDS = VGS, ID = 1.0mA
VDS > 15V, I DS = 1.0A ➃
VDS= 200V, VGS=0V
VDS = 200V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS = 12V, ID = 1.6A,
VDS = 125V
Ω
BVDSS
µA
nA
nC
VDD = 125V, ID = 1.6A,
VGS = 12V, RG = 7.5Ω
ns
nH
Measured from the center of
drain pad to center of source pad
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
Min Typ Max Unit
IS
ISM
VSD
trr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
1.6
6.4
1.5
226
900
Test Conditions
A
V
nS
nC
Tj = 25°C, IS = 1.6A, VGS = 0V ➃
Tj = 25°C, IF = 1.6A, di/dt ≤ 100A/µs
VDD ≤ 25V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJC
Junction-to-Case
Min Typ Max Units
—
—
10.4
Test Conditions
°C/W
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
IRHQ7214
Pre-Irradiation
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅ (Per Die)
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
100K Rads(Si)1
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source ➃
On-State Resistance (TO-39)
Static Drain-to-Source ➃
On-State Resistance (LCC-28)
Diode Forward Voltage ➃
300K to 1000K Rads (Si)2
Units
Test Conditions
Min
Max
Min
Max
250
2.0
—
—
—
—
—
4.0
100
-100
25
2.205
250
1.25
—
—
—
—
—
4.5
100
-100
25
2.205
µA
Ω
VGS = 0V, ID = 1.0mA
VGS = VDS, ID = 1.0mA
VGS = 20V
VGS = -20 V
VDS = 200V, VGS =0V
VGS = 12V, ID = 1.0A
—
2.25
—
2.25
Ω
VGS = 12V, ID = 1.0A
—
1.5
1.5
V
VGS = 0V, I S = 1.6A
—
V
nA
1. Part numbers IRHQ7214, IRHQ3214 and IRHQ4214
2. Part number IRHQ8214
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area (Per Die)
Ion
Cu
Br
LET
MeV/(mg/cm2))
28.0
36.8
VDS (V)
Range
(µm) @VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V @VGS=-20V
43.0
250
250
250
250
250
39.0
250
250
250
225
210
Energy
(MeV)
285
305
300
250
VDS
200
Cu
Br
150
100
50
0
0
-5
-10
-15
-20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHQ7214
Pre-Irradiation
100
10
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
10
1
5.0V
0.1
20µs PULSE WIDTH
T = 25 C
1
1
10
100
VDS , Drain-to-Source Voltage (V)
0.1
10
TJ = 150 ° C
1
V DS = 50V
20µs PULSE WIDTH
11
13
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
R DS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
9
10
100
Fig 2. Typical Output Characteristics
2.5
7
°
J
1
VDS , Drain-to-Source Voltage (V)
100
5
20µs PULSE WIDTH
T = 150 C
0.01
0.1
Fig 1. Typical Output Characteristics
0.1
5.0V
°
J
0.01
0.1
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 1.6A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
500
400
300
200
100
20
VGS , Gate-to-Source Voltage (V)
600
C, Capacitance (pF)
IRHQ7214
0
1
10
ID = 1.6A
VDS = 200V
VDS = 125V
VDS = 50V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
4
VDS , Drain-to-Source Voltage (V)
8
12
16
20
QG , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
100
OPERATION IN THIS AREA LIMITED
BY R
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
DS(on)
10
TJ = 150 ° C
1
10
10us
100us
1
1ms
TJ = 25 ° C
V GS = 0 V
0.1
0.4
0.6
0.8
1.0
1.2
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
1.4
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHQ7214
Pre-Irradiation
RD
VDS
1.6
VGS
1.2
I D , Drain Current (A)
D.U.T.
RG
+
-V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
0.8
Fig 10a. Switching Time Test Circuit
0.4
VDS
90%
0.0
25
50
75
100
125
TC , Case Temperature
150
( °C)
10%
VGS
td(on)
Fig 9. Maximum Drain Current Vs.
Case Temperature
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
100
10
D = 0.50
0.20
0.10
1
0.05
0.02
0.01
0.1
0.01
0.00001
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHQ7214
15V
L
VD S
D.U .T.
RG
IA S
2V
0V
GS
DR IV E R
+
V
- DD
0.01 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
150
TOP
120
BOTTOM
90
60
30
0
25
V (B R )D SS
ID
0.7A
1.0A
1.6A
50
75
100
125
150
Starting TJ , Junction Temperature ( ° C)
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHQ7214
Pre-Irradiation
Footnotes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = 50V, starting TJ = 25°C, L= 48mH,
Peak IL = 1.6A, VGS = 12V
➂ I SD ≤ 1.6A, di/dt ≤ 336A/µs,
VDD ≤ 250V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ Total Dose Irradiation with VGS Bias.
12 volt VGS applied and V DS = 0 during
irradiation per MIL-STD-750, method 1019, condition A
➅ Total Dose Irradiation with VDS Bias.
200 volt V DS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A
Case Outline and Dimensions — LCC-28
Q2
Q1
Q3
Q4
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 04/03
8
www.irf.com
Similar pages