INTEGRAL IZ74LV623

IN74LV623
OCTAL 3-STATE NONINVERTING
BUS TRANSCEIVER
Microcircuits IN74LV623 are pin-to-pin compatible
with microcircuits of series
74HC623A,
74HCT623A. Input voltage levels are compatible
with standard C-MOS levels
Features:
• Output voltage levels are compatible with input
levels C-MOS, N-MOS and TTL microcircuits.
• Supply voltage range from 1.2 to 3.6 V.
• Maximum input current: 1.0 mkA; 0.1 mkA at Т =
25 °С.
• Consumption current 8 mA.
ORDERING INFORMATION
IN74LV623N
Plastic
IN74LV623D
SOIC
IZ74LV623
Chip
TA = -40° ÷ 125° C for all packages
Block diagram
01
02
03
04
05
06
07
08
09
OEB
Truth table
OEA
Inputs
OEB
OEA
L
L
H
H
L
H
H
H
19
A1
B1
A2
B2
A3
B3
A4
B4
A5
18
Pinout
OEB 01
17
16
15
A6
B6
A7
B7
A8
B8
14
13
12
11
1
20
VCC
A1 02
19 OEA
A2 03
18 B1
A3 04
17 B2
A4 05
B5
Inputs/Outputs
А
В
A=B
Input
Input
B=A
Z
Z
A=B
B=A
623
16 B3
A5 06
15 B4
A6 07
14 B5
A7 08
13 B6
A8 09
12 B7
GND 10
11 B8
IN74LV623
Absolute maximum ratings*
Symbol
Parameter
VCC
Supply voltage
IIK *1
IOK *2
Value
Unit
from -0.5 to
+5.0
V
Input diode current
±20
mA
Output diode current
±50
mA
Output current source-drain
±35
mA
ICC
Supply output current
±70
mA
IGND
Common output current
±70
mA
PD
Dissipation power at free air change,
Plastic
DIP
*4
4
SOIC *
750
500
3
IO *
Tstg
Storage temperature
mW
°C
from -65 to
+150
TL
°C
260
*
Under absolute maximum conditions operation of microcircuits is not guaranteed.
Operation under maximum conditions is guaranteed.
*1 If VI < -0.5V or VI > VCC + 0.5 V.
*2 If VO < -0.5V or VO > VCC + 0.5 V.
*3 If -0.5V < VO < VCC + 0.5 V.
*4 Under operation in the temperature range from 65°С to 125°C value of dissipation
power drops down - to 10 mW/°C for Plastic DIP
- to 7 mW/°C for SOIC
Maximum conditions
Symbol
VCC
VIN
VOUT
TA
tLH, tHL
Parameter
Supply voltage
Input voltage
Output voltage
Operation temperature. For all packages
Period of signal rise and VCC =1.2 В
VCC =2.0 В
fall edges (Figure 1)
VCC =3.0 В
VCC =3.6 В
2
Min
Max
Unit
1.2
0
0
-40
0
3.6
VCC
VCC
125
1000
700
500
400
V
V
V
°C
ns
IN74LV623
DC electrical characteristics
Sym
bol
Parameter
Test
conditions
VIH High input voltage
VO = VCC-0.1 V
VIL Low input voltage
VO =0.1 V
VOH High output voltage
VI = VIH or VIL
Io = -50 mkA
VOL Low output voltage
II
IOZ
ICC
VCC,
V
1.2
2.0
3.0
3.6
1.2
2.0
3.0
3.6
1.2
2.0
3.0
3.6
Value
From 25°C
40°C to
85°C
min max min max
0.9
0.9
1.4
1.4
2.1
2.1
2.5
2.5
0.3
0.3
0.6
0.6
0.9
0.9
1.1
1.1
1.1
1.11 1.9
1.91 2.9
2.91 3.5
3.51 -
Unit
From 40°C to
125°C
min max
0.9
1.4
2.1
2.5
0.3
0.6
0.9
1.1
1.1
1.9
2.9
3.5
VI = VIH or VIL
3.0 2.48 2.34 - 2.20 Io = -8 mA
0.1
0.1
- 0.09
VI = VIH or VIL 1.2
0.1
0.1
- 0.09
Io = 50 mkA
2.0
0.1
0.1
- 0.09
3.0
0.1
0.1
- 0.09
3.6
VI = VIH or VIL
Io = 8 mA
Input current
VI = VCC or 0 V
Output current in «off» Outputs in the third
state
state
VI = VIL or VIH
VO =VCC or 0 V
Consumption current VI =VCC or 0 V
Io = 0 mkA
3
V
V
V
V
V
3.0
-
0.33
-
0.4
-
0.5
V
3.6
3.6
-
±0.1
±0.5
-
±1.0
±5
-
±1.0
±10
uA
uA
3.6
-
8.0
-
80
-
160
uA
IN74LV623
AC electrical characteristics (CL=50 pF, tLH = tHL = 6.0 ns)
Symbol
Parameter
Test
conditio
ns
tPHL, tPLH
Propagation delay time Fig. 1
tPHZ tPLZ
Propagation delay time Fig. 2
from A to B; in «on» and «off» states
from B to A
from OE to when switching from
Y
high, low levels into
«off» state
tPZH tPZL Propagation delay time Fig.2
from OE to when switching from
«off» state into high,
Y
low levels
tTHL, tTLH
CI
CPD
Transition time
switching on, off
when Fig. 1
Input capacitance
Dynamic
capacitance VI = 0 V
(for one channel)
or VCC
VCC,
V
25°C
1.2
2.0
3.0
1.2
2.0
3.0
min max
100
23
14
120
30
20
-
Value
Unit
From - From -40°C
40°C to
to 125°C
85°C
min max min max
ns
140
125
34
28
21
18
160
140
43
37
28
24
-
1.2
2.0
3.0
-
120
28
17
-
140
35
21
-
160
43
26
1.2
2.0
3.0
3.0
3.0
-
60
16
10
7
50
-
75
20
13
-
-
90
24
15
-
4
pF
IN74LV623
- Time diagram of control of AC characteristics tPLH, tPHL
t LH
t HL
0.9
0.9
A, B
VCC
V1
V1
0.1
GND
0.1
t PLH
t PHL
VCC
V1
V1
B, A
V 1 = 0.5 Vcc
Fig. 1
- Time diagram of control of AC characteristics tPLZ, tPHZ, tPZL, tPZH
VCC
V1
V1
OEB
0.1
GND
VCC
OEA
V1
V1
GND
t PZH
0.9
t PHZ
V1
A, B
VOH
0B
t PLZ
A, B
VCC
V1
t PZL
0.1
VOL
V 1 = 0.5V CC
Fig. 2
5