SMSC LAN8187-JT ±15kv esd protected mii/rmii 10/100 ethernet transceiver with hp auto-mdix & flexpwr⮠technology Datasheet

LAN8187/LAN8187i
±15kV ESD Protected MII/RMII
10/100 Ethernet Transceiver with
HP Auto-MDIX & flexPWR®
Technology
PRODUCT FEATURES
„
„
„
„
„
„
Datasheet
Single-Chip Ethernet Physical Layer Transceiver
(PHY)
ESD Protection levels of ±8kV HBM without external
protection devices
ESD protection levels of EN61000-4-2, ±8kV contact
mode, and ±15kV for air discharge mode per
independent test facility
Comprehensive flexPWR® Technology
Applications
— Flexible Power Management Architecture
„
LVCMOS Variable I/O voltage range: +1.6V to +3.6V
Integrated 3.3V to 1.8V regulator for optional single
supply operation.
„
— Regulator can be disabled if 1.8V system supply is
available.
„
„
„
„
„
„
Performs HP Auto-MDIX in accordance with IEEE
802.3ab specification
Automatic Polarity Correction
Latch-Up Performance Exceeds 150mA per
EIA/JESD 78, Class II
Energy Detect power-down mode
Low Current consumption power down mode
Low operating current consumption:
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
„
Set Top Boxes
Network Printers and Servers
LAN on Motherboard
10/100 PCMCIA/CardBus Applications
Embedded Telecom Applications
Video Record/Playback Systems
Cable Modems/Routers
DSL Modems/Routers
Digital Video Recorders
Personal Video Recorders
IP and Video Phones
Wireless Access Points
Digital Televisions
Digital Media Adaptors/Servers
POS Terminals
Automotive Networking
Gaming Consoles
Security Systems
Access Control
— 39mA typical in 10BASE-T and
— 79mA typical in 100BASE-TX mode
„
„
„
Supports Auto-negotiation and Parallel Detection
Supports the Media Independent Interface (MII) and
Reduced Media Independent Interface (RMII)
Compliant with IEEE 802.3-2005 standards
— MII Pins tolerant to 3.6V
„
„
„
„
„
„
„
„
IEEE 802.3-2005 compliant register functions
Integrated DSP with Adaptive Equalizer
Baseline Wander (BLW) Correction
Vendor Specific register functions
Low profile 64-pin TQFP lead-free RoHS compliant
package (10 x 10 x 1.4mm)
4 LED status indicators
Commercial Operating Temperature 0° C to 70° C
Industrial Operating Temperature -40° C to 85° C
version available (LAN8187i)
SMSC LAN8187/LAN8187i
Revision 1.7 (03-04-11)
DATASHEET
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Order Numbers:
LAN8187-JT for 64-pin, TQFP lead-free RoHS compliant package
LAN8187i-JT for (Industrial Temp) 64-pin, TQFP lead-free RoHS compliant package
This product meets the halogen maximum concentration values per IEC61249-2-21
For RoHS compliance and environmental information, please visit www.smsc.com/rohs
80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123
Copyright © 2011 SMSC or its subsidiaries. All rights reserved.
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 1.7 (03-04-11)
2
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table of Contents
Chapter 1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
Package Pin-out Diagram and Signal Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 4 Architecture Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
Top Level Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
100Base-TX Transmit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
100M Transmit Data Across the MII/RMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2
4B/5B Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3
Scrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4
NRZI and MLT3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.5
100M Transmit Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.6
100M Phase Lock Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
100Base-TX Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1
100M Receive Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2
Equalizer, Baseline Wander Correction and Clock and Data Recovery . . . . . . . . . . . . .
4.3.3
NRZI and MLT-3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4
Descrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5
Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.6
5B/4B Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.7
Receive Data Valid Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.8
Receiver Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.9
100M Receive Data Across the MII/RMII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10Base-T Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1
10M Transmit Data Across the MII/RMII Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2
Manchester Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.3
10M Transmit Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10Base-T Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1
10M Receive Input and Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2
Manchester Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.3
10M Receive Data Across the MII/RMII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.4
Jabber Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAC Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1
MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.2
RMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3
MII vs. RMII Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1
Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2
Re-starting Auto-negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.3
Disabling Auto-negotiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.4
Half vs. Full Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HP Auto-MDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal +1.8V Regulator Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.1
Disable the Internal +1.8V Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.2
Enable the Internal +1.8V Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(TX_ER/TXD4)/nINT Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC LAN8187/LAN8187i
3
DATASHEET
18
18
18
18
20
20
20
20
21
21
21
21
22
22
22
22
23
23
23
23
24
24
24
24
24
24
25
25
25
25
26
27
29
29
29
29
29
31
31
31
32
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.11
4.12
4.13
PHY Address Strapping and LED Output Polarity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Variable Voltage I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.1 Boot Strapping Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12.2 I/O Voltage Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PHY Management Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.1 Serial Management Interface (SMI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
32
32
33
33
33
Chapter 5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1
5.2
5.3
5.4
SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMI Register Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
Primary Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
Alternate Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1
Carrier Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2
Collision Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3
Isolate Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.4
Link Integrity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.5
Power-Down modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.6
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.7
LED Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.8
Loopback Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.9
Configuration Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
41
49
49
50
51
51
51
52
52
52
52
53
54
55
Chapter 6 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1
6.2
6.3
6.4
6.5
6.6
Serial Management Interface (SMI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MII 10/100Base-TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1
MII 100Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.2
MII 10Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RMII 10/100Base-TX/RX Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.1
RMII 100Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3.2
RMII 10Base-T TX/RX Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RMII CLKIN Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
58
58
60
62
62
64
65
66
67
Chapter 7 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1
Maximum Guaranteed Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.3
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.4
DC Characteristics - Input and Output Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
68
69
70
71
Chapter 8 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.1
8.2
8.3
8.4
Magnetics Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
75
75
75
Chapter 9 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Chapter 10 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Revision 1.7 (03-04-11)
4
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
List of Figures
Figure 1.1
Figure 1.2
Figure 2.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 9.1
LAN8187/LAN8187i System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
LAN8187/LAN8187i Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Package Pinout (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
100Base-TX Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Receive Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Relationship Between Received Data and specific MII Signals . . . . . . . . . . . . . . . . . . . . . . . 22
Direct cable connection vs. Cross-over cable connection.. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
PHY Address Strapping on LED’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
MDIO Timing and Frame Structure - READ Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
MDIO Timing and Frame Structure - WRITE Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Reset Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Near-end Loopback Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Far Loopback Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Connector Loopback Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
SMI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
100M MII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
100M MII Transmit Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10M MII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10M MII Transmit Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
100M RMII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
100M RMII Transmit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10M RMII Receive Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10M RMII Transmit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Reset Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
64 Pin TQFP Package Outline, 10X10X1.4 Body, 12x12 mm Footprint . . . . . . . . . . . . . . . . 77
SMSC LAN8187/LAN8187i
5
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
List of Tables
Table 2.1 LAN8187/LAN8187i 64-PIN TQFP Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.1 MII Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.2 LED Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.3 Management Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.4 Boot Strap Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.5 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.6 10/100 Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.7 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.8 No Connect Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3.9 Power Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.1 4B/5B Code Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.2 MII/RMII Signal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.3 Auto-MDIX Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 4.4 Boot Strapping Configuration Resistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.1 Control Register: Register 0 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.2 Status Register: Register 1 (Basic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.3 PHY ID 1 Register: Register 2 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.4 PHY ID 2 Register: Register 3 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended) . . . . . . . . .
Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended). . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended) . . . . . . .
Table 5.9 Register 8 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.10 Register 9 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.11 Register 10 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.12 Register 11 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.13 Register 12 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.14 Register 13 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.15 Register 14 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.16 Register 15 (Extended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.17 Silicon Revision Register 16: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.18 Mode Control/ Status Register 17: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.19 Special Modes Register 18: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.20 Reserved Register 19: Vendor-Specific. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.21 Register 24: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.22 Register 25: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.23 Register 26: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.24 Special Control/Status Indications Register 27: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . .
Table 5.25 Special Internal Testability Control Register 28: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . .
Table 5.26 Interrupt Source Flags Register 29: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.27 Interrupt Mask Register 30: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.28 PHY Special Control/Status Register 31: Vendor-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.29 SMI Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.30 Register 0 - Basic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.31 Register 1 - Basic Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.32 Register 2 - PHY Identifier 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.33 Register 3 - PHY Identifier 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.34 Register 4 - Auto Negotiation Advertisement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.35 Register 5 - Auto Negotiation Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.36 Register 6 - Auto Negotiation Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.37 Register 16 - Silicon Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.38 Register 17 - Mode Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision 1.7 (03-04-11)
6
DATASHEET
11
12
14
14
14
16
16
17
17
17
19
27
30
33
35
35
35
35
35
36
36
36
36
36
37
37
37
37
37
37
38
38
38
38
38
39
39
39
39
39
39
40
41
42
42
43
43
43
44
45
45
45
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.39 Register 18 - Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.40 Register 26 - Symbol Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.41 Register 27 - Special Control/Status Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.42 Register 28 - Special Internal Testability Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.43 Register 29 - Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.44 Register 30 - Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.45 Register 31 - PHY Special Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.46 Interrupt Management Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.47 Alternative Interrupt System Management Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.48 MODE[2:0] Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.1 SMI Timing Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.2 100M MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.3 100M MII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.4 10M MII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.5 10M MII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.6 100M RMII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.7 100M RMII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.8 10M RMII Receive Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.9 10M RMII Transmit Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.10 RMII CLKIN (REF_CLK) Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.11 Reset Timing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 6.12 LAN8187/LAN8187i Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.1 Maximum Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.2 ESD and LATCH-UP Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.4 Power Consumption Device Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.5 MII Bus Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.6 LAN Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.7 LED Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.8 Configuration Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.9 General Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.10 Analog References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.11 Internal Pull-Up / Pull-Down Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.12 100Base-TX Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7.13 10BASE-T Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 9.1 64 Pin TQFP Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 10.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC LAN8187/LAN8187i
7
DATASHEET
46
47
47
47
48
48
48
49
50
56
57
58
59
60
61
62
63
64
65
65
66
67
68
68
69
70
71
72
72
72
73
73
73
74
74
77
78
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 1 General Description
The SMSC LAN8187/LAN8187i is a low-power, industrial temperature (LAN8187i), variable I/O voltage,
analog interface IC with HP Auto-MDIX for high-performance embedded Ethernet applications. The
LAN8187/LAN8187i can be configured to operate on a single 3.3V supply utilizing an integrated 3.3V
to 1.8V linear regulator. An option is available to disable the linear regulator to optimize system designs
that have a 1.8V power plane available.
1.1
Architectural Overview
The LAN8187/LAN8187i consists of an encoder/decoder, scrambler/descrambler, wave-shaping
transmitter, output driver, twisted-pair receiver with adaptive equalizer and baseline wander (BLW)
correction, and clock and data recovery functions. The LAN8187/LAN8187i can be configured to
support either the Media Independent Interface (MII) or the Reduced Media Independent Interface
(RMII).
The LAN8187/LAN8187i is compliant with IEEE 802.3-2005 standards (MII Pins tolerant to 3.6V) and
supports both IEEE 802.3-2005 -compliant and vendor-specific register functions. It contains a fullduplex 10-BASE-T/100BASE-TX transceiver and supports 10-Mbps (10BASE-T) operation on
Category 3 and Category 5 unshielded twisted-pair cable, and 100-Mbps (100BASE-TX) operation on
Category 5 unshielded twisted-pair cable.
10/100
Media
Access
Controller
(MAC)
or SOC
System Bus
MII /RMII
SMSC
LAN8187/
LAN8187i
Magnetics
Ethernet
LEDS/GPIO
25 MHz (MII) or 50MHz (RMIII)
Crystal or External Clock
Figure 1.1 LAN8187/LAN8187i System Block Diagram
Hubs and switches with multiple integrated MACs and external PHYs can have a large pin count due
to the high number of pins needed for each MII interface. An increasing pin count causes increasing
cost.
The RMII interface is intended for use on Switch based ASICs or other embedded solutions requiring
minimal pincount for ethernet connectivity. RMII requires only 6 pins for each MAC to PHY interface
plus one common reference clock. The MII requires 16 pins for each MAC to PHY interface.
The SMSC LAN8187/LAN8187i is capable of running in RMII mode. Please contact your SMSC sales
representative for the latest RMII specification.
The LAN8187/LAN8187i referenced throughout this document applies to both the commercial
temperature and industrial temperature components. The LAN8187i refers to only the industrial
temperature component.
Revision 1.7 (03-04-11)
8
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
MODE0
MODE1
MODE2
MODE Control
nRESET
SMI
AutoNegotiation
10M Tx
Logic
HP Auto-MDIX
10M
Transmitter
TXP / TXN
Transmit Section
Management
Control
100M Tx
Logic
MII
RXP / RXN
100M
Transmitter
MDIX
Control
RXD[0..3]
RX_DV
RX_ER
RX_CLK
RMII / MII Logic
TXD[0..3]
TX_EN
TX_ER
TX_CLK
CRS
COL/CRS_DV
MDC
MDIO
100M Rx
Logic
DSP System:
Clock
Data Recovery
Equalizer
CH_SELECT
AMDIX_EN
PLL
Analog-toDigital
XTAL2
Interrupt
Generator
100M PLL
Receive Section
10M Rx
Logic
PHY
Address
Latches
Squelch &
Filters
10M PLL
XTAL1
Central
Bias
nINT
PHYAD[0..4]
LED Circuitry
SPEED100
LINK
ACTIVITY
FDUPLEX
GPO Circuitry
GPO0
GPO1
GPO2
Figure 1.2 LAN8187/LAN8187i Architectural Overview
SMSC LAN8187/LAN8187i
9
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 2 Pin Configuration
49
64
1
48
LAN8187/LAN8187I
LAN8187/LAN8187I
LAN8187/LAN8187i
33
32
16
33
CRS
COL/CRS_DV
CRS
nINT/TX_ER/TXD4
COL/CRS_DV
TXD3
nINT/TX_ER/TXD4
TXD2
TXD3
VDDIO
TXD2
TXD1
VDDIO
TXD0
TXD1
VSS5
TXD0
TX_EN
VSS5
TX_CLK
TX_EN
AMDIX_EN
TX_CLK
CH_SELECT
AMDIX_EN
RX_ER/RXD4
CH_SELECT
RX_CLK
RX_ER/RXD4
RX_DV
RX_CLK
RX_DV
CLKIN/XTAL1
CLKIN/XTAL1
VSS3VSS3
nRSTnRST
MDIOMDIO
MDC MDC
VSS4VSS4
RXD3/nINTSEL
RXD3/nINTSEL
RXD2RXD2
RXD1RXD1
RXD0RXD0
ACTIVITY/PHYAD2
ACTIVITY/PHYAD2
FDUPLEX/PHYAD3
FDUPLEX/PHYAD3
NC NC
XTAL2
XTAL2
32
16
LINK/PHYAD1
LINK/PHYAD1
NC NC
SPEED100/PHYAD0
48
17
GPO1/PHYAD4
GPO0/RMII
GPO2
GPO1/PHYAD4
MODE0
GPO2
MODE1
MODE0
MODE2
MODE1
VSS1
MODE2
NC
VSS1
VSS7
NC
VSS8
VSS7
NC
VSS8
NC
NC
VDD33
NC
VDD_CORE
VDD33
VSS2
VDD_CORE
SPEED100/PHYAD0
VSS2
1
17
GPO0/RMII
49
64
AVSS3
AVSS3
AVDD2
AVDD2
NC NC
RXP RXP
RXN RXN
AVDD1
AVDD1
AVSS2
AVSS2
TXP TXP
TXN TXN
AVSS1
AVSS1
Package Pin-out Diagram and Signal Table
NC NC
REG_EN
REG_EN
VSS6VSS6
AVDD3
AVDD3
AVSS4
AVSS4
EXRES1
EXRES1
2.1
Figure 2.1 Package Pinout (Top View)
Revision 1.7 (03-04-11)
10
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 2.1 LAN8187/LAN8187i 64-PIN TQFP Pinout
PIN NO.
PIN NAME
PIN NO.
PIN NAME
1
GPO0/RMII
33
RX_DV
2
GPO1/PHYAD4
34
RX_CLK
3
GPO2
35
RX_ER/RXD4
4
MODE0
36
CH_SELECT
5
MODE1
37
AMDIX_EN
6
MODE2
38
TX_CLK
7
VSS1
39
TX_EN
8
NC
40
VSS5
9
VSS7
41
TXD0
10
VSS8
42
TXD1
11
NC
43
VDDIO
12
NC
44
TXD2
13
VDD33
45
TXD3
14
VDD_CORE
46
nINT/TX_ER/TXD4
15
VSS2
47
COL/CRS_DV
16
SPEED100/PHYAD0
48
CRS
17
LINK/PHYAD1
49
AVSS1
18
NC
50
TXN
19
ACTIVITY/PHYAD2
51
TXP
20
FDUPLEX/PHYAD3
52
AVSS2
21
NC
53
AVDD1
22
XTAL2
54
RXN
23
CLKIN/XTAL1
55
RXP
24
VSS3
56
NC
25
nRST
57
AVDD2
26
MDIO
58
AVSS3
27
MDC
59
EXRES1
28
VSS4
60
AVSS4
29
RXD3/nINTSEL
61
AVDD3
30
RXD2
62
VSS6
31
RXD1
63
REG_EN
32
RXD0
64
NC
SMSC LAN8187/LAN8187i
11
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 3 Pin Description
This chapter describes the signals on each pin. When a lower case “n” is used at the beginning of the
signal name, it indicates that the signal is active low. For example, nRST indicates that the reset signal
is active low.
3.1
I/O Signals
I
Input. Digital LVCMOS levels.
O
Output. Digital LVCMOS levels.
I/O
Input or Output. Digital LVCMOS levels.
Note: The digital signals are not 5V tolerant. They are variable voltage from +1.6V to +3.6V.
AI
Input. Analog levels.
AO
Output. Analog levels.
Table 3.1 MII Signals
SIGNAL NAME
TYPE
DESCRIPTION
TXD0
I
Transmit Data 0: Bit 0 of the 4 data bits that are accepted by
the PHY for transmission.
TXD1
I
Transmit Data 1: Bit 1 of the 4 data bits that are accepted by
the PHY for transmission.
TXD2
I
Transmit Data 2: Bit 2 of the 4 data bits that are accepted by
the PHY for transmission
Note:
TXD3
I
This signal should be grounded in RMII Mode.
Transmit Data 3: Bit 3 of the 4 data bits that are accepted by
the PHY for transmission.
Note:
nINT/
TX_ER/
TXD4
I/O
This signal should be grounded in RMII Mode
MII Transmit Error: When driven high, the 4B/5B encode
process substitutes the Transmit Error code-group (/H/) for the
encoded data word. This input is ignored in 10Base-T operation.
MII Transmit Data 4: In Symbol Interface (5B Decoding) mode,
this signal becomes the MII Transmit Data 4 line, the MSB of the
5-bit symbol code-group.
Notes:
„ This signal is not used in RMII Mode.
„ This signal is mux’d with nINT
„ See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on
page 32 for additional information on configuration/strapping
options.
TX_EN
I
Transmit Enable: Indicates that valid data is presented on the
TXD[3:0] signals, for transmission. In RMII Mode, only TXD[1:0]
have valid data.
TX_CLK
O
Transmit Clock: 25MHz in 100Base-TX mode. 2.5MHz in
10Base-T mode.
Note:
Revision 1.7 (03-04-11)
This signal is not used in RMII Mode
12
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 3.1 MII Signals (continued)
SIGNAL NAME
TYPE
DESCRIPTION
RXD0
O
Receive Data 0: Bit 0 of the 4 data bits that are sent by the PHY
in the receive path.
RXD1
O
Receive Data 1: Bit 1 of the 4 data bits that are sent by the PHY
in the receive path.
RXD2
O
Receive Data 2: Bit 2 of the 4 data bits that sent by the PHY in
the receive path.
Note:
RXD3/
nINTSEL
O
This signal is not used in RMII Mode.
Receive Data 3: Bit 3 of the 4 data bits that sent by the PHY in
the receive path.
nINTSEL: On power-up or external reset, the mode of the
nINT/TXER/TXD4 pin is selected.
„ When floated or pulled to VDDIO, nINT is selected (default).
„ When pulled low to VSS through a Pull-down resistor (see
Table 4.4, “Boot Strapping Configuration Resistors,” on
page 33), TXER/TXD4 is selected.
Notes:
„ RXD3 is not used in RMII Mode
„ If the nINT/TXER/TXD4 pin is configured for nINT mode, it
needs a pull-up resistor to VDDIO.
„ See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on
page 32 for additional information on configuration/strapping
options.
RX_ER/
RXD4
I/O
Receive Error: Asserted to indicate that an error was detected
somewhere in the frame presently being transferred from the
PHY.
MII Receive Data 4: In Symbol Interface (5B Decoding) mode,
this signal is the MII Receive Data 4 signal, the MSB of the
received 5-bit symbol code-group. Unless configured in this
mode, the pin functions as RX_ER.
Notes:
„ This pin has an internal pull-down resistor, and must not be
high during reset. The RX_ER signal is optional in RMII Mode.
RX_CLK
O
Receive Clock: 25MHz in 100Base-TX mode. 2.5MHz in
10Base-T mode.
Notes:
„ This signal is not used in RMII Mode
COL/CRS_DV
O
MII Collision Detect: Asserted to indicate detection of collision
condition.
RMII CRS_DV (Carrier Sense/Receive Data Valid) Asserted to
indicate when the receive medium is non-idle. When a 10BT
packet is received, CRS_DV is asserted, but RXD[1:0] is held
low until the SFD byte (10101011) is received. In 10BT, halfduplex mode, transmitted data is not looped back onto the
receive data pins, per the RMII standard.
Note:
SMSC LAN8187/LAN8187i
See Section 4.6.3, "MII vs. RMII Configuration," on
page 26 for more details.
13
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 3.2 LED Signals
SIGNAL NAME
TYPE
DESCRIPTION
CRS
O
Carrier Sense: Indicates detection of carrier.
RX_DV
O
Receive Data Valid: Indicates that recovered and decoded data
nibbles are being presented on RXD[3:0].
Note:
SPEED100/
PHYAD0
I/O
This pin has an internal pull-down resistor, and must not
be high during reset. This signal is not used in RMII
Mode.
LED1 – SPEED100 indication. Active indicates that the selected
speed is 100Mbps. Inactive indicates that the selected speed is
10Mbps.
Note:
LINK/
PHYAD1
I/O
This signal is mux’d with PHYAD0
LED2 – LINK ON indication. Active indicates that the Link
(100Base-TX or 10Base-T) is on.
Note:
ACTIVITY/
PHYAD2
I/O
This signal is mux’d with PHYAD1
LED3 – ACTIVITY indication. Active indicates that there is
Carrier sense (CRS) from the active PMD.
Note:
FDUPLEX/
PHYAD3
I/O
This signal is mux’d with PHYAD2
LED4 – DUPLEX indication. Active indicates that the PHY is in
full-duplex mode.
Note:
This signal is mux’d with PHYAD3
Table 3.3 Management Signals
SIGNAL NAME
TYPE
MDIO
I/O
MDC
I
DESCRIPTION
Management Data Input/OUTPUT: Serial management data
input/output.
Management Clock: Serial management clock.
Table 3.4 Boot Strap Configuration Inputsa
SIGNAL NAME
TYPE
GPO1/
PHYAD4
I/O
FDUPLEX/
PHYAD3
I/O
ACTIVITY/
PHYAD2
I/O
LINK/
PHYAD1
I/O
SPEED100/
PHYAD0
I/O
Revision 1.7 (03-04-11)
DESCRIPTION
PHY Address Bit 4: set the default address of the PHY. This
signal is mux’d with GPO1
PHY Address Bit 3: set the default address of the PHY.
Note:
This signal is mux’d with FDUPLEX
PHY Address Bit 2: set the default address of the PHY.
Note:
This signal is mux’d with ACTIVITY
PHY Address Bit 1: set the default address of the PHY.
Note:
This signal is mux’d with LINK
PHY Address Bit 0: set the default address of the PHY.
Note:
This signal is mux’d with SPEED100
14
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 3.4 Boot Strap Configuration Inputsa
SIGNAL NAME
TYPE
DESCRIPTION
MODE2
I
PHY Operating Mode Bit 2: set the default MODE of the PHY.
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 56, for
the MODE options.
MODE1
I
PHY Operating Mode Bit 1: set the default MODE of the PHY.
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 56, for
the MODE options.
MODE0
I
PHY Operating Mode Bit 0: set the default MODE of the PHY.
See Section 5.4.9.2, "Mode Bus – MODE[2:0]," on page 56, for
the MODE options.
REG_EN
I
Regulator Enable: Internal +1.8V regulator enable:
VDDIO – Enables internal regulator.
VSS– Disables internal regulator.
As described in Section 4.9, this pin is sampled during the
power-on sequence to determine if the internal regulator should
turn on. When the regulator is disabled, external 1.8V must be
supplied to VDD_CORE, and the voltage at VDD33 must be at
least 2.64V before voltage is applied to VDD_CORE.
AMDIX_EN
I
HP Auto-MDIX Enable: This pin is used to manually disable the
HP Auto-MDIX function. This can be bypassed using the internal
register 27 bit 15. Please see Table 4.3, “Auto-MDIX Control,” on
page 30 for more information.
(VDDIO or Floating) – Enables HP Auto-MDIX.
VSS – Disables HP Auto-MDIX
CH_SELECT
I
Channel Select: This pin is used in conjunction with the
AMDIX_EN pin above to manual select the channel to transmit
and receive on. For more information please see Table 4.3,
“Auto-MDIX Control,” on page 30
(VDDIO or Floating) – MDIX - TX pair receives RX pair transmits.
0V – MDI -TX pair transmits RX pair receives.
GPO0/RMII
I/O
General Purpose Output 0 – General Purpose Output signal.
Driven by bits in registers 27 and 31.
RMII – MII/RMII mode selection is latched on the rising edge of
the internal reset (nreset) based on the following strapping:
Float the GPO0 pin for MII mode or pull-high with an external
Pull-up resistor (see Table 4.4, “Boot Strapping Configuration
Resistors,” on page 33) to VDDIO to set the device in RMII
mode.
Note:
See Section 4.6.3, "MII vs. RMII Configuration," on
page 26 for more details.
a.On nRST transition high, the PHY latches the state of the configuration pins in this table.
SMSC LAN8187/LAN8187i
15
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 3.5 General Signals
SIGNAL NAME
TYPE
DESCRIPTION
nINT
I/O
LAN Interrupt – Active Low output. Place a pull-up external
resistor (see Table 4.4, “Boot Strapping Configuration Resistors,”
on page 33) to VCC 3.3V.
Notes:
„ This signal is mux’d with TX_ER/TXD4
„ See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on
page 32 for additional details on Strapping options.
nRST
I
External Reset – input of the system reset. This signal is active
LOW. When this pin is deasserted, the mode register bits are
loaded from the mode pins as described in Section 5.4.9.2.
CLKIN/XTAL1
I
Clock Input – 25 Mhz or 50 MHz external clock or crystal input.
In MII mode, this signal is the 25 MHz reference input clock
In RMII mode, this signal is the 50 MHz reference input clock
which is typically also driven to the RMII compliant Ethernet MAC
clock input.
Note:
XTAL2
O
See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on
page 32 for additional details on Strapping options.
Clock Output – 25 MHz crystal output.
Note:
See Section 4.10, "(TX_ER/TXD4)/nINT Strapping," on
page 32 for additional details on Strapping options.
Also, float this pin if using an external clock being
driven through CLKIN/XTAL1
GPO2
O
General Purpose Output 2 – General Purpose Output signal
Driven by bits in registers 27 and 31.
GPO1
O
General Purpose Output 1 – General Purpose Output signal
Driven by bits in registers 27 and 31. This signal is mux’d with
PHYAD4.
GPO0/RMII
I/O
General Purpose Output 0 – General Purpose Output signal.
Driven by bits in registers 27 and 31.
RMII – MII/RMII mode selection is latched on the rising edge of
nRST based on the following strapping:
Float the GPO0 pin for MII mode or pull-high with an external
resistor to VDDIO to set the device in RMII mode. See Table 4.4,
“Boot Strapping Configuration Resistors,” on page 33
Note:
See Section 4.6.3, "MII vs. RMII Configuration," on
page 26 for more details.
Table 3.6 10/100 Line Interface
SIGNAL NAME
TYPE
TXP
AO
Transmit Data: 100Base-TX or 10Base-T differential transmit
outputs to magnetics.
TXN
AO
Transmit Data: 100Base-TX or 10Base-T differential transmit
outputs to magnetics.
Revision 1.7 (03-04-11)
DESCRIPTION
16
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 3.6 10/100 Line Interface
RXP
AI
Receive Data: 100Base-TX or 10Base-T differential receive
inputs from magnetics.
RXN
AI
Receive Data: 100Base-TX or 10Base-T differential receive
inputs from magnetics.
Table 3.7 Analog References
SIGNAL NAME
TYPE
DESCRIPTION
EXRES1
AI
Connects to reference resistor of value 12.4K-Ohm, 1%
connected as described in the Analog Layout Guidelines. The
nominal voltage is 1.2V and therefore the resistor will dissipate
approximately 1mW of power.
Table 3.8 No Connect Signals
SIGNAL NAME
TYPE
NC
DESCRIPTION
No Connect
Table 3.9 Power Signals
SIGNAL NAME
TYPE
AVDD[1-3]
POWER
+3.3V Analog Power
AVSS[1-4]
POWER
Analog Ground
VDD_CORE
POWER
+1.8V (Core voltage) - 1.8V for digital circuitry on chip. Supplied
by the on-chip regulator unless the regulator is disabled by
grounding the REG_EN pin. Place a 0.1uF capacitor near this
pin and connect the capacitor from this pin to ground. When
using the on-chip regulator, place a 4.7uF ±20% capacitor with
ESR < 1ohm near this pin and connect the capacitor from this
pin to ground. X5R or X7R ceramic capacitors are
recommended since they exhibit an ESR lower than 0.1ohm at
frequencies greater than 10kHz.
VDD33
POWER
+3.3V Digital Power
VDDIO
POWER
+1.6V to +3.6V Variable I/O Pad Power
VSS[1-8]
POWER
Digital Ground (GND)
SMSC LAN8187/LAN8187i
DESCRIPTION
17
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 4 Architecture Details
4.1
Top Level Functional Architecture
Functionally, the PHY can be divided into the following sections:
„
100Base-TX transmit and receive
„
10Base-T transmit and receive
„
MII or RMII interface to the controller
„
Auto-negotiation to automatically determine the best speed and duplex possible
„
Management Control to read status registers and write control registers
T X _C LK
(fo r M II o n ly)
MAC
100M
PLL
E x t R e f_ C L K (fo r R M II o n ly)
M II 2 5 M h z b y 4 b its
or
R M II 5 0 M h z b y 2 b its
25M H z
b y 4 b its
M II
4 B /5 B
E n co d e r
25M H z by
5 b its
M L T -3
M a g n e tic s
S cra m b le r
a n d P IS O
1 2 5 M b p s S e ria l
NRZI
C o n ve rte r
NRZI
M L T -3
C o n ve rte r
Tx
D rive r
M L T -3
M L T -3
R J4 5
M L T -3
C A T -5
Figure 4.1 100Base-TX Data Path
4.2
100Base-TX Transmit
The data path of the 100Base-TX is shown in Figure 4.1. Each major block is explained below.
4.2.1
100M Transmit Data Across the MII/RMII
For MII, the MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate
valid data. The data is latched by the PHY’s MII block on the rising edge of TX_CLK. The data is in
the form of 4-bit wide 25MHz data.
The MAC controller drives the transmit data onto the TXD bus and asserts TX_EN to indicate valid
data. The data is latched by the PHY’s MII block on the rising edge of REF_CLK. The data is in the
form of 2-bit wide 50MHz data.
4.2.2
4B/5B Encoding
The transmit data passes from the MII block to the 4B/5B encoder. This block encodes the data from
4-bit nibbles to 5-bit symbols (known as “code-groups”) according to Table 4.1. Each 4-bit data-nibble
is mapped to 16 of the 32 possible code-groups. The remaining 16 code-groups are either used for
control information or are not valid.
Revision 1.7 (03-04-11)
18
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
The first 16 code-groups are referred to by the hexadecimal values of their corresponding data nibbles,
0 through F. The remaining code-groups are given letter designations with slashes on either side. For
example, an IDLE code-group is /I/, a transmit error code-group is /H/, etc.
The encoding process may be bypassed by clearing bit 6 of register 31. When the encoding is
bypassed the 5th transmit data bit is equivalent to TX_ER.
Note that encoding can be bypassed only when the MAC interface is configured to operate in MII
mode.
Table 4.1 4B/5B Code Table
CODE
GROUP
SYM
RECEIVER
INTERPRETATION
11110
0
0
0000
01001
1
1
10100
2
10101
TRANSMITTER
INTERPRETATION
0
0000
0001
1
0001
2
0010
2
0010
3
3
0011
3
0011
01010
4
4
0100
4
0100
01011
5
5
0101
5
0101
01110
6
6
0110
6
0110
01111
7
7
0111
7
0111
10010
8
8
1000
8
1000
10011
9
9
1001
9
1001
10110
A
A
1010
A
1010
10111
B
B
1011
B
1011
11010
C
C
1100
C
1100
11011
D
D
1101
D
1101
11100
E
E
1110
E
1110
11101
F
F
1111
F
1111
11111
I
IDLE
Sent after /T/R until TX_EN
11000
J
First nibble of SSD, translated to “0101”
following IDLE, else RX_ER
Sent for rising TX_EN
10001
K
Second nibble of SSD, translated to
“0101” following J, else RX_ER
Sent for rising TX_EN
01101
T
First nibble of ESD, causes de-assertion
of CRS if followed by /R/, else assertion
of RX_ER
Sent for falling TX_EN
00111
R
Second nibble of ESD, causes
deassertion of CRS if following /T/, else
assertion of RX_ER
Sent for falling TX_EN
00100
H
Transmit Error Symbol
Sent for rising TX_ER
00110
V
INVALID, RX_ER if during RX_DV
INVALID
11001
V
INVALID, RX_ER if during RX_DV
INVALID
SMSC LAN8187/LAN8187i
DATA
19
DATASHEET
DATA
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 4.1 4B/5B Code Table (continued)
CODE
GROUP
SYM
00000
V
INVALID, RX_ER if during RX_DV
INVALID
00001
V
INVALID, RX_ER if during RX_DV
INVALID
00010
V
INVALID, RX_ER if during RX_DV
INVALID
00011
V
INVALID, RX_ER if during RX_DV
INVALID
00101
V
INVALID, RX_ER if during RX_DV
INVALID
01000
V
INVALID, RX_ER if during RX_DV
INVALID
01100
V
INVALID, RX_ER if during RX_DV
INVALID
10000
V
INVALID, RX_ER if during RX_DV
INVALID
4.2.3
RECEIVER
INTERPRETATION
TRANSMITTER
INTERPRETATION
Scrambling
Repeated data patterns (especially the IDLE code-group) can have power spectral densities with large
narrow-band peaks. Scrambling the data helps eliminate these peaks and spread the signal power
more uniformly over the entire channel bandwidth. This uniform spectral density is required by FCC
regulations to prevent excessive EMI from being radiated by the physical wiring.
The seed for the scrambler is generated from the PHY address, PHYAD[4:0], ensuring that in multiplePHY applications, such as repeaters or switches, each PHY will have its own scrambler sequence.
The scrambler also performs the Parallel In Serial Out conversion (PISO) of the data.
4.2.4
NRZI and MLT3 Encoding
The scrambler block passes the 5-bit wide parallel data to the NRZI converter where it becomes a
serial 125MHz NRZI data stream. The NRZI is encoded to MLT-3. MLT3 is a tri-level code where a
change in the logic level represents a code bit “1” and the logic output remaining at the same level
represents a code bit “0”.
4.2.5
100M Transmit Driver
The MLT3 data is then passed to the analog transmitter, which drives the differential MLT-3 signal, on
outputs TXP and TXN, to the twisted pair media across a 1:1 ratio isolation transformer. The 10BaseT and 100Base-TX signals pass through the same transformer so that common “magnetics” can be
used for both. The transmitter drives into the 100Ω impedance of the CAT-5 cable. Cable termination
and impedance matching require external components.
4.2.6
100M Phase Lock Loop (PLL)
The 100M PLL locks onto reference clock and generates the 125MHz clock used to drive the 125 MHz
logic and the 100Base-Tx Transmitter.
Revision 1.7 (03-04-11)
20
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
RX_CLK
(for MII only)
MAC
100M
PLL
Ext Ref_CLK (for RMII only)
MII 25Mhz by 4 bits
or
RMII 50Mhz by 2 bits
25MHz
by 4 bits
MII/RMII
4B/5B
Decoder
25MHz by
5 bits
Descrambler
and SIPO
125 Mbps Serial
NRZI
Converter
A/D
Converter
NRZI
MLT-3
MLT-3
Converter
DSP: Timing
recovery, Equalizer
and BLW Correction
MLT-3
Magnetics
RJ45
MLT-3
MLT-3
CAT-5
6 bit Data
Figure 4.2 Receive Data Path
4.3
100Base-TX Receive
The receive data path is shown in Figure 4.2. Detailed descriptions are given below.
4.3.1
100M Receive Input
The MLT-3 from the cable is fed into the PHY (on inputs RXP and RXN) via a 1:1 ratio transformer.
The ADC samples the incoming differential signal at a rate of 125M samples per second. Using a 64level quanitizer it generates 6 digital bits to represent each sample. The DSP adjusts the gain of the
ADC according to the observed signal levels such that the full dynamic range of the ADC can be used.
4.3.2
Equalizer, Baseline Wander Correction and Clock and Data Recovery
The 6 bits from the ADC are fed into the DSP block. The equalizer in the DSP section compensates
for phase and amplitude distortion caused by the physical channel consisting of magnetics, connectors,
and CAT- 5 cable. The equalizer can restore the signal for any good-quality CAT-5 cable between 1m
and 150m.
If the DC content of the signal is such that the low-frequency components fall below the low frequency
pole of the isolation transformer, then the droop characteristics of the transformer will become
significant and Baseline Wander (BLW) on the received signal will result. To prevent corruption of the
received data, the PHY corrects for BLW and can receive the ANSI X3.263-1995 FDDI TP-PMD
defined “killer packet” with no bit errors.
The 100M PLL generates multiple phases of the 125MHz clock. A multiplexer, controlled by the timing
unit of the DSP, selects the optimum phase for sampling the data. This is used as the received
recovered clock. This clock is used to extract the serial data from the received signal.
4.3.3
NRZI and MLT-3 Decoding
The DSP generates the MLT-3 recovered levels that are fed to the MLT-3 converter. The MLT-3 is then
converted to an NRZI data stream.
SMSC LAN8187/LAN8187i
21
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.3.4
Descrambling
The descrambler performs an inverse function to the scrambler in the transmitter and also performs
the Serial In Parallel Out (SIPO) conversion of the data.
During reception of IDLE (/I/) symbols. the descrambler synchronizes its descrambler key to the
incoming stream. Once synchronization is achieved, the descrambler locks on this key and is able to
descramble incoming data.
Special logic in the descrambler ensures synchronization with the remote PHY by searching for IDLE
symbols within a window of 4000 bytes (40us). This window ensures that a maximum packet size of
1514 bytes, allowed by the IEEE 802.3 standard, can be received with no interference. If no IDLEsymbols are detected within this time-period, receive operation is aborted and the descrambler re-starts
the synchronization process.
The descrambler can be bypassed by setting bit 0 of register 31.
4.3.5
Alignment
The de-scrambled signal is then aligned into 5-bit code-groups by recognizing the /J/K/ Start-of-Stream
Delimiter (SSD) pair at the start of a packet. Once the code-word alignment is determined, it is stored
and utilized until the next start of frame.
4.3.6
5B/4B Decoding
The 5-bit code-groups are translated into 4-bit data nibbles according to the 4B/5B table. The
translated data is presented on the RXD[3:0] signal lines. The SSD, /J/K/, is translated to “0101 0101”
as the first 2 nibbles of the MAC preamble. Reception of the SSD causes the PHY to assert the RX_DV
signal, indicating that valid data is available on the RXD bus. Successive valid code-groups are
translated to data nibbles. Reception of either the End of Stream Delimiter (ESD) consisting of the /T/R/
symbols, or at least two /I/ symbols causes the PHY to de-assert carrier sense and RX_DV.
These symbols are not translated into data.
The decoding process may be bypassed by clearing bit 6 of register 31. When the decoding is
bypassed the 5th receive data bit is driven out on RX_ER/RXD4. Decoding may be bypassed only
when the MAC interface is in MII mode.
4.3.7
Receive Data Valid Signal
The Receive Data Valid signal (RX_DV) indicates that recovered and decoded nibbles are being
presented on the RXD[3:0] outputs synchronous to RX_CLK. RX_DV becomes active after the /J/K/
delimiter has been recognized and RXD is aligned to nibble boundaries. It remains active until either
the /T/R/ delimiter is recognized or link test indicates failure or SIGDET becomes false.
RX_DV is asserted when the first nibble of translated /J/K/ is ready for transfer over the Media
Independent Interface (MII).
CLEAR-TEXT
J
K
5
5
5
D
data
data
data
data
T
R
5
5
5
5
5
D
data
data
data
data
Idle
RX_CLK
RX_DV
RXD
Figure 4.3 Relationship Between Received Data and specific MII Signals
Revision 1.7 (03-04-11)
22
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.3.8
Receiver Errors
During a frame, unexpected code-groups are considered receive errors. Expected code groups are the
DATA set (0 through F), and the /T/R/ (ESD) symbol pair. When a receive error occurs, the RX_ER
signal is asserted and arbitrary data is driven onto the RXD[3:0] lines. Should an error be detected
during the time that the /J/K/ delimiter is being decoded (bad SSD error), RX_ER is asserted true and
the value ‘1110’ is driven onto the RXD[3:0] lines. Note that the Valid Data signal is not yet asserted
when the bad SSD error occurs.
4.3.9
100M Receive Data Across the MII/RMII Interface
In MII mode, the 4-bit data nibbles are sent to the MII block. These data nibbles are clocked to the
controller at a rate of 25MHz. The controller samples the data on the rising edge of RX_CLK. To ensure
that the setup and hold requirements are met, the nibbles are clocked out of the PHY on the falling
edge of RX_CLK. RX_CLK is the 25MHz output clock for the MII bus. It is recovered from the received
data to clock the RXD bus. If there is no received signal, it is derived from the system reference clock
(CLKIN).
When tracking the received data, RX_CLK has a maximum jitter of 0.8ns (provided that the jitter of the
input clock, CLKIN, is below 100ps).
In RMII mode, the 2-bit data nibbles are sent to the RMII block. These data nibbles are clocked to the
controller at a rate of 50MHz. The controller samples the data on the rising edge of CLKIN/XTAL1
(REF_CLK). To ensure that the setup and hold requirements are met, the nibbles are clocked out of
the PHY on the falling edge of CLKIN/XTAL1 (REF_CLK).
4.4
10Base-T Transmit
Data to be transmitted comes from the MAC layer controller. The 10Base-T transmitter receives 4-bit
nibbles from the MII at a rate of 2.5MHz and converts them to a 10Mbps serial data stream. The data
stream is then Manchester-encoded and sent to the analog transmitter, which drives a signal onto the
twisted pair via the external magnetics.
The 10M transmitter uses the following blocks:
4.4.1
„
MII (digital)
„
TX 10M (digital)
„
10M Transmitter (analog)
„
10M PLL (analog)
10M Transmit Data Across the MII/RMII Interface
The MAC controller drives the transmit data onto the TXD BUS. For MII, when the controller has driven
TX_EN high to indicate valid data, the data is latched by the MII block on the rising edge of TX_CLK.
The data is in the form of 4-bit wide 2.5MHz data.
In order to comply with legacy 10Base-T MAC/Controllers, in Half-duplex mode the PHY loops back
the transmitted data, on the receive path. This does not confuse the MAC/Controller since the COL
signal is not asserted during this time. The PHY also supports the SQE (Heartbeat) signal. See Section
5.4.2, "Collision Detect," on page 51, for more details.
For RMII, TXD[1:0] shall transition synchronously with respect to REF_CLK. When TX_EN is asserted,
TXD[1:0] are accepted for transmission by the LAN8187/LAN8187i. TXD[1:0] shall be “00” to indicate
idle when TX_EN is deasserted. Values of TXD[1:0] other than “00” when TX_EN is deasserted are
reserved for out-of-band signalling (to be defined). Values other than “00” on TXD[1:0] while TX_EN is
deasserted shall be ignored by the LAN8187/LAN8187i.TXD[1:0] shall provide valid data for each
REF_CLK period while TX_EN is asserted.
SMSC LAN8187/LAN8187i
23
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.4.2
Manchester Encoding
The 4-bit wide data is sent to the TX10M block. The nibbles are converted to a 10Mbps serial NRZI
data stream. The 10M PLL locks onto the external clock or internal oscillator and produces a 20MHz
clock. This is used to Manchester encode the NRZ data stream. When no data is being transmitted
(TX_EN is low), the TX10M block outputs Normal Link Pulses (NLPs) to maintain communications with
the remote link partner.
4.4.3
10M Transmit Drivers
The Manchester encoded data is sent to the analog transmitter where it is shaped and filtered before
being driven out as a differential signal across the TXP and TXN outputs.
4.5
10Base-T Receive
The 10Base-T receiver gets the Manchester- encoded analog signal from the cable via the magnetics.
It recovers the receive clock from the signal and uses this clock to recover the NRZI data stream. This
10M serial data is converted to 4-bit data nibbles which are passed to the controller across the MII at
a rate of 2.5MHz.
This 10M receiver uses the following blocks:
4.5.1
„
Filter and SQUELCH (analog)
„
10M PLL (analog)
„
RX 10M (digital)
„
MII (digital)
10M Receive Input and Squelch
The Manchester signal from the cable is fed into the PHY (on inputs RXP and RXN) via 1:1 ratio
magnetics. It is first filtered to reduce any out-of-band noise. It then passes through a SQUELCH
circuit. The SQUELCH is a set of amplitude and timing comparators that normally reject differential
voltage levels below 300mV and detect and recognize differential voltages above 585mV.
4.5.2
Manchester Decoding
The output of the SQUELCH goes to the RX10M block where it is validated as Manchester encoded
data. The polarity of the signal is also checked. If the polarity is reversed (local RXP is connected to
RXN of the remote partner and vice versa), then this is identified and corrected. The reversed condition
is indicated by the flag “XPOL“, bit 4 in register 27. The 10M PLL is locked onto the received
Manchester signal and from this, generates the received 20MHz clock. Using this clock, the
Manchester encoded data is extracted and converted to a 10MHz NRZI data stream. It is then
converted from serial to 4-bit wide parallel data.
The RX10M block also detects valid 10Base-T IDLE signals - Normal Link Pulses (NLPs) - to maintain
the link.
4.5.3
10M Receive Data Across the MII/RMII Interface
For MII, the 4 bit data nibbles are sent to the MII block. In MII mode, these data nibbles are valid on
the rising edge of the 2.5 MHz RX_CLK.
For RMII, the 2bit data nibbles are sent to the RMII block. In RMII mode, these data nibbles are valid
on the rising edge of the RMII REF_CLK.
Revision 1.7 (03-04-11)
24
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.5.4
Jabber Detection
Jabber is a condition in which a station transmits for a period of time longer than the maximum
permissible packet length, usually due to a fault condition, that results in holding the TX_EN input for
a long period. Special logic is used to detect the jabber state and abort the transmission to the line,
within 45ms. Once TX_EN is deasserted, the logic resets the jabber condition.
As shown in Table 5.31, bit 1.1 indicates that a jabber condition was detected.
4.6
MAC Interface
The MII/RMII block is responsible for the communication with the controller. Special sets of hand-shake
signals are used to indicate that valid received/transmitted data is present on the 4 bit receive/transmit
bus.
The device must be configured in MII or RMII mode. This is done by specific pin strapping
configurations.
See section Section 4.6.3, "MII vs. RMII Configuration," on page 26 for information on pin strapping
and how the pins are mapped differently.
4.6.1
MII
The MII includes 16 interface signals:
„
transmit data - TXD[3:0]
„
transmit strobe - TX_EN
„
transmit clock - TX_CLK
„
transmit error - TX_ER/TXD4
„
receive data - RXD[3:0]
„
receive strobe - RX_DV
„
receive clock - RX_CLK
„
receive error - RX_ER/RXD4
„
collision indication - COL
„
carrier sense - CRS
In MII mode, on the transmit path, the PHY drives the transmit clock, TX_CLK, to the controller. The
controller synchronizes the transmit data to the rising edge of TX_CLK. The controller drives TX_EN
high to indicate valid transmit data. The controller drives TX_ER high when a transmit error is detected.
On the receive path, the PHY drives both the receive data, RXD[3:0], and the RX_CLK signal. The
controller clocks in the receive data on the rising edge of RX_CLK when the PHY drives RX_DV high.
The PHY drives RX_ER high when a receive error is detected.
4.6.2
RMII
The SMSC LAN8187/LAN8187i supports the low pin count Reduced Media Independent Interface
(RMII) intended for use between Ethernet PHYs and Switch ASICs. Under IEEE 802.3, an MII
comprised of 16 pins for data and control is defined. In devices incorporating many MACs or PHY
interfaces such as switches, the number of pins can add significant cost as the port counts increase.
The management interface (MDIO/MDC) is identical to MII. The RMII interface has the following
characteristics:
„
It is capable of supporting 10Mb/s and 100Mb/s data rates
„
A single clock reference is sourced from the MAC to PHY (or from an external source)
„
It provides independent 2 bit wide (di-bit) transmit and receive data paths
SMSC LAN8187/LAN8187i
25
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
„
It uses LVCMOS signal levels, compatible with common digital CMOS ASIC processes
The RMII includes 6 interface signals with one of the signals being optional:
4.6.2.1
„
transmit data - TXD[1:0]
„
transmit strobe - TX_EN
„
receive data - RXD[1:0]
„
receive error - RX_ER (Optional)
„
carrier sense - CRS_DV
„
Reference Clock - CLKIN/XTAL1 (RMII references usually define this signal as REF_CLK)
Reference Clock
The Reference Clock - CLKIN, is a continuous clock that provides the timing reference for CRS_DV,
RXD[1:0], TX_EN, TXD[1:0], and RX_ER. The Reference Clock is sourced by the MAC or an external
source. Switch implementations may choose to provide REF_CLK as an input or an output depending
on whether they provide a REF_CLK output or rely on an external clock distribution device.
The “Reference Clock” frequency must be 50 MHz +/- 50 ppm with a duty cycle between 40% and
60% inclusive. The SMSC LAN8187/LAN8187i uses the “Reference Clock” as the network clock such
that no buffering is required on the transmit data path. The SMSC LAN8187/LAN8187i will recover the
clock from the incoming data stream, the receiver will account for differences between the local
REF_CLK and the recovered clock through use of sufficient elasticity buffering. The elasticity buffer
does not affect the Inter-Packet Gap (IPG) for received IPGs of 36 bits or greater. To tolerate the clock
variations specified here for Ethernet MTUs, the elasticity buffer shall tolerate a minimum of +/-10 bits.
4.6.2.2
CRS_DV - Carrier Sense/Receive Data Valid
The CRS_DV is asserted by the LAN8187/LAN8187i when the receive medium is non-idle. CRS_DV
is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode.
That is, in 10BASE-T mode, when squelch is passed or in 100BASE-X mode when 2 non-contiguous
zeroes in 10 bits are detected, carrier is said to be detected.
Loss of carrier shall result in the deassertion of CRS_DV synchronous to the cycle of REF_CLK which
presents the first di-bit of a nibble onto RXD[1:0] (i.e. CRS_DV is deasserted only on nibble
boundaries). If the LAN8187/LAN8187i has additional bits to be presented on RXD[1:0] following the
initial deassertion of CRS_DV, then the LAN8187/LAN8187i shall assert CRS_DV on cycles of
REF_CLK which present the second di-bit of each nibble and de-assert CRS_DV on cycles of
REF_CLK which present the first di-bit of a nibble. The result is: Starting on nibble boundaries
CRS_DV toggles at 25 MHz in 100Mb/s mode and 2.5 MHz in 10Mb/s mode when CRS ends before
RX_DV (i.e. the FIFO still has bits to transfer when the carrier event ends.) Therefore, the MAC can
accurately recover RX_DV and CRS.
During a false carrier event, CRS_DV shall remain asserted for the duration of carrier activity. The data
on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV
is asynchronous relative to REF_CLK, the data on RXD[1:0] shall be “00” until proper receive signal
decoding takes place.
4.6.3
MII vs. RMII Configuration
The LAN8187/LAN8187i must be configured to support the MII or RMII bus for connectivity to the MAC.
This configuration is done through the GPO0/RMII pin. To select MII mode, float the GPO0/RMII pin.
To select RMII mode, pull-high with an external resistor (see Table 4.4, “Boot Strapping Configuration
Resistors,” on page 33) to VDD33. On the rising edge of the internal reset (nreset), the register bit
18.14 (MIIMODE) is loaded based on the strapping of the GPO0/RMII pin.
Most of the MII and RMII pins are multiplexed. Table 4.2, "MII/RMII Signal Mapping", shown below,
describes the relationship of the related device pins to what pins are used in MII and RMII mode.
Revision 1.7 (03-04-11)
26
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 4.2 MII/RMII Signal Mapping
4.7
SIGNAL NAME
MII MODE
RMII MODE
TXD0
TXD0
TXD0
TXD1
TXD1
TXD1
TX_EN
TX_EN
TX_EN
RX_ER/
RXD4
RX_ER/
RXD4/
RX_ER
Note 4.2
COL/CRS_DV
COL
CRS_DV
RXD0
RXD0
RXD0
RXD1
RXD1
RXD1
TXD2
TXD2
Note 4.1
TXD3
TXD3
Note 4.1
TX_ER/
TXD4
TX_ER/
TXD4
CRS
CRS
RX_DV
RX_DV
RXD2
RXD2
RXD3
RXD3
TX_CLK
TX_CLK
RX_CLK
RX_CLK
CLKIN/XTAL1
CLKIN/XTAL1
REF_CLK
Note 4.1
In RMII mode, this pin needs to tied to VSS.
Note 4.2
The RX_ER signal is optional on the RMII bus. This signal is required by the PHY, but it
is optional for the MAC. The MAC can choose to ignore or not use this signal.
Auto-negotiation
The purpose of the Auto-negotiation function is to automatically configure the PHY to the optimum link
parameters based on the capabilities of its link partner. Auto-negotiation is a mechanism for
exchanging configuration information between two link-partners and automatically selecting the highest
performance mode of operation supported by both sides. Auto-negotiation is fully defined in clause 28
of the IEEE 802.3 specification.
Once auto-negotiation has completed, information about the resolved link can be passed back to the
controller via the Serial Management Interface (SMI). The results of the negotiation process are
reflected in the Speed Indication bits in register 31, as well as the Link Partner Ability Register
(Register 5).
The auto-negotiation protocol is a purely physical layer activity and proceeds independently of the MAC
controller.
The advertised capabilities of the PHY are stored in register 4 of the SMI registers. The default
advertised by the PHY is determined by user-defined on-chip signal options.
SMSC LAN8187/LAN8187i
27
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
The following blocks are activated during an Auto-negotiation session:
„
Auto-negotiation (digital)
„
100M ADC (analog)
„
100M PLL (analog)
„
100M equalizer/BLW/clock recovery (DSP)
„
10M SQUELCH (analog)
„
10M PLL (analog)
„
10M Transmitter (analog)
When enabled, auto-negotiation is started by the occurrence of one of the following events:
„
Hardware reset
„
Software reset
„
Power-down reset
„
Link status down
„
Setting register 0, bit 9 high (auto-negotiation restart)
On detection of one of these events, the PHY begins auto-negotiation by transmitting bursts of Fast
Link Pulses (FLP). These are bursts of link pulses from the 10M transmitter. They are shaped as
Normal Link Pulses and can pass uncorrupted down CAT-3 or CAT-5 cable. A Fast Link Pulse Burst
consists of up to 33 pulses. The 17 odd-numbered pulses, which are always present, frame the FLP
burst. The 16 even-numbered pulses, which may be present or absent, contain the data word being
transmitted. Presence of a data pulse represents a “1”, while absence represents a “0”.
The data transmitted by an FLP burst is known as a “Link Code Word.” These are defined fully in IEEE
802.3 clause 28. In summary, the PHY advertises 802.3 compliance in its selector field (the first 5 bits
of the Link Code Word). It advertises its technology ability according to the bits set in register 4 of the
SMI registers.
There are 4 possible matches of the technology abilities. In the order of priority these are:
„
100M Full Duplex (Highest priority)
„
100M Half Duplex
„
10M Full Duplex
„
10M Half Duplex
If the full capabilities of the PHY are advertised (100M, Full Duplex), and if the link partner is capable
of 10M and 100M, then auto-negotiation selects 100M as the highest performance mode. If the link
partner is capable of Half and Full duplex modes, then auto-negotiation selects Full Duplex as the
highest performance operation.
Once a capability match has been determined, the link code words are repeated with the acknowledge
bit set. Any difference in the main content of the link code words at this time will cause auto-negotiation
to re-start. Auto-negotiation will also re-start if not all of the required FLP bursts are received.
The capabilities advertised during auto-negotiation by the PHY are initially determined by the logic
levels latched on the MODE[2:0] bus after reset completes. This bus can also be used to disable autonegotiation on power-up.
Writing register 4 bits [8:5] allows software control of the capabilities advertised by the PHY. Writing
register 4 does not automatically re-start auto-negotiation. Register 0, bit 9 must be set before the new
abilities will be advertised. Auto-negotiation can also be disabled via software by clearing register 0,
bit 12.
The LAN8187/LAN8187i does not support “Next Page” capability.
Revision 1.7 (03-04-11)
28
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.7.1
Parallel Detection
If the LAN8187/LAN8187i is connected to a device lacking the ability to auto-negotiate (i.e. no FLPs
are detected), it is able to determine the speed of the link based on either 100M MLT-3 symbols or
10M Normal Link Pulses. In this case the link is presumed to be Half Duplex per the IEEE standard.
This ability is known as “Parallel Detection.” This feature ensures interoperability with legacy link
partners. If a link is formed via parallel detection, then bit 0 in register 6 is cleared to indicate that the
Link Partner is not capable of auto-negotiation. The controller has access to this information via the
management interface. If a fault occurs during parallel detection, bit 4 of register 6 is set.
Register 5 is used to store the Link Partner Ability information, which is coded in the received FLPs.
If the Link Partner is not auto-negotiation capable, then register 5 is updated after completion of parallel
detection to reflect the speed capability of the Link Partner.
4.7.2
Re-starting Auto-negotiation
Auto-negotiation can be re-started at any time by setting register 0, bit 9. Auto-negotiation will also restart if the link is broken at any time. A broken link is caused by signal loss. This may occur because
of a cable break, or because of an interruption in the signal transmitted by the Link Partner. Autonegotiation resumes in an attempt to determine the new link configuration.
If the management entity re-starts Auto-negotiation by writing to bit 9 of the control register, the
LAN8187/LAN8187i will respond by stopping all transmission/receiving operations. Once the
break_link_timer is done, in the Auto-negotiation state-machine (approximately 1200ms) the autonegotiation will re-start. The Link Partner will have also dropped the link due to lack of a received
signal, so it too will resume auto-negotiation.
4.7.3
Disabling Auto-negotiation
Auto-negotiation can be disabled by setting register 0, bit 12 to zero. The device will then force its
speed of operation to reflect the information in register 0, bit 13 (speed) and register 0, bit 8 (duplex).
The speed and duplex bits in register 0 should be ignored when auto-negotiation is enabled.
4.7.4
Half vs. Full Duplex
Half Duplex operation relies on the CSMA/CD (Carrier Sense Multiple Access / Collision Detect)
protocol to handle network traffic and collisions. In this mode, the carrier sense signal, CRS, responds
to both transmit and receive activity. In this mode, If data is received while the PHY is transmitting,
a collision results.
In Full Duplex mode, the PHY is able to transmit and receive data simultaneously. In this mode, CRS
responds only to receive activity. The CSMA/CD protocol does not apply and collision detection is
disabled.
4.8
HP Auto-MDIX
HP Auto-MDIX facilitates the use of CAT-3 (10 Base-T) or CAT-5 (100 Base-T) media UTP interconnect
cable without consideration of interface wiring scheme. If a user plugs in either a direct connect LAN
cable, or a cross-over patch cable, as shown in Figure 4.4 on page 31, the SMSC LAN8187/LAN8187i
Auto-MDIX PHY is capable of configuring the TXP/TXN and RXP/RXN pins for correct transceiver
operation.
The internal logic of the device detects the TX and RX pins of the connecting device. Since the RX
and TX line pairs are interchangeable, special PCB design considerations are needed to accommodate
the symmetrical magnetics and termination of an Auto-MDIX design.
The Auto-MDIX function can be disabled through an internal register 27, or the external control pins
AMDIX_EN. When disabled the TX and RX pins can be configured with the Channel Select
(CH_SELECT) pin as desired. The table below shows how the control pins and the register are used
to configure the Auto-MDIX function.
SMSC LAN8187/LAN8187i
29
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 4.3 Auto-MDIX Control
REGISTER 27 BITS
EXTERNAL PINS
STATUS
15
14
13
AMDIXEN
CH_SELECT
TX AND RX OUTPUT PINS
0
X
X
1
X
Auto-MDIX
0
X
X
0
0
Normal MDI
0
X
X
0
1
Crossed MDIX
1
1
X
X
X
Auto-MDIX
1
0
0
X
X
Normal MDI
1
0
1
X
X
Crossed MDIX
Note: X = either 1 or 0.
Note: X = Dont Care.
Revision 1.7 (03-04-11)
30
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Figure 4.4 Direct cable connection vs. Cross-over cable connection.
4.9
Internal +1.8V Regulator Disable
One feature of the flexPWR technology is the ability to to configure the internal 1.8V regulator off.
When the regulator is disabled, external 1.8V must be supplied to VDD_CORE. This makes it possible
to reduce total system power, since an external switching regulator with greater efficiency than the
internal linear regulator may be used to provide the +1.8V to the PHY circuitry.
4.9.1
Disable the Internal +1.8V Regulator
To disable the +1.8V internal regulator, a pulldown strapping resistor (see Table 4.4, “Boot Strapping
Configuration Resistors,” on page 33) is attached from REG_EN to VSS. When both VDDIO and VDDA
are within specification, the PHY will sample the REG_EN pin to determine if the internal regulator
should turn on. If the pin is grounded to VSS, then the internal regulator is disabled, and the system
must supply +1.8V to the VDD_CORE pin. The voltage at VDD33 must be at least 2.64V (0.8 * 3.3V)
before voltage is applied to VDD_CORE. As descibed in Section 4.9.2, when the REG_EN pin is left
floating or pulled up to VDDIO, then the internal regulator is enabled and the system does not supply
+1.8V to the VDD_CORE pin.
When the +1.8V internal regulator is disabled, a 0.1uF capacitor must be added at the VDD_CORE
pin and placed close to the PHY. This capacitance provides decoupling of the external power supply
noise.
4.9.2
Enable the Internal +1.8V Regulator
To enable the internal regulator, a pull-up resistor (see Table 4.4, “Boot Strapping Configuration
Resistors,” on page 33) to VDDIO may be added to the REG_EN pin. When the REG_EN pin is left
floating, the internal regulator will aslo be enabled.
Both a 4.7uF low-ESR and a 0.1uF capacitor must be added at the VDD_CORE pin and placed close
to the PHY. This capacitance ensures stability of the internal regulator.
SMSC LAN8187/LAN8187i
31
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
4.10
(TX_ER/TXD4)/nINT Strapping
The TX_ER, TXD4 and nINT functions share a common pin. There are two functional modes for this
pin, the TX_ER/TXD4 mode and nINT (interrupt) mode. The RXD3 pin is used to select one of these
two functional modes.
The RXD3 pin is latched on the rising edge of the internal reset (nreset) to select the mode. The
system designer must float the RXD3 pin for nINT mode or pull-low with an external resistor (see
Table 4.4, “Boot Strapping Configuration Resistors,” on page 33) to VSS to set the device in
TX_ER/TXD4 mode. The default setting is high (nINT mode).
4.11
PHY Address Strapping and LED Output Polarity Selection
The PHY ADDRESS bits are latched on the rising edge of the internal reset (nreset). The 5-bit address
word[0:4] is input on the LED1, LED2, LED3, LED4, GPO1 output pins. The default setting is all high
5'b1_1111.
The address lines are strapped as defined in the diagram below. The LED outputs will automatically
change polarity based on the presence of an external pull-down resistor. If the LED pin is pulled high
(by an internal 100K pull-up resistor) to select a logical high PHY address, then the LED output will
be active low. If the LED pin is pulled low (by an external pull-down resistor (see Table 4.4, “Boot
Strapping Configuration Resistors,” on page 33) to select a logical low PHY address, the LED output
will then be an active high output.
To set the PHY address on the LED pins without LEDs or on the GPO1 or CRS pin, float the pin to
set the address high or pull-down the pin with an external resistor (see Table 4.4, “Boot Strapping
Configuration Resistors,” on page 33) to GND to set the address low. See the figure below:
Phy Address = 0
LED output = active high
Phy Address = 1
LED output = active low
VDDIO
LED1-LED4
~10K ohms
~270 ohms
~270 ohms
LED1-LED4
Figure 4.5 PHY Address Strapping on LED’s
4.12
Variable Voltage I/O
The Digital I/O pins on the LAN8187/LAN8187i are variable voltage to take advantage of low power
savings from shrinking technologies. These pins can operate from a low I/O voltage of +1.6V up to
+3.6V. Due to this low voltage feature addition, the system designer needs to take consideration as
for two aspects of their design. Boot strapping configuration and I/O voltage stability.
4.12.1
Boot Strapping Configuration
Due to a lower I/O voltage, a lower strapping resistor needs to be used to ensure the strapped
configuration is latched into the PHY device at power-on reset.
Revision 1.7 (03-04-11)
32
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 4.4 Boot Strapping Configuration Resistors
I/O
VOLTAGE
4.12.2
PULL-UP/PULL-DOWN
RESISTOR
3.0 to 3.6
10k ohm resistor
2.0 to 3.0
7.5k ohm resistor
1.6 to 2.0
5k ohm resistor
I/O Voltage Stability
The I/O voltage the System Designer applies on VDDIO needs to maintain its value with a tolerance
of +/- 10%. Varying the voltage up or down, after the PHY has completed power-on reset can cause
errors in the PHY operation.
4.13
PHY Management Control
The Management Control module includes 3 blocks:
4.13.1
„
Serial Management Interface (SMI)
„
Management Registers Set
„
Interrupt
Serial Management Interface (SMI)
The Serial Management Interface is used to control the LAN8187/LAN8187i and obtain its status. This
interface supports registers 0 through 6 as required by Clause 22 of the 802.3 standard, as well as
“vendor-specific” registers 16 to 31 allowed by the specification. Non-supported registers (7 to 15) will
be read as hexadecimal “FFFF”.
At the system level there are 2 signals, MDIO and MDC where MDIO is bi-directional open-drain and
MDC is the clock.
A special feature (enabled by register 17 bit 3) forces the PHY to disregard the PHY-Address in the
SMI packet causing the PHY to respond to any address. This feature is useful in multi-PHY
applications and in production testing, where the same register can be written in all the PHYs using a
single write transaction.
The MDC signal is an aperiodic clock provided by the station management controller (SMC). The MDIO
signal receives serial data (commands) from the controller SMC, and sends serial data (status) to the
SMC. The minimum time between edges of the MDC is 160 ns. There is no maximum time between
edges.
The minimum cycle time (time between two consecutive rising or two consecutive falling edges) is 400
ns. These modest timing requirements allow this interface to be easily driven by the I/O port of a
microcontroller.
The data on the MDIO line is latched on the rising edge of the MDC. The frame structure and timing
of the data is shown in Figure 4.6 and Figure 4.7.
The timing relationships of the MDIO signals are further described in Section 6.1, "Serial Management
Interface (SMI) Timing," on page 57.
SMSC LAN8187/LAN8187i
33
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Read Cycle
MDC
MDI0
32 1's
Preamble
0
1
Start of
Frame
1
0
A4
OP
Code
A3
A2
A1
A0 R4 R3 R2 R1 R0
PHY Address
Register Address
D15
D14
Turn
Around
...
...
D1
D0
Data
Data To Phy
Data From Phy
Figure 4.6 MDIO Timing and Frame Structure - READ Cycle
Write Cycle
MDC
MDIO
32 1's
Preamble
0
1
Start of
Frame
0
1
OP
Code
A4
A3
A2
A1
A0 R4 R3 R2 R1 R0
PHY Address
Register Address
D15
Turn
Around
D14
...
...
D1
D0
Data
Data To Phy
Figure 4.7 MDIO Timing and Frame Structure - WRITE Cycle
Revision 1.7 (03-04-11)
34
DATASHEET
SMSC LAN8187/LAN8187i
Table 5.1 Control Register: Register 0 (Basic)
15
14
13
12
11
10
9
8
7
6
Reset
Loopback
Speed Select
A/N Enable
Power Down
Isolate
Restart A/N
Duplex Mode
Collision Test
5
4
3
2
1
0
Reserved
Table 5.2 Status Register: Register 1 (Basic)
15
14
13
12
11
10
100BaseT4
100Base-TX
Full Duplex
100Base-TX
Half Duplex
10Base-T
Full Duplex
10Base-T
Half Duplex
9
8
7
6
Reserved
5
4
3
2
1
0
A/N
Complete
Remote
Fault
A/N
Ability
Link
Status
Jabber
Detect
Extended
Capability
35
DATASHEET
Table 5.3 PHY ID 1 Register: Register 2 (Extended)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
3
2
1
0
PHY ID Number (Bits 3-18 of the Organizationally Unique Identifier - OUI)
Table 5.4 PHY ID 2 Register: Register 3 (Extended)
15
14
13
12
11
10
9
8
PHY ID Number (Bits 19-24 of the Organizationally Unique
Identifier - OUI)
7
6
5
4
Manufacturer Model Number
Manufacturer Revision Number
SMSC LAN8187/LAN8187i
Table 5.5 Auto-Negotiation Advertisement: Register 4 (Extended)
15
14
13
12
Next
Page
Reserved
Remote
Fault
Reserved
11
10
Pause
Operation
9
8
7
6
5
100Base-T4
100Base-TX
Full Duplex
100BaseTX
10Base-T
Full
Duplex
10Base-T
4
3
2
1
IEEE 802.3
Selector Field
0
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Revision 1.7 (03-04-11)
Chapter 5 Registers
15
14
13
12
Next
Page
Acknowledge
Remote
Fault
11
Reserved
10
9
8
7
6
5
Pause
100BaseT4
100Base-TX
Full Duplex
100BaseTX
10Base-T
Full Duplex
10Base-T
4
3
2
1
0
IEEE 802.3 Selector Field
Revision 1.7 (03-04-11)
Datasheet
15
14
13
12
11
10
9
8
7
6
5
Reserved
4
3
2
1
0
Parallel
Detect
Fault
Link
Partner
Next Page
Able
Next Page
Able
Page
Received
Link
Partner
A/N Able
Table 5.8 Auto-Negotiation Link Partner Next Page Transmit Register: Register 7 (Extended)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
36
DATASHEET
Table 5.7 Auto-Negotiation Expansion Register: Register 6 (Extended)
Reserved
Note: Next Page capability is not supported.
Table 5.9 Register 8 (Extended)
15
14
13
12
11
10
9
8
7
6
IEEE Reserved
Table 5.10 Register 9 (Extended)
15
14
13
12
11
10
9
8
7
IEEE Reserved
6
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Table 5.6 Auto-Negotiation Link Partner Base Page Ability Register: Register 5 (Extended)
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
IEEE Reserved
Table 5.12 Register 11 (Extended)
15
14
13
12
11
10
9
8
7
6
IEEE Reserved
Table 5.13 Register 12 (Extended)
15
14
13
12
11
10
9
8
7
6
37
DATASHEET
IEEE Reserved
Table 5.14 Register 13 (Extended)
15
14
13
12
11
10
9
8
7
6
IEEE Reserved
Table 5.15 Register 14 (Extended)
15
14
13
12
11
10
9
8
7
6
IEEE Reserved
SMSC LAN8187/LAN8187i
Table 5.16 Register 15 (Extended)
15
14
13
12
11
10
9
8
7
IEEE Reserved
6
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
15
Datasheet
Revision 1.7 (03-04-11)
Table 5.11 Register 10 (Extended)
Revision 1.7 (03-04-11)
Datasheet
15
14
13
12
11
10
9
Reserved
8
7
6
5
4
3
Silicon Revision
2
1
0
Reserved
Table 5.18 Mode Control/ Status Register 17: Vendor-Specific
15
14
RSVD
13
12
11
10
9
8
EDPWRDOWN
RSVD
LOWSQEN
MDPREBP
FARLOOPBACK
7
RSVD
6
5
ALTINT
4
RSVD
3
2
1
0
PHYADBP
Force
Good
Link
Status
ENERGYON
Reserved
Table 5.19 Special Modes Register 18: Vendor-Specific
15
14
Reserved
MIIMODE
13
12
11
10
9
8
7
Reserved
6
5
4
3
2
MODE
1
0
PHYAD
38
DATASHEET
RSVD = Reserved
Table 5.20 Reserved Register 19: Vendor-Specific
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
5
4
3
2
1
0
Reserved
Table 5.21 Register 24: Vendor-Specific
15
14
13
12
11
10
9
8
7
Reserved
6
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Table 5.17 Silicon Revision Register 16: Vendor-Specific
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
5
4
3
2
1
0
Reserved
Table 5.23 Register 26: Vendor-Specific
15
14
13
12
11
10
9
8
7
6
Symbol Error Counter
Table 5.24 Special Control/Status Indications Register 27: Vendor-Specific
39
DATASHEET
15
14
13
12
11
AMDIXCTRL
Reserved
CH_SELECT
Reserved
SQEOFF
10
9
8
7
6
5
Reserved
4
3
XPOL
2
1
0
Reserved
Table 5.25 Special Internal Testability Control Register 28: Vendor-Specific
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Reserved
Table 5.26 Interrupt Source Flags Register 29: Vendor-Specific
15
14
13
12
11
10
9
8
Reserved
SMSC LAN8187/LAN8187i
7
6
5
4
3
2
1
0
INT7
INT6
INT5
INT4
INT3
INT2
INT1
Reserved
1
0
Table 5.27 Interrupt Mask Register 30: Vendor-Specific
15
14
13
12
Reserved
11
10
9
8
7
6
5
4
Mask Bits
3
2
Reserved
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
15
Datasheet
Revision 1.7 (03-04-11)
Table 5.22 Register 25: Vendor-Specific
Reserved
13
12
Autodone
11
10
Reserved
9
8
7
6
5
GPO2
GPO1
GPO0
Enable 4B5B
Reserved
4
3
2
Speed Indication
1
0
Reserved
Scramble Disable
Revision 1.7 (03-04-11)
14
40
DATASHEET
15
SMSC LAN8187/LAN8187i
Datasheet
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Table 5.28 PHY Special Control/Status Register 31: Vendor-Specific
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
5.1
SMI Register Mapping
The following registers are supported (register numbers are in decimal):
Table 5.29 SMI Register Mapping
REGISTER #
5.2
DESCRIPTION
Group
0
Basic Control Register
Basic
1
Basic Status Register
Basic
2
PHY Identifier 1
Extended
3
PHY Identifier 2
Extended
4
Auto-Negotiation Advertisement Register
Extended
5
Auto-Negotiation Link Partner Ability Register
Extended
6
Auto-Negotiation Expansion Register
Extended
16
Silicon Revision Register
Vendor-specific
17
Mode Control/Status Register
Vendor-specific
18
Special Modes
Vendor-specific
20
Reserved
Vendor-specific
21
Reserved
Vendor-specific
22
Reserved
Vendor-specific
23
Reserved
Vendor-specific
26
Symbol Error Counter Register
Vendor-specific
27
Control / Status Indication Register
Vendor-specific
28
Reserved
Vendor-specific
29
Interrupt Source Register
Vendor-specific
30
Interrupt Mask Register
Vendor-specific
31
PHY Special Control/Status Register
Vendor-specific
SMI Register Format
The mode key is as follows:
„
RW = Read/write,
„
SC = Self clearing,
„
WO = Write only,
„
RO = Read only,
„
LH = Latch high, clear on read of register,
„
LL = Latch low, clear on read of register,
„
NASR = Not Affected by Software Reset
„
X = Either a 1 or 0.
SMSC LAN8187/LAN8187i
41
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.30 Register 0 - Basic Control
ADDRESS
NAME
DESCRIPTION
MODE
DEFAULT
0.15
Reset
1 = software reset. Bit is self-clearing. For best results,
when setting this bit do not set other bits in this
register. The configuration (as described in
Section 5.4.9.2) is set from the register bit values,
and not from the mode pins.
RW/
SC
0
0.14
Loopback
1 = loopback mode,
0 = normal operation
RW
0
0.13
Speed Select
1 = 100Mbps,
0 = 10Mbps.
Ignored if Auto Negotiation is enabled (0.12 = 1).
RW
Set by
MODE[2:0]
bus
0.12
AutoNegotiation
Enable
1 = enable auto-negotiate process
(overrides 0.13 and 0.8)
0 = disable auto-negotiate process
RW
Set by
MODE[2:0]
bus
0.11
Power Down
1 = General power down mode,
0 = normal operation
RW
0
0.10
Isolate
1 = electrical isolation of PHY from MII
0 = normal operation
RW
Set by
MODE[2:0]
bus
0.9
Restart AutoNegotiate
1 = restart auto-negotiate process
0 = normal operation. Bit is self-clearing.
RW/
SC
0
0.8
Duplex Mode
1 = Full duplex,
0 = Half duplex.
Ignored if Auto Negotiation is enabled (0.12 = 1).
RW
Set by
MODE[2:0]
bus
0.7
Collision Test
1 = enable COL test,
0 = disable COL test
RW
0
0.6:0
Reserved
RO
0
MODE
DEFAULT
1 = T4 able,
0 = no T4 ability
RO
0
Table 5.31 Register 1 - Basic Status
ADDRESS
NAME
1.15
100Base-T4
1.14
100Base-TX Full
Duplex
1 = TX with full duplex,
0 = no TX full duplex ability
RO
1
1.13
100Base-TX Half
Duplex
1 = TX with half duplex,
0 = no TX half duplex ability
RO
1
1.12
10Base-T Full
Duplex
1 = 10Mbps with full duplex
0 = no 10Mbps with full duplex ability
RO
1
1.11
10Base-T Half
Duplex
1 = 10Mbps with half duplex
0 = no 10Mbps with half duplex ability
RO
1
1.10:6
Reserved
1.5
Auto-Negotiate
Complete
1 = auto-negotiate process completed
0 = auto-negotiate process not completed
RO
0
Revision 1.7 (03-04-11)
DESCRIPTION
42
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.31 Register 1 - Basic Status (continued)
ADDRESS
NAME
DESCRIPTION
1.4
Remote Fault
1.3
Auto-Negotiate
Ability
1.2
Link Status
1.1
Jabber Detect
1.0
Extended
Capabilities
MODE
DEFAULT
1 = remote fault condition detected
0 = no remote fault
RO/
LH
0
1 = able to perform auto-negotiation function
0 = unable to perform auto-negotiation function
RO
1
1 = link is up,
0 = link is down
RO/
LL
0
1 = jabber condition detected
0 = no jabber condition detected
RO/
LH
0
1 = supports extended capabilities registers
0 = does not support extended capabilities registers
RO
1
Table 5.32 Register 2 - PHY Identifier 1
ADDRESS
NAME
DESCRIPTION
MODE
DEFAULT
2.15:0
PHY ID Number
Assigned to the 3rd through 18th bits of the
Organizationally Unique Identifier (OUI), respectively.
OUI=00800Fh
RW
0007h
MODE
DEFAULT
Assigned to the 19th through 24th bits of the OUI.
RW
C0h
Six-bit manufacturer’s model number.
RW
0Ch
Four-bit manufacturer’s revision number.
RW
4h
Table 5.33 Register 3 - PHY Identifier 2
ADDRESS
NAME
DESCRIPTION
3.15:10
PHY ID Number
3.9:4
Model Number
3.3:0
Revision Number
Note: For Revision “B” devices, the default Revision Number is 3h.
Table 5.34 Register 4 - Auto Negotiation Advertisement
ADDRESS
NAME
4.15
Next Page
4.14
Reserved
4.13
Remote Fault
4.12
Reserved
4.11:10
Pause Operation
SMSC LAN8187/LAN8187i
DESCRIPTION
MODE
DEFAULT
RO
0
RO
0
1 = remote fault detected,
0 = no remote fault
RW
0
00 = No PAUSE
01 = Symmetric PAUSE
10 = Asymmetric PAUSE toward link partner
11 = Both Symmetric PAUSE and Asymmetric
PAUSE toward local device
R/W
00
1 = next page capable,
0 = no next page ability
This Phy does not support next page ability.
43
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.34 Register 4 - Auto Negotiation Advertisement (continued)
ADDRESS
NAME
4.9
100Base-T4
4.8
100Base-TX Full
Duplex
4.7
100Base-TX
4.6
10Base-T Full
Duplex
4.5
4.4:0
DESCRIPTION
MODE
DEFAULT
1 = T4 able,
0 = no T4 ability
This Phy does not support 100Base-T4.
RO
0
1 = TX with full duplex,
0 = no TX full duplex ability
RW
Set by
MODE[2:0]
bus
1 = TX able,
0 = no TX ability
RW
1
1 = 10Mbps with full duplex
0 = no 10Mbps with full duplex ability
RW
Set by
MODE[2:0]
bus
10Base-T
1 = 10Mbps able,
0 = no 10Mbps ability
RW
Set by
MODE[2:0]
bus
Selector Field
[00001] = IEEE 802.3
RW
00001
Table 5.35 Register 5 - Auto Negotiation Link Partner Ability
ADDRESS
NAME
5.15
Next Page
5.14
MODE
DEFAULT
1 = “Next Page” capable,
0 = no “Next Page” ability
This Phy does not support next page ability.
RO
0
Acknowledge
1 = link code word received from partner
0 = link code word not yet received
RO
0
5.13
Remote Fault
1 = remote fault detected,
0 = no remote fault
RO
0
5.12:11
Reserved
RO
0
5.10
Pause Operation
1 = Pause Operation is supported by remote MAC,
0 = Pause Operation is not supported by remote MAC
RO
0
5.9
100Base-T4
1 = T4 able,
0 = no T4 ability.
This Phy does not support T4 ability.
RO
0
5.8
100Base-TX Full
Duplex
1 = TX with full duplex,
0 = no TX full duplex ability
RO
0
5.7
100Base-TX
1 = TX able,
0 = no TX ability
RO
0
5.6
10Base-T Full
Duplex
1 = 10Mbps with full duplex
0 = no 10Mbps with full duplex ability
RO
0
5.5
10Base-T
1 = 10Mbps able,
0 = no 10Mbps ability
RO
0
5.4:0
Selector Field
[00001] = IEEE 802.3
RO
00001
Revision 1.7 (03-04-11)
DESCRIPTION
44
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.36 Register 6 - Auto Negotiation Expansion
ADDRESS
NAME
6.15:5
Reserved
6.4
Parallel Detection
Fault
6.3
DESCRIPTION
MODE
DEFAULT
RO
0
1 = fault detected by parallel detection logic
0 = no fault detected by parallel detection logic
RO/
LH
0
Link Partner Next
Page Able
1 = link partner has next page ability
0 = link partner does not have next page ability
RO
0
6.2
Next Page Able
1 = local device has next page ability
0 = local device does not have next page ability
RO
0
6.1
Page Received
1 = new page received
0 = new page not yet received
RO/
LH
0
6.0
Link Partner AutoNegotiation Able
1 = link partner has auto-negotiation ability
0 = link partner does not have auto-negotiation ability
RO
0
MODE
DEFAULT
RO
0
RO
0001
RO
0
MODE
DEFAULT
Write as 0; ignore on read.
RW
0
Enable the Energy Detect Power-Down mode:
0 = Energy Detect Power-Down is disabled
1 = Energy Detect Power-Down is enabled
RW
0
Write as 0, ignore on read
RW
0
Table 5.37 Register 16 - Silicon Revision
ADDRESS
NAME
16.15:10
Reserved
16.9:6
Silicon Revision
16.5:0
Reserved
DESCRIPTION
Four-bit silicon revision identifier.
Table 5.38 Register 17 - Mode Control/Status
ADDRESS
NAME
17.15:14
Reserved
17.13
EDPWRDOWN
17.12
Reserved
17.11
LOWSQEN
The Low_Squelch signal is equal to LOWSQEN AND
EDPWRDOWN.
Low_Squelch = 1 implies a lower threshold
(more sensitive).
Low_Squelch = 0 implies a higher threshold
(less sensitive).
RW
0
17.10
MDPREBP
Management Data Preamble Bypass:
0 – detect SMI packets with Preamble
1 – detect SMI packets without preamble
RW
0
17.9
FARLOOPBACK
Force the module to the FAR Loop Back mode, i.e. all
the received packets are sent back simultaneously (in
100Base-TX only). This bit is only active in RMII
mode. In this mode the user needs to supply a 50MHz
clock to the PHY. This mode works even if MII Isolate
(0.10) is set.
RW
0
17.8:7
Reserved
Write as 0, ignore on read.
RW
00
SMSC LAN8187/LAN8187i
DESCRIPTION
45
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.38 Register 17 - Mode Control/Status (continued)
ADDRESS
NAME
DESCRIPTION
MODE
DEFAULT
17.6
ALTINT
Alternate Interrupt Mode.
0 = Primary interrupt system enabled (Default).
1 = Alternate interrupt system enabled.
See Section 5.3, "Interrupt Management," on page 49.
RW
0
17.5:4
Reserved
Write as 0, ignore on read.
RW
00
17.3
PHYADBP
1 = PHY disregards PHY address in SMI access
write.
RW
0
17.2
Force
Good Link Status
0 = normal operation;
1 = force 100TX- link active;
RW
0
ENERGYON – indicates whether energy is detected
on the line (see Section 5.4.5.2, "Energy Detect
Power-Down," on page 52); it goes to “0” if no valid
energy is detected within 256ms. Reset to “1” by
hardware reset, unaffected by SW reset.
RO
1
Write as 0, ignore on read.
RW
0
MODE
DEFAULT
RW
0
RW,
NASR
Note 5.1
Write as 0, ignore on read.
RW,
NASR
000000
Note:
17.1
ENERGYON
17.0
Reserved
This bit should be set only during lab testing
Table 5.39 Register 18 - Special Modes
ADDRESS
NAME
DESCRIPTION
18.15
Reserved
Write as 0, ignore on read.
18.14
MIIMODE
MII Mode: Reflects the mode of the digital interface:
0 – MII interface.
1 – RMII interface
Note:
When writing to this register, the default
value of this bit must always be written back.
18.13:8
Reserved
18.7:5
MODE
PHY Mode of operation. Refer to Section 5.4.9.2,
"Mode Bus – MODE[2:0]," on page 56 for more
details.
RW,
NASR
XXX
EVB8700
default
111
18.4:0
PHYAD
PHY Address.
The PHY Address is used for the SMI address and for
the initialization of the Cipher (Scrambler) key. Refer
to Section 5.4.9.1, "Physical Address Bus PHYAD[4:0]," on page 55 for more details.
RW,
NASR
PHYAD
EVB8700
default
11111
Note 5.1
Revision 1.7 (03-04-11)
The default value of this field is determined by the strapping of the GPO0/RMII pin. Refer
to Section 4.6.3, "MII vs. RMII Configuration," on page 26 for additional information.
46
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.40 Register 26 - Symbol Error Counter
ADDRESS
NAME
DESCRIPTION
MODE
DEFAULT
26.15:0
Sym_Err_Cnt
100Base-TX receiver-based error register that
increments when an invalid code symbol is received
including IDLE symbols. The counter is incremented
only once per packet, even when the received packet
contains more than one symbol error. The 16-bit
register counts up to 65,536 (216) and rolls over to 0
if incremented beyond that value. This register is
cleared on reset, but is not cleared by reading the
register. It does not increment in 10Base-T mode.
RO
0
Table 5.41 Register 27 - Special Control/Status Indications
ADDRESS
NAME
DESCRIPTION
MODE
DEFAULT
27.15
AMDIXIOCTRL
Enables the external AMDIX and CH_SELECT pins
0 - External pins AMDIX_EN and CH_SELECT control
the AMDIX.
1 - Internal bits 27.14 and 27.13 control the AMDIX.
RW
0
RW
0
RW
0
RW
0
RW,
NASR
0
Note:
27.14
AMDIX_ENABLE
HP Auto-MDIX control
0 - Auto-MDIX disabled (use 27.13 to control channel)
1 - Auto-MDIX enable
Note:
27.13
CH_SELECT
Please see Table 4.3, “Auto-MDIX Control,”
on page 30
This bit can only be used if 27.15 is a 1.
Manual Channel Select
0 - MDI -TX transmits RX receives
1 - MDIX -TX receives RX transmits
Note:
This bit can only be used if 27.15 is a 1 and
27.14 is a 0.
27.12
Reserved
Write as 0. Ignore on read.
27:11
SQEOFF
Disable the SQE (Signal Quality Error) test
(Heartbeat):
0 - SQE test is enabled.
1 - SQE test is disabled.
27.10:5
Reserved
Write as 0. Ignore on read.
RW
000000
27.4
XPOL
Polarity state of the 10Base-T:
0 - Normal polarity
1 - Reversed polarity
RO
0
27.3:0
Reserved
Reserved
RO
XXXXb
MODE
DEFAULT
RW
N/A
Table 5.42 Register 28 - Special Internal Testability Controls
ADDRESS
NAME
28.15:0
Reserved
SMSC LAN8187/LAN8187i
DESCRIPTION
Do not write to this register. Ignore on read.
47
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.43 Register 29 - Interrupt Source Flags
ADDRESS
NAME
29.15:8
Reserved
29.7
DESCRIPTION
MODE
DEFAULT
Ignore on read.
RO/
LH
0
INT7
1 = ENERGYON generated
0 = not source of interrupt
RO/
LH
X
29.6
INT6
1 = Auto-Negotiation complete
0 = not source of interrupt
RO/
LH
X
29.5
INT5
1 = Remote Fault Detected
0 = not source of interrupt
RO/
LH
X
29.4
INT4
1 = Link Down (link status negated)
0 = not source of interrupt
RO/
LH
X
29.3
INT3
1 = Auto-Negotiation LP Acknowledge
0 = not source of interrupt
RO/
LH
X
29.2
INT2
1 = Parallel Detection Fault
0 = not source of interrupt
RO/
LH
X
29.1
INT1
1 = Auto-Negotiation Page Received
0 = not source of interrupt
RO/
LH
X
29.0
Reserved
Ignore on read.
RO/
LH
0
MODE
DEFAULT
Table 5.44 Register 30 - Interrupt Mask
ADDRESS
NAME
DESCRIPTION
30.15:8
Reserved
Write as 0; ignore on read.
RO
0
30.7:0
Mask Bits
1 = interrupt source is enabled
0 = interrupt source is masked
RW
0
MODE
DEFAULT
Do not write to this register. Ignore on read.
RW
0
Table 5.45 Register 31 - PHY Special Control/Status
ADDRESS
NAME
31.15
Reserved
31.14
Reserved
31.13
Reserved
Must be set to 0
RW
0
31.12
Autodone
Auto-negotiation done indication:
0 = Auto-negotiation is not done or disabled (or not
active)
1 = Auto-negotiation is done
RO
0
31.11
Reserved
Write as 0, ignore on Read.
RW
X
31.10
Reserved
Reserved
RW
0
Revision 1.7 (03-04-11)
DESCRIPTION
48
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.45 Register 31 - PHY Special Control/Status (continued)
ADDRESS
NAME
31.9:7
GPO[2:0]
31.6
Enable 4B5B
31.5
Reserved
31.4:2
Speed Indication
31.1
31.0
5.3
DESCRIPTION
MODE
DEFAULT
General Purpose Output connected to signals
GPO[2:0]
RW
0
0 = Bypass encoder/decoder.
1 = enable 4B5B encoding/decoding.
MAC Interface must be configured in MII mode.
RW
1
Write as 0, ignore on Read.
RW
0
HCDSPEED value:
[001]=10Mbps Half-duplex
[101]=10Mbps Full-duplex
[010]=100Base-TX Half-duplex
[110]=100Base-TX Full-duplex
RO
000
Reserved
Write as 0; ignore on Read
RW
0
Scramble Disable
0 = enable data scrambling
1 = disable data scrambling,
RW
0
Interrupt Management
The Management interface supports an interrupt capability that is not a part of the IEEE 802.3
specification. It generates an active low asynchronous interrupt signal on the nINT output whenever
certain events are detected as setup by the Interrupt Mask Register 30.
The Interrupt system on the SMSC LAN8187/8187i has two modes, a Primary Interrupt mode and an
Alternative Interrupt mode. Both systems will assert the nINT pin low when the corresponding mask
bit is set, the difference is how they de-assert the output interrupt signal nINT.
The Primary interrupt mode is the default interrupt mode after a power-up or hard reset, the Alternative
interrupt mode would need to be setup again after a power-up or hard reset.
5.3.1
Primary Interrupt System
The Primary Interrupt system is the default interrupt mode, (Bit 17.6 = ‘0’). The Primary Interrupt
System is always selected after power-up or hard reset.
To set an interrupt, set the corresponding mask bit in the interrupt Mask register 30 (see Table 5.46).
Then when the event to assert nINT is true, the nINT output will be asserted.
When the corresponding Event to De-Assert nINT is true, then the nINT will be de-asserted.
Table 5.46 Interrupt Management Table.
Mask
Interrupt Source Flag
Interrupt Source
Event to Assert nINT
Event to De-Assert nINT
30.7
29.7
ENERGYON
17.1
ENERGYON
Rising 17.1a
Falling 17.1 or
Reading register 29
30.6
29.6
Auto-Negotiation
complete
1.5
Auto-Negotiate
Complete
Rising 1.5
Falling 1.5 or
Reading register 29
SMSC LAN8187/LAN8187i
49
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.46 Interrupt Management Table.
30.5
29.5
Remote Fault Detected
1.4
Remote Fault
Rising 1.4
Falling 1.4, or
Reading register 1 or
Reading register 29
30.4
29.4
Link Down
1.2
Link Status
Falling 1.2
Reading register 1 or
Reading register 29
30.3
29.3
Auto-Negotiation LP
Acknowledge
5.14
Acknowledge
Rising 5.14
Falling 5.14 or
Read register 29
30.2
29.2
Parallel Detection Fault
6.4
Parallel Detection
Fault
Rising 6.4
Falling 6.4 or
Reading register 6, or
Reading register 29 or
Re-AutoNegotiate or
Link down
30.1
29.1
Auto-Negotiation Page
Received
6.1
Page Received
Rising 6.1
Falling of 6.1 or
Reading register 6, or
Reading register 29
Re-AutoNegotiate, or
Link Down.
a.
If the mask bit is enabled and nINT has been de-asserted while ENERGYON is still high, nINT will assert for
256 ms, approximately one second after ENERGYON goes low when the Cable is unplugged. To prevent an
unexpected assertion of nINT, the ENERGYON interrupt mask should always be cleared as part of the
ENERGYON interrupt service routine.
Note: The ENERGYON bit 17.1 is defaulted to a ‘1’ at the start of the signal acquisition process,
therefore the Interrupt source flag 29.7 will also read as a ‘1’ at power-up. If no signal is
present, then both 17.1 and 29.7 will clear within a few milliseconds.
5.3.2
Alternate Interrupt System
The Alternative method is enabled by writing a ‘1’ to 17.6 (ALTINT).
To set an interrupt, set the corresponding bit of the in the Mask Register 30, (see Table 5.47).
To Clear an interrupt, either clear the corresponding bit in the Mask Register (30), this will de-assert
the nINT output, or Clear the Interrupt Source, and write a ‘1’ to the corresponding Interrupt Source
Flag. Writing a ‘1’ to the Interrupt Source Flag will cause the state machine to check the Interrupt
Source to determine if the Interrupt Source Flag should clear or stay as a ‘1’. If the Condition to DeAssert is true, then the Interrupt Source Flag is cleared, and the nINT is also de-asserted. If the
Condition to De-Assert is false, then the Interrupt Source Flag remains set, and the nINT remains
asserted.
Table 5.47 Alternative Interrupt System Management Table.
Mask
Interrupt Source Flag
Interrupt Source
Event to Assert
nINT
Condition to
De-Assert.
Bit to Clear
nINT
30.7
29.7
ENERGYON
17.1
ENERGYON
Rising 17.1
17.1 low
29.7
30.6
29.6
Auto-Negotiation
complete
1.5
Auto-Negotiate
Complete
Rising 1.5
1.5 low
29.6
Revision 1.7 (03-04-11)
50
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 5.47 Alternative Interrupt System Management Table.
30.5
29.5
Remote Fault Detected
1.4
Remote Fault
Rising 1.4
1.4 low
29.5
30.4
29.4
Link Down
1.2
Link Status
Falling 1.2
1.2 high
29.4
30.3
29.3
Auto-Negotiation LP
Acknowledge
5.14
Acknowledge
Rising 5.14
5.14 low
29.3
30.2
29.2
Parallel Detection Fault
6.4
Parallel Detection
Fault
Rising 6.4
6.4 low
29.2
30.1
29.1
Auto-Negotiation Page
Received
6.1
Page Received
Rising 6.1
6.1 low
29.1
Note: The ENERGYON bit 17.1 is defaulted to a ‘1’ at the start of the signal acquisition process,
therefore the Interrupt source flag 29.7 will also read as a ‘1’ at power-up. If no signal is
present, then both 17.1 and 29.7 will clear within a few milliseconds.
5.3.2.1
Example Alternative Interrupts system
For example 30.7 is set to ‘1’ to enable the ENERGYON interrupt. After a cable is plugged in,
ENERGYON (17.1) goes active and nINT will be asserted low.
To de-assert the nINT interrupt output, either.
1. Clear the ENERGYON bit (17.1), by removing the cable, then writing a ‘1’ to register 29.7.
Or
2. Clear the Mask bit 30.1
5.4
Miscellaneous Functions
5.4.1
Carrier Sense
The carrier sense is output on CRS. CRS is a signal defined by the MII specification in the IEEE 802.3u
standard. The PHY asserts CRS based only on receive activity whenever the PHY is either in repeater
mode or full-duplex mode. Otherwise the PHY asserts CRS based on either transmit or receive activity.
The carrier sense logic uses the encoded, unscrambled data to determine carrier activity status. It
activates carrier sense with the detection of 2 non-contiguous zeros within any 10 bit span. Carrier
sense terminates if a span of 10 consecutive ones is detected before a /J/K/ Start-of Stream Delimiter
pair. If an SSD pair is detected, carrier sense is asserted until either /T/R/ End–of-Stream Delimiter
pair or a pair of IDLE symbols is detected. Carrier is negated after the /T/ symbol or the first IDLE. If
/T/ is not followed by /R/, then carrier is maintained. Carrier is treated similarly for IDLE followed by
some non-IDLE symbol.
5.4.2
Collision Detect
A collision is the occurrence of simultaneous transmit and receive operations. The COL output is
asserted to indicate that a collision has been detected. COL remains active for the duration of the
collision. COL is changed asynchronously to both RX_CLK and TX_CLK. The COL output becomes
inactive during full duplex mode.
COL may be tested by setting register 0, bit 7 high. This enables the collision test. COL will be asserted
within 512 bit times of TX_EN rising and will be de-asserted within 4 bit times of TX_EN falling.
In 10M mode, COL pulses for approximately 10 bit times (1us), 2us after each transmitted packet (deassertion of TX_EN). This is the Signal Quality Error (SQE) signal and indicates that the transmission
was successful. The user can disable this pulse by setting bit 11 in register 27.
SMSC LAN8187/LAN8187i
51
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
5.4.3
Isolate Mode
The PHY data paths may be electrically isolated from the MII by setting register 0, bit 10 to a logic
one. In isolation mode, the PHY does not respond to the TXD, TX_EN and TX_ER inputs. The PHY
still responds to management transactions.
Isolation provides a means for multiple PHYs to be connected to the same MII without contention
occurring. The PHY is not isolated on power-up (bit 0:10 = 0).
5.4.4
Link Integrity Test
The LAN8187/LAN8187i performs the link integrity test as outlined in the IEEE 802.3u (Clause 24-15)
Link Monitor state diagram. The link status is multiplexed with the 10Mbps link status to form the
reportable link status bit in Serial Management Register 1, and is driven to the LINK LED.
The DSP indicates a valid MLT-3 waveform present on the RXP and RXN signals as defined by the
ANSI X3.263 TP-PMD standard, to the Link Monitor state-machine, using internal signal called
DATA_VALID. When DATA_VALID is asserted the control logic moves into a Link-Ready state, and
waits for an enable from the Auto Negotiation block. When received, the Link-Up state is entered, and
the Transmit and Receive logic blocks become active. Should Auto Negotiation be disabled, the link
integrity logic moves immediately to the Link-Up state, when the DATA_VALID is asserted.
Note that to allow the line to stabilize, the link integrity logic will wait a minimum of 330 μsec from the
time DATA_VALID is asserted until the Link-Ready state is entered. Should the DATA_VALID input be
negated at any time, this logic will immediately negate the Link signal and enter the Link-Down state.
When the 10/100 digital block is in 10Base-T mode, the link status is from the 10Base-T receiver logic.
5.4.5
Power-Down modes
There are 2 power-down modes for the Phy:
5.4.5.1
General Power-Down
This power-down is controlled by register 0, bit 11. In this mode the entire PHY, except the
management interface, is powered-down and stays in that condition as long as bit 0.11 is HIGH. When
bit 0.11 is cleared, the PHY powers up and is automatically reset.
5.4.5.2
Energy Detect Power-Down
This power-down mode is activated by setting bit 17.13 to 1. In this mode when no energy is present
on the line the PHY is powered down, except for the management interface, the SQUELCH circuit and
the ENERGYON logic. The ENERGYON logic is used to detect the presence of valid energy from
100Base-TX, 10Base-T, or Auto-negotiation signals
In this mode, when the ENERGYON signal is low, the PHY is powered-down, and nothing is
transmitted. When energy is received - link pulses or packets - the ENERGYON signal goes high, and
the PHY powers-up. It automatically resets itself into the state it had prior to power-down, and asserts
the nINT interrupt if the ENERGYON interrupt is enabled. The first and possibly the second packet
to activate ENERGYON may be lost.
When 17.13 is low, energy detect power-down is disabled.
5.4.6
Reset
The LAN8187/LAN8187i has 3 reset sources:
Hardware reset (HWRST): connected to the nRST input. At power up, nRST must not go high until
after the VDDIO and VDD_CORE supplies are stable, as shown in Figure 5.1.
Revision 1.7 (03-04-11)
52
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
To initiate a hardware reset, nRST must be held LOW for at least 100 us to ensure that the Phy is
properly reset, as shown in Figure 6.10.
During a Hardware reset, an external clock must be supplied to the CLKIN signal.
3.3V
1.8V
0V
VDD33 Starts
VDD_CORE Starts
nRST Released
Figure 5.1 Reset Timing Diagram
Software (SW) reset: Activated by writing register 0, bit 15 high. This signal is self- clearing. After the
register-write, internal logic extends the reset by 256µs to allow PLL-stabilization before releasing the
logic from reset.
The IEEE 802.3u standard, clause 22 (22.2.4.1.1) states that the reset process should be completed
within 0.5s from the setting of this bit.
Power-Down reset: Automatically activated when the PHY comes out of power-down mode. The
internal power-down reset is extended by 256µs after exiting the power-down mode to allow the PLLs
to stabilize before the logic is released from reset.
These 3 reset sources are combined together in the digital block to create the internal “general reset”,
SYSRST, which is an asynchronous reset and is active HIGH. This SYSRST directly drives the PCS,
DSP and MII blocks. It is also input to the Central Bias block in order to generate a short reset for the
PLLs.
The SMI mechanism and registers are reset only by the Hardware and Software resets. During PowerDown, the SMI registers are not reset. Note that some SMI register bits are not cleared by Software
reset – these are marked “NASR” in the register tables.
For several microseconds after coming out of reset, the MII will run at 2.5 MHz. After that it will switch
to 25 MHz if auto-negotiation is enabled.
5.4.7
LED Description
The PHY provides four LED signals. These provide a convenient means to determine the mode of
operation of the Phy. All LED signals are either active high or active low.
The four LED signals can be either active-high or active-low. Polarity depends upon the Phy address
latched in on reset. The LAN8187/LAN8187i senses each Phy address bit and changes the polarity of
the LED signal accordingly. If the address bit is set as level “1”, the LED polarity will be set to an activelow. If the address bit is set as level “0”, the LED polarity will be set to an active-high.
The ACTIVITY LED output is driven active when CRS is active (high). When CRS becomes inactive,
the Activity LED output is extended by 128ms.
The LINK LED output is driven active whenever the PHY detects a valid link. The use of the 10Mbps
or 100Mbps link test status is determined by the condition of the internally determined speed selection.
The SPEED100 LED output is driven active when the operating speed is 100Mbit/s or during Autonegotiation. This LED will go inactive when the operating speed is 10Mbit/s or during line isolation
(register 31 bit 5).
SMSC LAN8187/LAN8187i
53
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
The Full-Duplex LED output is driven active low when the link is operating in Full-Duplex mode.
5.4.8
Loopback Operation
The LAN8187/LAN8187i may be configured for near-end loopback and far loopback.
5.4.8.1
Near-end Loopback
Near-end loopback is a mode that sends the digital transmit data back out the receive data signals for
testing purposes as indicated by the blue arrows in Figure 5.2.The near-end loopback mode is enabled
by setting bit register 0 bit 14 to logic one.
A large percentage of the digital circuitry is operational near-end loopback mode, because data is
routed through the PCS and PMA layers into the PMD sublayer before it is looped back. The COL
signal will be inactive in this mode, unless collision test (bit 0.7) is active. The transmitters are powered
down, regardless of the state of TXEN.
10/100
Ethernet
MAC
TXD
X
RXD
Digital
Analog
X
TX
RX
XFMR
CAT-5
SMSC
Ethernet Transceiver
Figure 5.2 Near-end Loopback Block Diagram
5.4.8.2
Far Loopback
Far loopback is a special test mode for MDI (analog) loopback as indicated by the blue arrows in
Figure 5.3. The far loopback mode is enabled by setting bit register 17 bit 9 to logic one. In this mode,
data that is received from the link partner on the MDI is looped back out to the link partner. The digital
interface signals on the local MAC interface are isolated.
Revision 1.7 (03-04-11)
54
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Note: This special test mode is only available when operating in RMII mode.
Far-end system
10/100
Ethernet
MAC
TXD
TX
X
RXD
X
RX
Digital
Link
Partner
CAT-5
XFMR
Analog
SMSC
Ethernet Transceiver
Figure 5.3 Far Loopback Block Diagram
5.4.8.3
Connector Loopback
The LAN8187/LAN8187i maintains reliable transmission over very short cables, and can be tested in
a connector loopback as shown in Figure 5.4. An RJ45 loopback cable can be used to route the
transmit signals an the output of the transformer back to the receiver inputs, and this loopback will
work at both 10 and 100.
10/100
Ethernet
MAC
TXD
1
2
3
4
5
6
7
8
TX
RXD
RX
Digital
XFMR
Analog
SMSC
RJ45 Loopback Cable.
Created by connecting pin 1 to pin 3
and connecting pin 2 to pin 6.
Ethernet Transceiver
Figure 5.4 Connector Loopback Block Diagram
5.4.9
Configuration Signals
The PHY has 11 configuration signals whose inputs should be driven continuously, either by external
logic or external pull-up/pull-down resistors.
5.4.9.1
Physical Address Bus - PHYAD[4:0]
The PHYAD[4:0] signals are driven high or low to give each PHY a unique address. This address is
latched into an internal register at end of hardware reset. In a multi-PHY application (such as a
repeater), the controller is able to manage each PHY via the unique address. Each PHY checks each
management data frame for a matching address in the relevant bits. When a match is recognized, the
PHY responds to that particular frame. The PHY address is also used to seed the scrambler. In a multi-
SMSC LAN8187/LAN8187i
55
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
PHY application, this ensures that the scramblers are out of synchronization and disperses the
electromagnetic radiation across the frequency spectrum.
5.4.9.2
Mode Bus – MODE[2:0]
The MODE[2:0] bus controls the configuration of the 10/100 digital block. When the nRST pin is deasserted, the register bit values are loaded according to the MODE[2:0] pins. The 10/100 digital block
is then configured by the register bit values. When a soft reset occurs (bit 0.15) as described in
Table 5.30, the configuration of the 10/100 digital block is controlled by the register bit values, and the
MODE[2:0] pins have no affect.
Table 5.48 MODE[2:0] Bus
DEFAULT REGISTER BIT VALUES
MODE[2:0]
MODE DEFINITIONS
REGISTER 0
REGISTER 4
[13,12,10,8]
[8,7,6,5]
000
10Base-T Half Duplex. Auto-negotiation disabled.
0000
N/A
001
10Base-T Full Duplex. Auto-negotiation disabled.
0001
N/A
010
100Base-TX Half Duplex. Auto-negotiation
disabled.
CRS is active during Transmit & Receive.
1000
N/A
011
100Base-TX Full Duplex. Auto-negotiation disabled.
CRS is active during Receive.
1001
N/A
100
100Base-TX Half Duplex is advertised. Autonegotiation enabled.
CRS is active during Transmit & Receive.
1100
0100
101
Repeater mode. Auto-negotiation enabled.
100Base-TX Half Duplex is advertised.
CRS is active during Receive.
1100
0100
110
Power Down mode. In this mode the PHY wake-up
in Power-Down mode. The PHY cannot be used
when the MODE[2:0] bits are set to this mode. To
exit this mode, the MODE[2:0] bits must be
configured to some other value and a soft reset
must be issued.
N/A
N/A
111
All capable. Auto-negotiation enabled.
X10X
1111
Revision 1.7 (03-04-11)
56
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 6 AC Electrical Characteristics
The timing diagrams and limits in this section define the requirements placed on the external signals
of the LAN8187/LAN8187i.
6.1
Serial Management Interface (SMI) Timing
The Serial Management Interface is used for status and control as described in Section 4.13.
T1.1
Clock MDC
T1.2
Data Out MDIO
Valid Data
(Read from PHY)
T1.3
Data In MDIO
T1.4
Valid Data
(Write to PHY)
Figure 6.1 SMI Timing Diagram
Table 6.1 SMI Timing Values
PARAMETER
DESCRIPTION
MIN
T1.1
MDC minimum cycle time
400
T1.2
MDC to MDIO (Read from PHY)
delay
0
T1.3
MDIO (Write to PHY) to MDC setup
10
ns
T1.4
MDIO (Write to PHY) to MDC hold
10
ns
SMSC LAN8187/LAN8187i
57
DATASHEET
TYP
MAX
UNITS
NOTES
ns
300
ns
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.2
MII 10/100Base-TX/RX Timings
6.2.1
MII 100Base-T TX/RX Timings
6.2.1.1
100M MII Receive Timing
Clock Out RX_CLK
T2.1
Data Out RXD[3:0]
RX_DV
RX_ER
T2.2
Valid Data
Figure 6.2 100M MII Receive Timing Diagram
Table 6.2 100M MII Receive Timing Values
PARAMETER
DESCRIPTION
MIN
T2.1
Receive signals setup to RX_CLK
rising
10
ns
T2.2
Receive signals hold from
RX_CLK rising
10
ns
Revision 1.7 (03-04-11)
TYP
MAX
UNITS
RX_CLK frequency
25
MHz
RX_CLK Duty-Cycle
40
%
58
DATASHEET
NOTES
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.2.1.2
100M MII Transmit Timing
Clock Out TX_CLK
T3.1
Data Out TXD[3:0]
TX_EN
TX_ER
Valid Data
Figure 6.3 100M MII Transmit Timing Diagram
Table 6.3 100M MII Transmit Timing Values
PARAMETER
DESCRIPTION
MIN
TYP
MAX
UNITS
T3.1
Transmit signals required setup to
TX_CLK rising
12
ns
Transmit signals required hold
after TX_CLK rising
0
ns
TX_CLK frequency
25
MHz
TX_CLK Duty-Cycle
40
%
SMSC LAN8187/LAN8187i
59
DATASHEET
NOTES
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.2.2
MII 10Base-T TX/RX Timings
6.2.2.1
10M MII Receive Timing
Clock Out RX_CLK
T4.1
Data Out RXD[3:0]
RX_DV
T4.2
Valid Data
Figure 6.4 10M MII Receive Timing Diagram
Table 6.4 10M MII Receive Timing Values
PARAMETER
DESCRIPTION
MIN
TYP
MAX
UNITS
T4.1
Receive signals setup to RX_CLK
rising
10
ns
T4.2
Receive signals hold from RX_CLK
rising
10
ns
Revision 1.7 (03-04-11)
RX_CLK frequency
2.5
MHz
RX_CLK Duty-Cycle
40
%
60
DATASHEET
NOTES
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.2.2.2
10M MII Transmit Timing
Clock Out TX_CLK
T5.1
Data Out TXD[3:0]
TX_EN
Valid Data
Figure 6.5 10M MII Transmit Timing Diagrams
Table 6.5 10M MII Transmit Timing Values
PARAMETER
DESCRIPTION
MIN
TYP
MAX
UNITS
T5.1
Transmit signals required setup to
TX_CLK rising
12
ns
Transmit signals required hold
after TX_CLK rising
0
ns
TX_CLK frequency
2.5
MHz
TX_CLK Duty-Cycle
50
%
SMSC LAN8187/LAN8187i
61
DATASHEET
NOTES
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.3
RMII 10/100Base-TX/RX Timings
6.3.1
RMII 100Base-T TX/RX Timings
6.3.1.1
100M RMII Receive Timing
Clock In CLKIN
T6.1
Data Out RXD[1:0]
CRS_DV
Valid Data
Figure 6.6 100M RMII Receive Timing Diagram
Table 6.6 100M RMII Receive Timing Values
PARAMETER
DESCRIPTION
MIN
T6.1
Output delay from rising edge of
CLKIN to receive signals output
valid
2
TYP
CLKIN frequency
Revision 1.7 (03-04-11)
50
62
DATASHEET
MAX
UNITS
10
ns
NOTES
MHz
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.3.1.2
100M RMII Transmit Timing
Clock In CLKIN
T8.1
Data Out TXD[1:0]
TX_EN
T8.2
Valid Data
Figure 6.7 100M RMII Transmit Timing Diagram
Table 6.7 100M RMII Transmit Timing Values
PARAMETER
DESCRIPTION
MIN
T8.1
Transmit signals required setup to
rising edge of CLKIN
2
ns
T8.2
Transmit signals required hold
after rising edge of REF_CLK
1.5
ns
CLKIN frequency
SMSC LAN8187/LAN8187i
TYP
50
63
DATASHEET
MAX
UNITS
NOTES
MHz
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.3.2
RMII 10Base-T TX/RX Timings
6.3.2.1
10M RMII Receive Timing
Clock In CLKIN
T9.1
Data Out RXD[1:0]
CRS_DV
Valid Data
Figure 6.8 10M RMII Receive Timing Diagram
Table 6.8 10M RMII Receive Timing Values
PARAMETER
DESCRIPTION
MIN
T9.1
Output delay from rising edge of
CLKIN to receive signals output
valid
2
TYP
CLKIN frequency
Revision 1.7 (03-04-11)
50
64
DATASHEET
MAX
UNITS
10
ns
NOTES
MHz
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.3.2.2
10M RMII Transmit Timing
Clock In CLKIN
T 10.1
Data Out TXD[1:0]
TX_EN
T 10.2
Valid Data
Figure 6.9 10M RMII Transmit Timing Diagram
Table 6.9 10M RMII Transmit Timing Values
PARAMETER
DESCRIPTION
MIN
TYP
T10.1
Transmit signals required setup to
rising edge of CLKIN
4
ns
T10.2
Transmit signals required hold
after rising edge of REF_CLK
2
ns
CLKIN frequency
6.4
MAX
50
UNITS
NOTES
MHz
RMII CLKIN Timing
Table 6.10 RMII CLKIN (REF_CLK) Timing Values
PARAMETER
DESCRIPTION
MIN
TYP
CLKIN frequency
50
CLKIN Frequency Drift
CLKIN Duty Cycle
40
CLKIN Jitter
SMSC LAN8187/LAN8187i
MAX
65
DATASHEET
UNITS
NOTES
MHz
± 50
ppm
60
%
150
psec
p-p – not RMS
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.5
Reset Timing
T 11.1
nRST
T 11.2
T 11.3
Configuration
Signals
T 11.4
O utput drive
Figure 6.10 Reset Timing Diagram
Table 6.11 Reset Timing Values
PARAMETER
DESCRIPTION
MIN
TYP
MAX
UNITS
T11.1
Reset Pulse Width
100
us
T11.2
Configuration input setup to
nRST rising
200
ns
T11.3
Configuration input hold after
nRST rising
2
ns
T11.4
Output Drive after nRST rising
3
Revision 1.7 (03-04-11)
66
DATASHEET
800
ns
NOTES
20 clock cycles for
25 MHz clock
or
40 clock cycles for
50MHz clock
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
6.6
Clock Circuit
LAN8187/LAN8187i can accept either a 25MHz crystal or a 25MHz single-ended clock oscillator
(±50ppm) input for operation in MII mode. If the single-ended clock oscillator method is implemented,
XTAL2 should be left unconnected and XTAL1/CLKIN should be driven with a nominal 0-3.3V clock
signal. The user is required to supply a 50MHz single-ended clock for RMII operation. The input clock
duty cycle is 40% minimum, 50% typical and 60% maximum. See Table 6.12 for the recommended
crystal specifications.
Table 6.12 LAN8187/LAN8187i Crystal Specifications
PARAMETER
SYMBOL
MIN
NOM
Crystal Cut
MAX
UNITS
NOTES
AT, typ
Crystal Oscillation Mode
Fundamental Mode
Crystal Calibration Mode
Parallel Resonant Mode
Frequency
Ffund
-
25.000
-
MHz
Ftol
-
-
±50
PPM
Note 6.1
Frequency Stability Over Temp
Ftemp
-
-
±50
PPM
Note 6.1
Frequency Deviation Over Time
Fage
-
+/-3 to 5
-
PPM
Note 6.2
-
-
±50
PPM
Note 6.3
Frequency Tolerance @
25oC
Total Allowable PPM Budget
Shunt Capacitance
CO
-
7 typ
-
pF
Load Capacitance
CL
-
20 typ
-
pF
Drive Level
PW
0.5
-
-
mW
Equivalent Series Resistance
R1
-
-
30
Ohm
Operating Temperature Range
Note 6.4
-
Note 6.5
oC
LAN8187/LAN8187i
XTAL1/CLKIN Pin Capacitance
-
3 typ
-
pF
LAN8187/LAN8187i XTAL2 Pin
Capacitance
-
3 typ
-
pF
Note 6.1
The maximum allowable values for Frequency Tolerance and Frequency Stability are
application dependant. Since any particular application must meet the IEEE ±50 PPM Total
PPM Budget, the combination of these two values must be approximately ±45 PPM
(allowing for aging).
Note 6.2
Frequency Deviation Over Time is also referred to as Aging.
Note 6.3
The total deviation for the Transmitter Clock Frequency is specified by IEEE 802.3u as
±100 PPM.
Note 6.4
0oC for commercial version, -40oC for industrial version.
Note 6.5
+70oC for commercial version, +85oC for industrial version.
This number includes the pad, the bond wire and the lead frame. PCB capacitance is not included in
this value. The XTAL1/CLKIN pin, XTAL2 pin and PCB capacitance values are required to accurately
calculate the value of the two external load capacitors. The total load capacitance must be equivalent
to what the crystal expects to see in the circuit so that the crystal oscillator will operate at 25.000 MHz.
SMSC LAN8187/LAN8187i
67
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 7 DC Electrical Characteristics
7.1
DC Characteristics
7.1.1
Maximum Guaranteed Ratings
Stresses beyond those listed in Table 7.1 may cause permanent damage to the device. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
Table 7.1 Maximum Conditions
PARAMETER
CONDITIONS
MIN
VDD33,VDDIO
Power pins to all other pins.
Digital IO
MAX
UNITS
-0.5
+3.6
V
To VSS ground
-0.5
+3.6
V
VSS
VSS to all other pins
-0.5
+4.0
V
Operating
Temperature
LAN8187-JT
0
+70
C
Commercial temperature
parts.
Operating
Temperature
LAN8187i-JT
-40
+85
C
Industrial temperature parts.
-55
+150
C
Storage
Temperature
TYP
COMMENT
Table 7.5, “MII Bus Interface
Signals,” on page 71
Table 7.2 ESD and LATCH-UP Performance
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
COMMENTS
ESD PERFORMANCE
All Pins
Human Body Model
+/-8
kV
All Pins
EN61000-4-2 Contact
Discharge
+/-8
kV
All Pins
EN61000-4-2 Air-gap
Discharge
+/-15
kV
100
mA
LATCH-UP PERFORMANCE
All Pins
7.1.1.1
EIA/JESD 78, Class II
Human Body Model (HBM) Performance
HBM testing verifies the ability to withstand the ESD strikes like those that occur during handling and
manufacturing. The device must work normally after the stress has ended, meaning no latch-up on any
pins. All pins on the LAN8187 provide +/- 8kV HBM protection.
Revision 1.7 (03-04-11)
68
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
7.1.1.2
EN61000-4-2 Performance
The EN61000-4-2 ESD specification is an international standard that addresses system-level immunity
to ESD strikes while the end equipment is operational. In contrast, the HBM ESD tests are performed
at the device level with the device powered down.
In addition to defining the ESD tests, EN61000-4-2 also categorizes the impact to equipment operation
when the strike occurs (ESD Result Classification). The LAN8187 maintains an ESD Result
Classification 1 or 2 when subjected to an EN61000-4-2 (level 4) ESD strike.
Both air discharge and contact discharge test techniques for applying stress conditions are defined by
the EN61000-4-2 ESD document.
AIR DISCHARGE
To perform this test, a charged electrode is moved close to the system being tested until a spark is
generated. All pins of the LAN8187 can safely dissipate +/- 15kV air discharges per the EN61000-4-2
specification without additional board level protection. This test is difficult to reproduce because the
discharge is influenced by such factors as humidity, the speed of approach of the electrode, and
construction of the test equipment.
CONTACT DISCHARGE
The uncharged electrode first contacts the pin to prepare this test, and then the probe tip is energized.
This yields more repeatable results, and is the preferred test method. All pins of the LAN8187 can
safely dissipate +/- 8kV contact discharges per the EN61000-4-2 specification without the need for
additional board level protection.
7.1.2
Operating Conditions
Table 7.3 Recommended Operating Conditions
PARAMETER
VDD33
CONDITIONS
VDD33 to VSS
MIN
3.0
TYP
3.3
MAX
UNITS
3.6
V
COMMENT
INPUT VOLTAGE ON
DIGITAL PINS
0.0
VDDI
O
V
VOLTAGE ON ANALOG
I/O PINS (RXP, RXN)
0.0
+3.6
V
V
TA LAN8187-JT
0
70
C
For Commercial
Temperature
TA LAN8187IAEZG
-40
+85
C
For Industrial Temperature
AMBIENT
TEMPERATURE
SMSC LAN8187/LAN8187i
69
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
7.1.3
Power Consumption
7.1.3.1
Power Consumption Device Only
Power measurements taken over the operating conditions specified. See Section 5.4.5 for a description
of the power down modes
.
Table 7.4 Power Consumption Device Only
VDDA3.3
POWER
PIN(MA)
VDD_CORE
POWER
PINS(MA)
VDDIO
POWER
PIN
TOTAL
CURRENT
(MA)
TOTAL
POWER
(MW)
Max
35.6
41.3
4.7
81.6
269.28
Typical
33.3
37.4
4.1
74.8
246.84
Min
31.3
33.4
1.3
66
165.75
Note 7.1
Max
15.6
22.3
1.1
39
128.7
Typical
15.3
20.8
0.9
37
122.1
Min
14.9
19.1
0.1
34.1
83.88
Note 7.1
Max
10.5
3.3
0.5
13.85
45.7
Typical
9.9
2.7
0.4
13.0
42.9
Min
9.8
2.3
0.3
12.4
37.02
Note 7.1
Max
0.21
2.92
0.39
3.52
11.62
Typical
0.12
2.6
0.34
3.07
10.13
Min
0.038
2.1
0.3
2.44
4.45
Note 7.1
POWER PIN GROUP
100BASE-T /W TRAFFIC
10BASE-T /W TRAFFIC
ENERGY DETECT POWER DOWN
GENERAL POWER DOWN
Note: The current at VDD_CORE is either supplied by the internal regulator from current entering at
VDD33, or from an external 1.8V supply when the internal regulator is disabled.
Note 7.1
This is calculated with full flexPWR features activated: VDDIO = 1.8V and internal regulator
disabled.
Note 7.2
Current measurements do not include power applied to the magnetics or the optional
external LEDs. Current measurements taken with VDDIO = +3.3V, unless otherwise
indicated.
Revision 1.7 (03-04-11)
70
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
7.1.4
DC Characteristics - Input and Output Buffers
Table 7.5 MII Bus Interface Signals
NAME
VIH
VIL
IOH
IOL
VOL
VOH
TXD0
0.68 * VDDIO
0.4 * VDDIO
TXD1
0.68 * VDDIO
0.4 * VDDIO
TXD2
0.68 * VDDIO
0.4 * VDDIO
TXD3
0.68 * VDDIO
0.4 * VDDIO
TX_EN
0.68 * VDDIO
0.4 * VDDIO
TX_CLK
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RXD0
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RXD1
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RXD2
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RXD3
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RX_ER/RXD4
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RX_DV
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
RX_CLK
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
CRS
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
COL
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
MDC
0.68 * VDDIO
0.4 * VDDIO
MDIO
0.68 * VDDIO
0.4 * VDDIO
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
nINT/TX_ER/TXD4
0.68 * VDDIO
0.4 * VDDIO
-8 mA
+8 mA
+0.4 V
3.6V
SMSC LAN8187/LAN8187i
71
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 7.6 LAN Interface Signals
NAME
VIH
VIL
IOH
IOL
VOL
VOH
TXP
TXN
RXP
See Table 7.12, “100Base-TX Transceiver Characteristics,” on page 74 and Table 7.13,
“10BASE-T Transceiver Characteristics,” on page 74.
RXN
Table 7.7 LED Signals
NAME
VIH
VIL
IOH
IOL
VOL
VOH
SPEED100
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
LINK
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
ACTIVITY
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
FDUPLEX
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
Table 7.8 Configuration Inputs
NAME
VIH
VIL
IOH
IOL
VOL
VOH
PHYAD0
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
PHYAD1
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
PHYAD2
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
PHYAD3
0.68 * VDDIO
0.4 * VDDIO
-12 mA
+12 mA
+0.4 V
VDDIO – +0.4 V
-8 mA
+8 mA
+0.4 V
3.7 V
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
PHYAD4
MODE0
0.68 * VDDIO
0.4 * VDDIO
MODE1
0.68 * VDDIO
0.4 * VDDIO
MODE2
0.68 * VDDIO
0.4 * VDDIO
REG_EN
0.68 * VDDIO
0.4 * VDDIO
MII
Revision 1.7 (03-04-11)
72
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 7.9 General Signals
IOH
IOL
VOL
VOH
GPO0
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
GPO1
-8 mA
+8 mA
+0.4 V
3.7 V
GPO2
-8 mA
+8 mA
+0.4 V
VDDIO – +0.4 V
NAME
VIL
VIH
nRST
0.68 * VDDIO
0.4 * VDDIO
CLKIN/XTAL1
Note 7.3
+1.40 V
+0.5 V
XTAL2
-
-
NC
Note 7.3
These levels apply when a 0-3.3V Clock is driven into CLKIN/XTAL1 and XTAL2 is floating.
The maximum input voltage on XTAL1 is VDDIO + 0.4V.
Table 7.10 Analog References
NAME
BUFFER TYPE
EXRES1
AI
NC
AI/O
VIH
VIL
IOH
IOL
VOL
VOH
Table 7.11 Internal Pull-Up / Pull-Down Configurations
NAME
PULL-UP OR PULL-DOWN
SPEED100/PHYAD0
Pull-up
LINK/PHYAD1
Pull-up
ACTIVITY/PHYAD2
Pull-up
FDUPLEX//PHYAD3
Pull-up
GPO1/PHYAD4
Pull-up
MODE0
Pull-up
MODE1
Pull-up
MODE2
Pull-up
nINT/TX_ER/TXD4
Pull-up
nRST
Pull-up
RXD3/nINTSEL
Pull-up
MDIO
Pull-down
MDC
Pull-down
RX_ER/RXD4
Pull-down
RX_DV
Pull-down
GPO0/RMII
Pull-down
SMSC LAN8187/LAN8187i
73
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Table 7.11 Internal Pull-Up / Pull-Down Configurations
NAME
PULL-UP OR PULL-DOWN
TXEN
Pull-down
COL
Pull-down
Table 7.12 100Base-TX Transceiver Characteristics
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
NOTES
Peak Differential Output Voltage High
VPPH
950
-
1050
mVpk
Note 7.4
Peak Differential Output Voltage Low
VPPL
-950
-
-1050
mVpk
Note 7.4
Signal Amplitude Symmetry
VSS
98
-
102
%
Note 7.4
Signal Rise & Fall Time
TRF
3.0
-
5.0
nS
Note 7.4
Rise & Fall Time Symmetry
TRFS
-
-
0.5
nS
Note 7.4
Duty Cycle Distortion
DCD
35
50
65
%
Note 7.5
Overshoot & Undershoot
VOS
-
-
5
%
1.4
nS
Jitter
Note 7.6
Note 7.4
Measured at the line side of the transformer, line replaced by 100Ω (+/- 1%) resistor.
Note 7.5
Offset from 16 nS pulse width at 50% of pulse peak
Note 7.6
Measured differentially.
Table 7.13 10BASE-T Transceiver Characteristics
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
NOTES
Transmitter Peak Differential Output Voltage
VOUT
2.2
2.5
2.8
V
Note 7.7
Receiver Differential Squelch Threshold
VDS
300
420
585
mV
Note 7.7
Revision 1.7 (03-04-11)
Min/max voltages guaranteed as measured with 100Ω resistive load.
74
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 8 Application Notes
8.1
Magnetics Selection
For a list of magnetics selected to operate with the SMSC LAN8187, please refer to the Application
note “AN 8-13 Suggested Magnetics”.
http://www.smsc.com/main/anpdf/an813.pdf
8.2
Application Notes
Application examples are given in pdf format on the SMSC LAN8187 web site. The link to the web site
is shown below.
http://www.smsc.com/main/catalog/lan8187.html
Please check the web site periodically for the latest updates.
8.3
Reference Designs
The LAN8187 Reference designs are available on the SMSC LAN8187 web site link below.
http://www.smsc.com/main/catalog/lan8187.html
The reference designs are available in four variations:
a. MII with +3.3V IO
b. RMII with +3.3V IO
c. MII with +1.8V IO
d. RMII with +1.8V IO.
8.4
Evaluation board
The EVB-LAN8187 is a a PHY Evaluation Board (EVB) that interfaces a MAC controller to the SMSC
LAN8187 Ethernet PHY through an MII connector, and out to an RJ-45 Ethernet Jack through industrial
temperature magnetics for 10/100 connectivity.
Schematics(*.pdf and *.dsn), BOM (bill of materials), user guide, gerber files and Layout board file are
all available on the EVB web site link below.
http://www.smsc.com/main/catalog/evblan8187.html
The EVB-LAN8187 is designed to plug into a user's test system using a 40 pin Media Independent
Interface (MII) connector. The MII connector is an AMP 40 pin Right Angle through hole MII connector,
PN AMP- 174218-2. The mating connector is PN AMP 174217-2.
FEATURES:
„
Industrial temperature PHY and Magnetics
„
8 pin SOIC for user configurable Magnetics
„
On board LED indicators for Speed 100
„
Full Duplex
„
RJ-45 Connector LEDs for Link and Activity
„
Interfaces Through 40-pin Connector as Defined in the MII Specification
„
Powered by 5.0V from the 40-Pin MII Connector
SMSC LAN8187/LAN8187i
75
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
„
Standard RJ45 Connector with LED indicators for Link and Activity
„
Includes Probe Points on All MII Data and Control Signals for Troubleshooting
„
Includes 25MHz Crystal for Internal PHY Reference; RX_CLK is Supplied to the 40-Pin Connector
„
Supports user configuration options including PHY address selection
„
Integrated 3.3V Regulator
APPLICATIONS
The EVB8187 Evaluation board simplifies the process of testing and evaluating an Ethernet
Connection in your application. The LAN8187 device is installed on the EVB board and all associated
circuitry is included, along with all configuration options.
The Benefits of adding an external MII interface are:
„
Easier system and software development
„
Verify MAC to PHY interface
„
Support testing of FPGA implementations of MAC
„
Assist inter operability test of various networks
„
Verify MII compliance
„
Verify performance of HP AutoMDIX feature
„
Verify Variable IO compliance
Revision 1.7 (03-04-11)
76
DATASHEET
SMSC LAN8187/LAN8187i
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 9 Package Outline
Figure 9.1 64 Pin TQFP Package Outline, 10X10X1.4 Body, 12x12 mm Footprint
Table 9.1 64 Pin TQFP Package Parameters
MIN
NOMINAL
MAX
REMARKS
A
A1
A2
D
D1
E
E1
H
L
L1
e
~
0.05
1.35
11.80
9.80
11.80
9.80
0.09
0.45
~
1.60
0.15
1.45
12.20
10.20
12.20
10.20
0.20
0.75
~
θ
0o
~
~
~
~
~
~
~
~
0.60
1.00
0.50 Basic
~
7o
Overall Package Height
Standoff
Body Thickness
X Span
X body Size
Y Span
Y body Size
Lead Frame Thickness
Lead Foot Length
Lead Length
Lead Pitch
Lead Foot Angle
W
R
R2
ccc
0.17
0.08
0.08
~
0.22
~
~
~
0.27
~
0.20
0.08
Lead Width
Lead Shoulder Radius
Lead Foot Radius
Coplanarity
Notes:
1. Controlling Unit: millimeter.
2. Tolerance on the true position of the leads is ± 0.04 mm maximum.
3. Package body dimensions D1 and E1 do not include the mold protrusion.
Maximum mold protrusion is 0.25 mm per side.
4. Dimension for foot length L measured at the gauge plane 0.25 mm above the seating plane.
5. Details of pin 1 identifier are optional but must be located within the zone indicated.
SMSC LAN8187/LAN8187i
77
DATASHEET
Revision 1.7 (03-04-11)
±15kV ESD Protected MII/RMII 10/100 Ethernet Transceiver with HP Auto-MDIX & flexPWR® Technology
Datasheet
Chapter 10 Revision History
Table 10.1 Customer Revision History
REVISION LEVEL & DATE
SECTION/FIGURE/ENTRY
CORRECTION
Rev. 1.7 (03-04-11)
Table 6.1, “SMI Timing
Values,” on page 57
Corrected T1.2 maximum value to 300ns.
Table 6.11, “Reset Timing
Values,” on page 66
Corrected T11.4 minimum value to 3ns.
Corrected T11.3 to 2ns.
Table 7.5, “MII Bus Interface
Signals,” on page 71,
Table 7.7, “LED Signals,” on
page 72, Table 7.8,
“Configuration Inputs,” on
page 72, Table 7.9,
“General Signals,” on
page 73
Corrected VIH and VIL values to 0.68*VDDIO and
0.4*VDDIO, respectively.
Table 5.39, “Register 18 Special Modes,” on page 46
„
„
„
Rev. 1.6 (02-27-09)
Revision 1.7 (03-04-11)
Corrected errrant bit 15 description (reserved).
Updated MIIMODE bit description and added
note: “When writing to this register, the default
value of this bit must always be written back.”
Added note regarding default MIIMODE value.
Section 4.6.3, "MII vs. RMII
Configuration," on page 26
Updated section to remove information about
register control of the MII/RMII mode.
Section 5.4.8.2, "Far
Loopback," on page 54
Updated section to remove information about
register control of the MII/RMII mode.
Section 4.6.3
Revised the first two paragraphs in Section 4.6.3,
"MII vs. RMII Configuration," on page 26.
Table 6.11
Changed the MIN value for T11.3:
From: “400”
To: “10”
Section 6.6
Added section on clock, with crystal specification
table.
Section 6.3
Improved timing values.
Section 5.4.6
Removed reference to internal POR system. Added
note that the nRST should be low until VDDIO and
VDD_CORE are stable. Added Figure.
Table 5.34
Corrected bit value for Asymmetric and Symmetric
PAUSE.
Section 5.4.8
Enhanced this section.
Section 4.6.3
Added information about register bit 18.14.
Section 4.6.2.1
First sentence of second paragraph changed:
From: “between 35% and 65%”
To: “between 40% and 60%“
78
DATASHEET
SMSC LAN8187/LAN8187i
Similar pages