TI1 LP2901DR Wide supply-voltage range 3 v to 30 v Datasheet

The LP239 is obsolete
and is no longer supplied.
SLCS004B − OCTOBER 1987 − REVISED SEPTEMBER 2004
D Wide Supply-Voltage Range . . . 3 V to 30 V
D Ultralow Power Supply Current
D
D
D
D
D
D
D
D
D
D OR N PACKAGE
(TOP VIEW)
Drain . . . 60 µA Typ
Low Input Biasing Current . . . 3 nA
Low Input Offset Current . . . ±0.5 nA
Low Input Offset Voltage . . . ±2 mV
Common-Mode Input Voltage Includes
Ground
Output Voltage Compatible With MOS and
CMOS Logic
High Output Sink-Current Capability
(30 mA at VO = 2V)
Power Supply Input Reverse-Voltage
Protected
Single-Power-Supply Operation
Pin-for-Pin Compatible With LM239, LM339,
LM2901
1OUT
2OUT
VCC
2IN −
2IN +
1IN −
1IN +
1
14
2
13
3
12
4
11
5
10
6
9
7
8
3OUT
4OUT
GND
4IN +
4IN −
3IN +
3IN −
description/ordering information
The LP239, LP339, LP2901 are low-power quadruple differential comparators. Each device consists of four
independent voltage comparators designed specifically to operate from a single power supply and typically to
draw 60-µA drain current over a wide range of voltages. Operation from split power supplies also is possible
and the ultra-low power-supply drain current is independent of the power-supply voltage.
Applications include limit comparators, simple analog-to-digital converters, pulse generators, squarewave
generators, time-delay generators, voltage-controlled oscillators, multivibrators, and high-voltage logic gates.
The LP239, LP339, LP2901 were designed specifically to interface with the CMOS logic family. The ultra-low
power-supply current makes these products desirable in battery-powered applications.
The LP239 is characterized for operation from −25°C to 85°C. The LP339 is characterized for operation from
0°C to 70°C. The LP2901 is characterized for operation from −40°C to 85°C.
ORDERING INFORMATION
TA
VIOMAX
AT 25°C
PDIP (N)
0°C
0
C to 70
70°C
C
± 5 mV
SOIC (D)
PDIP (N)
−40°C
−40
C to 85
85°C
C
± 5 mV
ORDERABLE
PART NUMBER
PACKAGE†
SOIC (D)
Tube of 25
LP339N
Tube of 50
LP339D
Reel of 2500
LP339DR
Tube of 25
LP2901N
Tube of 50
LP2901D
Reel of 2500
LP2901DR
TOP-SIDE
MARKING
LP339N
LP339
LP2901N
LP2901
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
! " #$%! " &$'(#! )!%*
)$#!" # ! "&%##!" &% !+% !%" %," "!$%!"
"!)) -!.* )$#! &#%""/ )%" ! %#%""(. #($)%
!%"!/ (( &%!%"*
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
The LP239 is obsolete
and is no longer supplied.
SLCS004B − OCTOBER 1987 − REVISED SEPTEMBER 2004
schematic diagram (each comparator)
VCC
0.2 µA
5 µA
6 µA
0.2 µA
IN+
OUT
IN−
GND
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±36 V
Input voltage range, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 36 V
Input current, VI ≤ −0.3 V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Duration of output short-circuit to ground (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited
Continuous total dissipation (see Note 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: LP239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25°C to 85°C
LP339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
LP2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
Package thermal impedance, θJA (see Notes 6 and 7): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80°C/W
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Lead temperature range 1,6 mm (1/16 inch) from case for 60 seconds: J package . . . . . . . . . . . . . . . . 300°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground.
2. Differential voltages are at IN+ with respect to IN −.
3. This input current only exists when the voltage at any of the inputs is driven negative. The current flows through the collector-base
junction of the input clamping device. In addition to the clamping device action, there is lateral n-p-n parasitic transistor action. This
action is not destructive, and normal output states are reestablished when the input voltage returns to a value more positive than
− 0.3 V at TA = 25°C.
4. Short circuits between outputs to VCC can cause excessive heating and eventual destruction.
5. If the output transistors are allowed to saturate, the low-bias dissipation and the on-off characteristics of the outputs keep the
dissipation very small (usually less than 100 mW).
6. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can impact reliability.
7. The package thermal impedance is calculated in accordance with JESD 51-7.
DISSIPATION RATING TABLE
PACKAGE
J
2
TA ≤ 25°C
POWER RATING
1025 mW
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
8.2 mW/°C
656 mW
533 mW
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
The LP239 is obsolete
and is no longer supplied.
SLCS004B − OCTOBER 1987 − REVISED SEPTEMBER 2004
recommended operating conditions
LP239
VCC
LP339
LP2901
MIN
MAX
MIN
MAX
MIN
MAX
3
30
3
30
3
30
V
0
3
0
3
0
3
V
Common-mode input voltage
VCC = 5 V
VCC = 30 V
0
28
0
28
0
28
V
0
3
0
3
0
3
V
VI
Input voltage
VCC = 5 V
VCC = 30 V
0
28
0
28
0
28
V
TA
Operating free-air temperature
−25
85
0
70
−40
85
°C
VIC
Supply voltage
UNIT
electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
VCC = 5 V to 30 V,
RS = 0,
VO = 2 V,
See Note 6
TA†
25°C
MIN
±0.5
±5
±1
±15
−2.5
−25
−4
−40
Full range
See Note 7
Common-mode input voltage
range
Single supply
Large-signal differential voltage
amplification
VCC = 15 V,
Output sink current
VI− = 1 V,
VI+ = 0
Output leakage current
±5
±9
25°C
AVD
MAX
±2
Full range
25°C
VICR
TYP
VI+ = 1 V,
VI− = 0
Full range
25°C
0 to
VCC − 1.5
Full range
0 to
VCC − 2
VO = 0.4 V
VO = 5 V
VO = 30 V
VI ≤ 0 (or VCC − on split supplies)
500
25°C
20
Full range
15
25°C
0.2
mV
nA
nA
V
RL = 15 kΩ
VO = 2 V,
See Note 8
UNIT
V/mV
30
mA
0.7
25°C
0.1
Full range
nA
1
µA
VID
Differential input voltage
36
V
ICC
Supply current
RL = ∞ all comparators
60
100
µA
† Full range is −25°C to 85°C for the LP239, 0°C to 70°C for the LP339, and − 40°C to 85°C for the LP2901.
NOTES: 8. VIO is measured over the full common-mode input voltage range.
9. Because of the p-n-p input stage, the direction of the current is out of the device. This current essentially is constant (i.e., independent
of the output state). No loading change exists on the reference or input lines as long as the common-mode input voltage range is
not exceeded.
10. The output sink current is a function of the output voltage. These devices have a bimodal output section that allows them to sink
(via a Darlington connection) large currents at output voltages greater than 1.5 V, and smaller currents at output voltages
less than 1.5 V.
switching characteristics, VCC = 5 V, TA = 25°C, RL connected to 5 V through 5.1 kΩ
PARAMETER
Large-signal response time
Response time
TEST CONDITIONS
TTL logic swing, Vref = 1.4 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
TYP
1.3
8
MAX
UNIT
µs
3
SLCS004B − OCTOBER 1987 − REVISED SEPTEMBER 2004
The LP239 is obsolete
and is no longer supplied.
APPLICATION INFORMATION
Figure 1 shows the basic configuration for using the LP239, LP339, or LP2901 comparator. Figure 2 shows the
diagram for using one of these comparators as a CMOS driver.
VCC
VCC
30 kΩ
IN +
100 kΩ
+
IN +
+
IN −
−
3
OUT
OUT
IN −
−
1/4 LP239, LP339,
or LP2901
12
1/4 LP239, LP339,
or LP2901
Figure 1. Basic Comparator
1/4 SN54/74LS00 or
1/4 SN54/74ALS1000A
Figure 2. CMOS Driver
All pins of any unused comparators should be grounded. The bias network of the LP239, LP339, and LP2901
establishes a drain current that is independent of the magnitude of the power-supply voltage over the range of
2 V to 30 V. It usually is necessary to use a bypass capacitor across the power supply line.
The differential input voltage may be larger than VCC without damaging the device. Protection should be
provided to prevent the input voltages from going negative by more than −0.3 V. The output section has two
distinct modes of operation: a Darlington mode and ground-emitter mode. This unique drive circuit permits the
device to sink 30 mA at VO = 2 V in the Darlington mode and 700 µA at VO = 0.4 V in the ground-emitter mode.
Figure 3 is a simplified schematic diagram of the output section. The output section is configured in a Darlington
connection (ignoring Q3). If the output voltage is held high enough (above 1 V), Q1 is not saturated and the
output current is limited only by the product of the hFE of Q1, the hFE of Q2, and I1 and the 60-Ω saturation
resistance of Q2. The devices are capable of driving LEDs, relays, etc. in this mode while maintaining an
ultra-low power-supply current of 60 µA, typically.
VCC
I1 = 6 µA
Q3
VO
Q1
Q2
Figure 3. Output-Section Schematic Diagram
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
The LP239 is obsolete
and is no longer supplied.
SLCS004B − OCTOBER 1987 − REVISED SEPTEMBER 2004
APPLICATION INFORMATION
Without transistor Q3, if the output voltage were allowed to drop below 0.8 V, transistor Q1 would saturate, and
the output current would drop to zero. The circuit would be unable to pull low current loads down to ground or
the negative supply, if used. Transistor Q3 has been included to bypass transistor Q1 under these conditions
and apply the current I1 directly to the base of Q2. The output sink current now is approximately I1 times the
hFE of Q2 (700 µA at VO = 0.4 V). The output of the devices exhibits a bimodal characteristic, with a smooth
transition between modes.
In both cases, the output is an uncommitted collector. Several outputs can be tied together to provide a dot logic
function. An output pullup resistor can be connected to any available power-supply voltage within the permitted
power-supply range, and there is no restriction on this voltage, based on the magnitude of the voltage that is
supplied to VCC of the package.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LP239D
OBSOLETE
SOIC
D
14
TBD
Call TI
Call TI
-25 to 85
LP239N
OBSOLETE
PDIP
N
14
TBD
Call TI
Call TI
-25 to 85
LP2901D
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LP2901
LP2901DE4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LP2901
LP2901DR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LP2901
LP2901DRE4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LP2901
LP2901DRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
LP2901
LP2901N
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 85
LP2901N
LP2901NE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 85
LP2901N
LP339D
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LP339
LP339DE4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LP339
LP339DG4
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LP339
LP339DR
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
LP339
LP339DRE4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LP339
LP339DRG4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LP339
LP339N
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
0 to 70
LP339N
LP339NE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
0 to 70
LP339N
The marketing status values are defined as follows:
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF LP2901 :
• Automotive: LP2901-Q1
NOTE: Qualified Version Definitions:
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Oct-2013
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
LP2901DR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
LP2901DR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
LP339DR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
LP339DR
SOIC
D
14
2500
330.0
16.8
6.5
9.5
2.3
8.0
16.0
Q1
LP339DR
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
LP339DRG4
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Oct-2013
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LP2901DR
SOIC
D
14
2500
367.0
367.0
38.0
LP2901DR
SOIC
D
14
2500
333.2
345.9
28.6
LP339DR
SOIC
D
14
2500
367.0
367.0
38.0
LP339DR
SOIC
D
14
2500
364.0
364.0
27.0
LP339DR
SOIC
D
14
2500
333.2
345.9
28.6
LP339DRG4
SOIC
D
14
2500
333.2
345.9
28.6
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Similar pages