AVAGO MGA-30689-BLKG 40mhz - 3000mhz flat gain high linearity gain block Datasheet

MGA-30689
40MHz - 3000MHz
Flat Gain High Linearity Gain Block
Data Sheet
Description
Features
Avago Technologies’ MGA-30689 is a flat gain, high
linearity, low noise, 22dBm Gain Block with good OIP3
achieved through the use of Avago Technologies’ proprietary 0.25um GaAs Enhancement-mode pHEMT process.
•
•
•
•
•
•
•
•
•
•
The device required simple dc biasing components to
achieve wide bandwidth performance. The temperature compensated internal bias circuit provides stable
current over temperature and process threshold voltage
variation.
The MGA-30689 is housed inside a standard SOT89
package (4.5 x 4.1 x 1.5 mm).
Specifications
Applications
• 900MHz; 5V, 104mA (typical)
– 14.3 dB Gain
– 43 dBm Output IP3
– 3.0 dB Noise Figure
– 22.3 dBm Output Power at 1dB gain compression
• IF amplifier, RF driver amplifier
• General purpose gain block
Component Image
• 1950MHz, 5V, 104mA (typical)
– 14.6 dB Gain
– 40 dBm Output IP3
– 3.3 dB Noise Figure
– 22.5 dBm Output Power at 1dB gain compression
6GX
#1
#2
RFin
GND
Top View
Flat Gain 14dB +/-0.5dB, 40MHz to 2600MHz
High linearity
Built in temperature compensated internal bias circuitry
No RF matching components required
GaAs E-pHEMT Technology[1]
Standard SOT89 package
Single, Fixed 5V supply
Excellent uniformity in product specifications
MSL-2 and Lead-free halogen free
High MTTF for base station application
#3
RFout
#3
#2
RFout
GND
#1
RFin
Bottom View
Notes:
Package marking provides orientation and identification
“6G” = Device Code
“X” = Month of manufacture
Note:
1. Enhancement mode technology employs positive gate voltage,
thereby eliminating the need of negative gate voltage associated
with conventional depletion mode devices.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 75 V
ESD Human Body Model = 450 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Absolute Maximum Rating [2] TA=25°C
Symbol
Parameter
Units
Absolute Max.
Vdd,max
Device Voltage, RF output to ground
V
5.5
Pin,max
CW RF Input Power
dBm
20
Pdiss
Total Power Dissipation [4]
W
0.75
Tj, max
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
Thermal Resistance [3] θjc = 53.5°C/W
(Vdd = 5V, Ids = 100mA, Tc = 85°C)
Notes:
2. Operation of this device in excess
of any of these limits may cause
permanent damage.
3. Thermal resistance measured using
Infrared measurement technique.
4. This is limited by maximum Vdd and
Ids. Derate 18.7 mW/°C for Tc>110°C.
Product Consistency Distribution Charts[5, 6]
LSL
USL
80
90
100
110
120
15
15.5
16
16.5
LSL
38
39
40
41
42
43
44
45
Figure 3. OIP3, LSL=37.5dBm, nominal=41.5dBm
3
3.2
3.4
Figure 5. NF, nominal=3.23dB, USL=4dB
3.6
21.2
21.6
22
22.4
22.8
23.2
Figure 4. P1dB, LSL=21.2dBm, nominal=22.5dBm
USL
2
14.5
Figure 2. Gain, LSL=13.7dB, nominal=14.6dB, USL=16.7dB
LSL
2.8
USL
14
13.5
Figure 1. Ids, LSL=80mA , nominal=104mA, USL=125mA
37
LSL
3.8
4
Notes:
5. Distribution data sample size is 500 samples taken from 3 different
wafer lots and 6 different wafers. Future wafers allocated to this
product may have nominal values anywhere between the upper and
lower limits.
6. Measurements were made on a characterization test board, which
represents a trade-off between optimal OIP3, gain and P1dB. Circuit
trace losses have not been de-embedded from measurements
above.
Electrical Specifications [7]
TA = 25°C, Vdd =5V
Symbol
Parameter and Test Condition
Frequency
Units
Min.
Typ.
Max.
Ids
Quiescent current
N/A
mA
80
104
125
Gain
Gain
40MHz
900MHz
1950MHz
dB
13.7
14.8
14.3
14.6
16.7
40MHz
900MHz
1950MHz
dBm
37.5
40
43
40
–
40MHz
900MHz
1950MHz
dB
–
2.9
3.0
3.3
4
OIP3 [8]
NF
Output Third Order Intercept Point
Noise Figure
S11
Input Return Loss, 50Ω source
40MHz
900MHz
1950MHz
dB
-13
-12
-15
S22
Output Return Loss, 50Ω load
40MHz
900MHz
1950MHz
dB
-18
-15
-12
S12
Reverse Isolation
40MHz
900MHz
1950MHz
dB
-20
-22
-25
OP1dB
Output Power at 1dB Gain Compression
40MHz
900MHz
1950MHz
dBm
21.8
22.4
22.5
21.2
–
Notes:
7. Measurements obtained using demo board described in Figure 30 and 31. 40MHz data was taken with 40MHz – 2GHz Application Test Circuit,
900MHz data with 0.2GHz – 3GHz Application Test Circuit and 1.95GHz data with 1.5GHz – 2.6GHz Application Test Circuit respectively.
8. OIP3 test condition: FRF1 – FRF2 = 10MHz with input power of -15dBm per tone measured at worse side band.
9. Use proper bias, heat sink and de-rating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application
note (if applicable) for more details.
3
Typical Performance (40MHz – 2GHz)
TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 1.
120
16
15.5
15
Gain (dB)
Ids (mA)
110
100
90
14.5
14
13.5
13
85°C
25°C
-40°C
12.5
80
-40 -30 -20 -10 0
48
25
46
24
44
23
42
22
40
38
36
85°C
25°C
-40°C
34
32
30
0.0
0.2
0.4
0.6
0.0
0.2
0.4 0.6
0.8 1.0 1.2 1.4
Frequency (GHz)
1.6 1.8
2.0
Figure 7. Gain over Frequency and Temperature
P1dB(dBm)
OIP3 (dBm)
Figure 6. Ids over Temperature
0.8 1.0 1.2
Frequency (GHz)
Figure 8. OIP3 over Frequency and Temperature
4
12
10 20 30 40 50 60 70 80 90
Temperature (°C)
1.4
1.6
1.8
21
20
19
85°C
25°C
-40°C
18
17
2.0
16
0.0
0.2
0.4 0.6
0.8 1.0 1.2 1.4
Frequency (GHz)
Figure 9. P1dB over Frequency and Temperature
1.6
1.8
2.0
Typical Performance (40MHz – 2GHz)
TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 1.
0
0
85°C
25°C
-40°C
-5
-10
S22 (dB)
S11 (dB)
-10
-15
-20
-25
-25
0.0
0.2
0.4
0.6
0.8 1.0 1.2 1.4
Frequency (GHz)
1.6
1.8
-30
2.0
Figure 10. S11 over Frequency and Temperature
-20
0.4
0.6
0.8 1.0 1.2 1.4
Frequency (GHz)
1.6
1.8
2.0
85°C
25°C
-40°C
5.5
5.0
-21
4.5
-22
NF(dB)
S12 (dB)
0.2
6.0
85°C
25°C
-40°C
-19
-23
-24
4.0
3.5
-25
3.0
-26
2.5
-27
0.0
Figure 11. S22 over Frequency and Temperature
-18
0.0
0.2
0.4
0.6
0.8 1.0 1.2 1.4
Frequency (GHz)
Figure 12. S12 over Frequency and Temperature
5
-15
-20
-30
85°C
25°C
-40°C
-5
1.6
1.8
2.0
2.0
0.0
0.2
0.4
0.6
0.8 1.0 1.2 1.4
Frequency (GHz)
Figure 13. Noise Figure over Frequency and Temperature
1.6
1.8
2.0
Typical Performance (0.2GHz – 3GHz)
TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 2.
120
16
15.5
15
Gain (dB)
Ids (mA)
110
100
14.5
14
13.5
13
90
85°C
25°C
-40°C
12.5
80
-40 -30 -20 -10 0
12
10 20 30 40 50 60 70 80 90
Temperature (°C)
Figure 14. Ids over Temperature
44
1.4
1.8
Frequency (GHz)
2.2
2.6
3.0
24
23
42
P1dB(dBm)
OIP3 (dBm)
1.0
25
85°C
25°C
-40°C
46
40
38
36
22
21
20
19
34
18
32
17
0.2
0.6
1.0
1.4
1.8
Frequency (GHz)
Figure 16. OIP3 over Frequency and Temperature
6
0.6
Figure 15. Gain over Frequency and Temperature
48
30
0.2
2.2
2.6
3.0
16
0.2
85°C
25°C
-40°C
0.6
1.0
1.4
1.8
Frequency (GHz)
2.2
2.6
Figure 17. P1dB over Frequency and Temperature
3.0
Typical Performance (0.2GHz – 3GHz)
TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 2.
0
0
85°C
25°C
-40°C
-5
-10
S22 (dB)
S11 (dB)
-10
-15
-20
-25
-25
0.2
0.6
1.0
1.4
1.8
Frequency (GHz)
2.2
2.6
-21
6.0
-23
5.5
-25
5.0
0.6
1.0
1.4
1.8
Frequency (GHz)
2.2
2.6
3.0
2.2
2.6
3.0
85°C
25°C
-40°C
4.5
-27
-29
-31
85°C
25°C
-40°C
-33
-35
0.2
Figure 19. S22 over Frequency and Temperature
NF(dB)
S12 (dB)
-30
3.0
Figure 18. S11 over Frequency and Temperature
0.2
0.6
4.0
3.5
3.0
2.5
1.0
1.4
1.8
Frequency (GHz)
Figure 20. S12 over Frequency and Temperature
7
-15
-20
-30
85°C
25°C
-40°C
-5
2.2
2.6
3.0
2.0
0.2
0.6
1.0
1.4
1.8
Frequency (GHz)
Figure 21. Noise Figure over Frequency and Temperature
Typical Performance (1.5GHz – 2.6GHz)
TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 3.
16
120
15.5
15
Gain (dB)
Ids (mA)
110
100
14.5
14
13.5
13
90
85°C
25°C
-40°C
12.5
80
-40 -30 -20 -10 0
25
85°C
25°C
-40°C
24
23
22
21
20
19
85°C
25°C
-40°C
18
17
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 24. OIP3 over Frequency and Temperature
8
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 23. Gain over Frequency and Temperature
P1dB(dBm)
OIP3 (dBm)
Figure 22. Ids over Temperature
45
44
43
42
41
40
39
38
37
36
35
12
10 20 30 40 50 60 70 80 90
Temperature (°C)
16
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 25. P1dB over Frequency and Temperature
Typical Performance (1.5GHz – 2.6GHz)
0
0
-5
-5
-10
-10
S22 (dB)
S11 (dB)
TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 3.
-15
-20
-20
85°C
25°C
-40°C
-25
S12 (dB)
-20
-21
-22
-23
-24
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 27. S22 over Frequency and Temperature
6.0
85°C
25°C
-40°C
-25
-26
-27
-28
-29
-30
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 28. S12 over Frequency and Temperature
9
-30
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 26. S11 over Frequency and Temperature
85°C
25°C
-40°C
-25
85°C
25°C
-40°C
5.5
5.0
4.5
NF(dB)
-30
-15
4.0
3.5
3.0
2.5
2.0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
Frequency (GHz)
Figure 29. Noise Figure over Frequency and Temperature
Application Schematic Components Table and Demo Board
Vdd
C1/
C4
Top View
C2/
C5
C3/
C6
L1/L2
RFin
C7
RFin
1
GND
2
Vdd
RFout
3
C8
RFout
Figure 30. Application Schematic
– Recommended PCB material is 10 mils Rogers RO4350, with FR4 backing for mechanical strength.
– Suggested component values may vary according to layout and PCB material.
Figure 31. Demo board Layout
10
Demo board Part List
Table 1. 40 MHz – 2 GHz Application Schematic Components
Circuit Symbol
Size
Value
Part Number
Description
L2
0805
820nH
LLQ2012-series (Toko)
Wire Wound Chip Inductor
C4
0402
100pF
GRM1555C1H101JZ01B (Murata)
Ceramic Chip Capacitor
C5
0402
0.1uF
GRM155R71C104KA88D (Murata)
Ceramic Chip Capacitor
C6
0805
2.2uF
GRM21BR61E225KA12L (Murata)
Ceramic Chip Capacitor
C7
0402
0.1uF
GRM155R71C104KA88D (Murata)
Ceramic Chip Capacitor
C8
0402
0.1uF
GRM155R71C104KA88D (Murata)
Ceramic Chip Capacitor
Table 2. 0.2 GHz – 3 GHz Application Schematic Components
Circuit Symbol
Size
Value
Part Number
Description
L1
0402
100nH
LL1005-FHLR10J (Toko)
MLC Inductor
C1
0402
10pF
GRM1555C1H100JZ01B (Murata)
Ceramic Chip Capacitor
C2
0402
0.1uF
GRM155R71C104KA88D (Murata)
Ceramic Chip Capacitor
C3
0805
2.2uF
GRM21BR61E225KA12L (Murata)
Ceramic Chip Capacitor
C7
0402
100pF
GRM1555C1H101JZ01B (Murata)
Ceramic Chip Capacitor
C8
0402
100pF
GRM1555C1H101JZ01B (Murata)
Ceramic Chip Capacitor
Table 3. 1.5 GHz – 2.6 GHz Application Schematic Components
Circuit Symbol
Size
Value
Part Number
Description
L1
0402
5.6nH
LL1005-FHL5N6S (Toko)
MLC Inductor
C1
0402
100pF
GRM1555C1H101JZ01B (Murata)
Ceramic Chip Capacitor
C2
0402
0.1uF
GRM155R71C104KA88D (Murata)
Ceramic Chip Capacitor
C3
0805
2.2uF
GRM21BR61E225KA12L (Murata)
Ceramic Chip Capacitor
C7
0402
20pF
GRM1555C1H200JZ01B (Murata)
Ceramic Chip Capacitor
C8
0402
20pF
GRM1555C1H200JZ01B (Murata)
Ceramic Chip Capacitor
Test Circuit for S-Parameter and Noise Parameter
Top View
Port1
RFin
1
GND
2
Vdd
RFout
Figure 32. S-parameter and Noise parameter test circuit
11
3
Port2/
Bias Tee
Typical S-Parameter (Vdd=5V, T=25°C, 50 ohm)
Freq
(GHz)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
0.04
-12.99
-32.00
15.06
168.04
-20.92
5.28
-16.84
-127.51
0.1
-14.08
-27.40
14.79
169.90
-20.96
-2.48
-19.24
-154.22
0.2
-14.01
-38.85
14.76
165.35
-21.03
-8.75
-19.58
-162.15
0.3
-13.91
-53.66
14.74
159.56
-21.12
-14.11
-19.26
-164.02
0.4
-13.77
-68.63
14.73
153.53
-21.22
-19.09
-18.74
-163.03
0.5
-13.35
-83.56
14.73
147.37
-21.33
-23.96
-18.11
-160.98
0.6
-13.00
-97.71
14.73
141.14
-21.47
-28.71
-17.39
-160.35
0.7
-12.72
-111.41
14.73
134.86
-21.62
-33.44
-16.68
-161.36
0.8
-12.52
-124.63
14.74
128.51
-21.80
-38.09
-16.06
-163.41
0.9
-12.39
-137.62
14.76
122.08
-22.00
-42.67
-15.52
-166.34
1
-12.34
-150.05
14.78
115.62
-22.22
-47.13
-15.24
-169.82
1.1
-12.41
-161.87
14.82
109.17
-22.44
-51.53
-15.28
-173.97
1.2
-12.54
-175.41
14.84
102.50
-22.70
-55.82
-14.89
-179.03
1.3
-12.69
170.65
14.85
95.82
-22.99
-60.06
-14.57
175.40
1.4
-12.82
156.26
14.87
89.03
-23.31
-64.12
-14.31
169.62
1.5
-12.93
141.66
14.88
82.19
-23.64
-68.01
-14.12
163.81
1.6
-13.01
126.78
14.89
75.26
-23.99
-71.72
-14.00
157.96
1.7
-13.03
111.68
14.90
68.25
-24.35
-75.22
-13.93
152.01
1.8
-13.01
96.50
14.90
61.16
-24.71
-78.44
-13.94
146.11
1.9
-12.95
81.20
14.90
53.95
-25.07
-81.61
-14.00
140.34
2
-12.88
65.77
14.90
46.65
-25.43
-84.49
-14.15
134.63
2.1
-12.81
50.14
14.89
39.20
-25.77
-87.34
-14.40
129.04
2.2
-12.70
34.17
14.87
31.61
-26.12
-90.10
-14.76
123.74
2.3
-12.58
17.76
14.83
23.90
-26.47
-92.75
-15.29
118.58
2.4
-12.41
0.95
14.78
16.00
-26.81
-95.33
-16.00
113.77
2.5
-12.16
-16.14
14.71
7.96
-27.17
-98.00
-16.96
109.37
2.6
-11.80
-33.20
14.61
-0.24
-27.55
-100.74
-18.30
105.50
2.7
-11.33
-49.82
14.49
-8.55
-28.00
-103.33
-20.25
102.35
2.8
-10.76
-65.59
14.34
-17.05
-28.53
-105.61
-23.31
101.97
2.9
-10.13
-80.17
14.15
-25.68
-29.14
-107.36
-28.97
113.12
3
-9.48
-93.20
13.93
-34.41
-29.83
-107.91
-32.62
-162.21
4
-4.21
-168.28
7.93
-120.56
-27.04
-106.92
-5.05
172.01
5
-3.59
147.25
0.81
-166.87
-26.54
-152.31
-5.03
119.44
6
-3.85
96.49
-4.08
149.56
-27.32
163.02
-5.99
64.27
7
-2.69
44.14
-9.83
107.31
-29.75
120.51
-4.59
18.14
8
-1.77
16.03
-14.96
78.14
-31.67
91.43
-3.79
-4.64
9
-1.75
-9.43
-17.88
50.07
-31.40
63.78
-4.06
-28.88
10
-1.78
-50.02
-20.61
13.00
-31.03
27.56
-3.96
-68.59
11
-1.13
-83.66
-24.77
-17.84
-32.33
-2.54
-2.84
-99.28
12
-0.68
-93.53
-27.85
-31.54
-32.97
-16.55
-2.41
-112.27
13
-0.60
-96.96
-28.26
-42.20
-31.56
-29.12
-3.06
-124.68
14
-0.75
-111.43
-27.18
-66.26
-29.27
-55.40
-5.12
-151.90
15
-0.78
-137.85
-27.02
-107.10
-28.39
-98.30
-10.11
172.41
16
-0.60
-158.35
-29.80
-158.40
-30.72
-150.20
-13.09
-114.20
17
-0.46
-169.66
-36.11
159.22
-36.78
166.86
-4.23
-127.84
18
-0.46
-177.82
-41.41
126.91
-42.05
133.28
-2.40
-147.29
19
-0.56
173.41
-43.20
81.20
-44.00
83.71
-2.16
-162.89
20
-0.76
158.69
-40.61
50.84
-41.28
51.14
-2.26
-173.39
12
Typical Noise Parameters (Vdd=5V, T=25°C, 50 ohm)
Freq (GHz)
Fmin (dB)
Γopt Mag
Γopt Ang
Rn/Z0
0.4
3.04
0.203
13.20
0.522
0.9
2.80
0.205
14.50
0.466
1.0
2.87
0.208
16.30
0.468
1.7
2.82
0.211
19.80
0.496
1.85
2.81
0.214
20.80
0.512
2.0
2.83
0.217
26.10
0.526
2.5
3.05
0.280
51.60
0.59
3.0
3.84
0.356
95.30
0.596
3.5
4.27
0.468
142.00
0.362
4.0
5.18
0.537
174.50
0.234
4.5
5.20
0.522
-163.90
0.29
5.0
6.16
0.534
-142.24
0.618
13
SOT89 Package Dimensions
D
D
D1
D1
E1
POLISH
E1
OR
E
L
L
e
e
S
S
e1
C
e1
1.625
D2
MATTE FINISH
HALF ETCHING
DEPTH 0.100
1.23
2.35
0.77
0.2
D1
E
b
b1
b
POLISH
1.24
E
A
OR
b1
Dimensions in mm
14
Dimensions in inches
Symbols
Minimum
Nominal
Maximum
Minimum
Nominal
Maximum
A
1.40
1.50
1.60
0.055
0.059
0.063
0.047
L
0.89
1.04
1.20
0.0350
0.041
b
0.36
0.42
0.48
0.014
0.016
0.018
b1
0.41
0.47
0.53
0.016
0.018
0.030
C
0.38
0.40
0.43
0.014
0.015
0.017
D
4.40
4.50
4.60
0.173
0.177
0.181
D1
1.40
1.60
1.75
0.055
0.062
0.069
D2
1.45
1.65
1.80
0.055
0.062
0.069
E
3.94
-
4.25
0.155
-
0.167
E1
2.40
2.50
2.60
0.094
0.098
0.102
e1
2.90
3.00
3.10
0.114
0.118
0.122
S
0.65
0.75
0.85
0.026
0.030
0.034
e
1.40
1.50
1.60
0.054
0.059
0.063
Part Number Ordering Information
Part Number
No. of Devices
Container
MGA-30689-BLKG
100
antistatic bag
MGA-30689-TR1G
3000
13” Tape/ Reel
Device Orientation
USER FEED
DIRECTION
6GX
6GX
6GX
CARRIER
TAPE
6GX
REEL
COVER TAPE
Tape Dimensions
Ø 1.5 +0.1/-0.0
8.00
0.30 ± .05
Ø 1.50 MIN.
2.00 ± .05 SEE NOTE 3
4.00 SEE NOTE 1
A
R 0.3 MAX.
1.75 ± .10
5.50 ± .05
SEE NOTE 3
Bo
12.0 ± .3
Ko
SECTION A - A
15
Ao
Ao = 4.60
Bo = 4.90
Ko = 1.90
R 0.3 TYP.
A
DIMENSIONS IN MM
NOTES:
1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2
2. CAMBER IN COMPLIANCE WITH EIA 481
3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED
AS TRUE POSITION OF POCKET, NOT POCKET HOLE
Reel Dimensions – 13” Reel
R
LOKREEL
R
MINNEAPOLIS USA
U.S PAT 4726534
102.0
REF
1.5
ATTENTION
Electrostatic Sensitive Devices
Safe Handling Required
88 REF
330.0
REF
"A"
96.5
6
PS
Detail "B"
6
PS
Detail "A"
8.4 - 0.2
(MEASURED AT HUB)
11.1 MAX.
Ø 20.2
Dimensions in mm
M IN
+0.5
Ø 13.0 -0.2
2.0 ± 0.5
For product information and a complete list of distributors, please go to our web site:
+0.3
(MEASURED AT HUB)
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.
AV02-1876EN - May 23, 2013
Similar pages